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Abstract

The array update problem in the implementation of a purely
functional language is the following: once an array is up-

dated, both the original array and the newly updated one
must be preserved to maintain referential transparency. Pre-

vious approaches have mainly based on the detection or en-
forcement of single–threaded accesses to an aggregate, by
means of compiler–time analyses or language restrictions.

These approaches cannot deal with aggregates which are

updated in a multi–threaded manner.
Baker’s shallow binding scheme can be used to imple-

ment multi–threaded functional arrays. His scheme, how-
ever, can be very expensive if there are repeated alternations

between long binding paths. We design a scheme that frag-
ments binding paths randomly. The randomization scheme
is on–line, simple to implement, and its expected perfor-

mance comparable to that of the oDtimal off-line solutions.

All this is ~chieved without using ‘compiler-time analyses,
and without restricting the languages.

The expected performance of the randomization scheme
is analyzed in details, and some preliminary results are shown.

Applications of the randomization technique to other func-
tional aggregates, as well as its implications, are briefly out-

lined.

1 A Brief Survey of the Aggregate Update Problem

In a functional program, if an aggregate data structure is

updated then both the original version and the updated
version of the aggregate must be preserved, preferably at

a small cost, to maintain referential transparency. It is gen-
erally regarded as too expensive to make a complete copy

of the aggregate that differs from the original only in the
updated position. There have been various approaches to
solve the aggregate update problem.

If a compile-time analysis or a run–time test can de-

termine that the original version of an aggregate will not
be referenced following a; update, then the update can be
performed in place [7, 12, 16, 20]. However, such an opti-
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mization analysis or run–time testing can be quite expensive

to implement.

Language primitives, in the forms of type disciplines or

buil-in functions, can also be provided to write functional

programs such that single–threadedness can easily be rec-

ognized and implemented by a compiler. A sequence of
read/update accesses to an aggregate is called single–threaded
if each operation only refers to the newest version of the

aggregate [2 I]. Thus, all update operations in a single–
threaded sequence can be performed in place because pre-

vious versions of the aggregate will never be needed and

can be safely overwritten [2, 17, 23]. However, such lan-

guage constraints can be too restrictive in that the resulting

functional programs may be too imperative-like and impose
unnecessary evaluation order.

A common drawback of the above two approaches —

that single–threadedness is detected by compiler–time anal-

yses or is enforced by language constraints — is that they

cannot deal with aggregates which are updated in a multi–

threaded manner. This is because the two approaches aim

to keep only one copy of each aggregate. As an example, the

above two approaches cannot properly handle the following

expression:

(Read (Update A i u) j) + (Read (Update A m v) n)

where A is an array, i, j, m, n indexes, and u, v values to be

stored in the array. In image processing, the above multi–
threaded update sequences can occur in the following way:

various transformations are applied to an original image,
then the transformed images are compared to one another

for their effects. We can construct a monolithic arrav to.
represent the image after each transformation, but this per-

forms badly if each transformation only make few changes

to the original image.

The above drawback leads one to another approach, which

is to design efficient algorithms to make aggregates fully per-

sistent (i. e., purely functional) such that, aft er a sequence of
updates, the newest version as well as all previous versions

of the aggregate are still accessible [1, 5, 6, 8, 9, 10, 11, 15,
19, 22]. The challenge is to reduce as much as possible the

associated overhead when maintaining multiple versions of
an aggregate.

In this paper, we develop a randomization technique for
the efficient implementation of multiple functional arrays.
The expected performance of the randomized implementa-
tion will be analyzed in details. We will also briefly describe
its applications to other functional aggregates, and its impli-
cations to functional programming in general. The paper is
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Figure 1: The shallow binding scheme.

I NOTE. The array is of size 2 and is indexed by z and y. The initial array A is undefined, and B is defined as an update

Ito A at index z by value O. Similarly for C and D. The dark node is the root node which has the cache. White nodes
are differential nodes which must first be rerooted before be read. Note that only the root node has the cache.

organized as the following: Section 2 describes an implemen-

tation of functional arrays based on the fragmented shallow

binding scheme, and its problems. A randomization scheme

is proposed in Section 3, and its expected performance an-

alyzed in Section 4. Section 5 describes a preliminary im-

plementation based on the Chalmers Lazy ML compiler and

explains the results. Section 6 states its beneficial effect on

garbage collectors, and its applications to other functional

aggregates. Section 7 concludes this paper.

2 Functional Arrays by Fragmented Shallow Binding

General techniques for making aggregate data structures

fully persistent are described by Driscoll, Sarnak, Sleator,

and Tarjan [10]. However, these techniques only apply to

linked data structures. They cannot be applied to the usual

representation of an array, which is not implemented as a

linked data structure but as a successive block of locations

in the random access memory (RAM). In this paper, we will

use the term cache to call this block of RAM. This allows

us to distinguish this ephemeral implementation of an array

from the fully persistent implementations of an array.

Note that an array can be implemented as a balanced

search tree such that the fully persistent techniques of Driscoll,

Sarnak, Sleator, and Tarjan apply. But this is unattractive

because we lose constant time accessibility to an array even

if the array is used only in a single–threaded matter. We

aim to retain the constant time accessibility of an array as

oft en as possible.

Baker’s shallow binding scheme, which was originally de-

signed to support multiple environments for higher–order

functional languages [5], can be used to implement func-

tional arrays [6]. In this scheme, also known as the re-

versible di~erential list method in the folklore, only one

version of the arrays keep the physical COPY of the cache.

This array is the root in- the v~rsion tree: - Each of other

versions is represented as a path of differential nodes, where

each node describes the difference between the current ar-

ray and the previous array. The difference is represented as
an (index, value) pair, which describes the new value to be

stored at the specified index. All paths lead to the root. An
update to an array is simply implemented by at t aching a

differential node to the node it is updating. A read to the
root node just fetches the corresponding entry in the cache.

A read to a differential node is accomplished by a sequence
of rotations which exchange the (index, value) information
along the path leading to the root. Such a sequence of rota-
tions is called rerooting. Notice that 1) a rotation can only

occur between a root node and a differential node pointing
to it, 2) the differential node becomes the new root after
the rotation, and 3) the original root node becomes a differ-

ential node pointing to the new root. In this scheme, each

update costs constant time while the cost for a read is pro-
portional to its rerooting length. However, after the first

read, each (immediately) following read to the same array
costs only constant time. Figure 1 illustrates the shallow
binding scheme.

Shallow binding scheme performs badly if read opera-

tions are issued alternatively to arrays which are far away
to one another in the version tree: Then the rerooting cost,
which can be linear to the total number of updates so far,
dominates each read. See Figure 2 for such a case, A frag-

mented shallow binding scheme has been proposed to solve

this problem [8]. In this new scheme, whenever a read op-

eration discovers it is rerooting a path of length d z 2n + 1,

where n is the array size, the read cuts the path between

the new root and old root evenly into k = ~~1 disjoint seg-

ments such that each segment has at least [~] % n nodes
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NOTE. Repeatedly alternative reads to two arrays which are far away to each other but share a common root node,
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Figure 3: The fragmented shallow binding.

NOTE. The array size is 2. A rerooting path of length d ~ 5 will be cut equally into k = [$1 disjoint segments such that

each segment has its own root node.

Case 1. Case 2.

Figure 4: Potentially a bad case.

NOTE. Repeatedly alternative reads to two arrays which are just one edge away. Bad for both the shallow binding
scheme and the fragmented shallow binding scheme if the number of alternations is far greater than the array size.
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(including a root node with a cache of size n). See Figure
3 for illustration. The cost of cutting long rerooting paths

will be balanced by that of shorter rerooting in the future.

It is shown that, at the cost of doubling the space usage, this
scheme performs well under some mild locality assumption
[8].

However, cutting long paths when rerooting does not
quite solve the whole problem. There are short paths which

are equally annoying. Notice that there is a threshold d in

the fragmented shallow binding scheme such that rerooting

paths of length less than d are not cut. Also notice that we

cannot arbitrarily reduce this threshold. This can increase

space usage — because each cut will demand a new cache
of size n — without any efficiency gain. Figure 4 illustrates

two arrays A and B which are different to each other in one
index, but may cause problem in the long run. Suppose A

and B are read alternatively for m times. Further, suppose
that it costs one unit of time for each rotation, and n units

of time to copy the cache. Then the fragmented shallow

binding, as well as the shallow binding scheme, will require

m units of overhead for the rotations. This becomes uneco-
nomical if m > n + 1. In this case, the optimal solution will

opt to copy the cache (and make the necessary modification

required by the differential node) at the first very read that

requires a rotation. This makes both A and B possess their
own cache. There is no additional overhead for the remain-
ing reads. This only incurs n + 1 overhead, which can be
arbitrarily smaller than m. On the other hand, if m < n + 1

then the optimal solution will not duplicate the cache. It
just uses rotations all the way.

The above optimal solution requires us to foretell the fu-

ture. (Will the number of alternations in the entire read

sequence larger than the array size?) It requires an off-line
algorithm, where the entire access sequence is given in ad-
vance in order to derive the optimal solution. We will show

in the next section an randomized version of the fragmented
shallow binding scheme. It is an on–line scheme, simple

to implement, and its expected performance comparable to
that of the optimal off-line solution.

3 A Randomization Scheme

The idea is very simple. Whenever there is a rotation be-

tween a root node and a differential node, we copy the cache
owned by the root node with probability ~, and give it to

the differential node. To be precise, the following three array
operations:

e Create n: Return an array of size n. Each entry of the
array is not initialized.

● Update Aj t v: Return an array Aji which is function-

ally identical to array Aj except AJI (z) = v. Array Aj
is not destroyed and can be accessed further.

● Read Aj i: Return Aj(z).

are implemented in the randomization scheme by the follow-
ing:

●

●

Create n:
Allocate a cache of size n. Allocate a root node of one
field and have this field point to the cache. Return the

address of the root node.

Update AJ i v:
Allocate a differential node of three fields and have

●

it store AJ, i, an d v. (Notice that Aj is an address.)
Return the address of this newly allocated node.

Read A, i:
Do a r&ooting starting from the node pointed to by

Aj. However, for each rotation between a root node
u and a differential node w during the rerooting, the

cache owned by u is copied with probability p = ~.
The duplicated cache is then modified by the (index,

value) pair dictated by v. Make v a root node which
own this modified cache. (Notice that the original
cache is still solely owned by u.)

For the remaining probability g = 1 – p, the rotation
between u and v is carried out by just a plain rotation,
which makes v a root node and u a differential node

pointing to v.

After the rerooting, AJ points to a root node which

owns a cache. Return the z‘th entry in the cache.

Note that each array creation costs O(n) time, and each
update operation costs constant time. The expected cost
of a read operation is more difficult to see, and the main

purpose of the next section is to analyze it. Note also that
we have two kinds of rotation now: one that cuts an edge
and the other that does not. The term rotation will still be

used to address both kinds of rotations. If necessary, the
term plain rotation is used to distinguish the rotations with

no cutting from the rotations that cut.
Let us illustrate the effect of the above randomization

scheme by Figure 3. Recall that the array size is 2. We cut

the edge during each rotation if the coin tossing results in

head. The edge is retained if the coin comes out in tail. The
chance of a head is ~, so is a tail. The last configuration

( “after a read . . . G“~ can be viewed as resulting from the
previous one (“after a read . . . D“ ) by the following coin

tossing: tail, tail, head, tail, head.
What are the justifications behind such a randomization

scheme? Recall that the motivation beyond the fragmented
shallow binding scheme is to cut a long rerooting path into

segments of length about n. This reduces the cost of sub-
sequent reads which may otherwise require the same long
rerooting. In the randomization scheme, we can expect a

long rerooting path to be cut once in every ~ = n rotations.

This reduces a long rerooting path into shorter ones. Fur-

thermore, for a short rerooting path which is being repeat-
edly rerooted, the randomization scheme is also expected to

cut the path for every n rotations. This solves the problem
described by Figure 4. On the other hand, the additional
overhead for each rotation (which is incurred by the ran-
domization scheme to copy a cache of size n) is expected to
cost only p , n = 1 unit of time and space.

Detailed analyses on the expected performance of the

randomization scheme will be described in the next section.
But let us make some remarks before leaving this section.

Note that the randomized method does not make any prob-
abilistic assumption on the distribution of the read/update
access sequences. Rather, the method relies on a private
sonrce of random bits to guide its actions — to copy or

not to copy. The expected performance of the randomiza-
tion scheme, therefore, shall be interpreted in the following
way: a given access sequence s is expected to cost O(~(s))
overhead if, when running the randomization scheme over

the entire sequence repeatedly for sufficiently many times,
the overhead averaged over all runs will be O(~(s)). It is
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possible the randomization scheme can perform badly by
duplicating too many, or too few, caches. But almost surely

such situation does not occur every time in the long run.

4 Expected Performance of the Randomization Scheme

We starts by defining some symbols which will be used in

the performance analysis. We will use n to denote the array
size, which is also the cache size pointed to by a root node.

It is always assumed that n >0. The real number p = ~ is
the probability that a rotation between a root node and a

differential node will result in cutting the edge between them
and duplicating the cache; while q = 1 – p is the probability

that the edge is retained and the rotation is just a plain
rotation. We use 1 to denote the total number of edges in the

configuration; the configuration initially is a tree but later
may become a forest due to cutting by rotations. Notice

that the total number of edges equal the total number of

differential nodes in a confijmration. For each rotation that

cuts the edge between two nodes, the cut reduces the number
of differential nodes by one and increases the number of root

nodes by one. We use m to denote the total number of read

operations in a given access sequence.

In the analvsis. we will onlv measure the additional ouer-
head incurred “by the random~z ation scheme in the process

of rerooting. We count 1 unit of time for a plan rotation
and n + 1 units of time of a rotation that duplicates the

cache and cuts the edge. We do not count the cost of cre-
ating the initial array, the cost of appending the differential

nodes due to update operations, and the cost of accessing
the caches for read operations. Measuring only the overhead

is more useful if we want to compare the overhead incurred
by the randomized method with that of the optimal off-line

solution.
The function R(Z. m) denotes the exDected overhead of. . . .

the randomized method on a configuration of 1 edges for

a sequence containing m reads. How these edges connect
to one auother, however, is not specified, but will be put

into details if necessarv. So. for a seauence of I + 1 + m
“.

array operations which starts with a ~ingle array creation
and includes 1 updates and m reads, the expected total cost

of the randomization scheme will be n + / + m + R(Z, m).
Similarly, the function Opt(i, m) denotes the overhead of

the optimal off-line salution. For the same sequence of I +
1 + m array operations, then the total cost of the optimal

solution will be n + J + m + Opt(l, m). We aim to meaaure

the relationship between I?(1, m) and Opt(/, m) for the same

access sequence.
The optimal algorithm is given the access sequence in

its entirety when deriving its solution; while the randomiza-
tion scheme must serve the requests on–line. The optimal

algorithm try to cut the rerooting path, and duplicate the
caches, in a way that it reduces the overhead as much as
possible. However, it obeys the same restrictions as the ran-
domization scheme in that 1) a read to a differential node
must first make it a root node, and 2) if a rotation duplicates
a cache from the root node and gives it to the differential

node, the rotation must also cut the edge between the two

nodes. 1) means that we do not allow the optimal algorithm
to search a path to satisfy a read operation, while without

moving the cache to the node to be read. 2) means that
we do not allow a differential node to point to more than
one node at the same time; otherwise we may have unbound
number of out–going pointers from a differential node.

We assume that all update operations precede all read

operations. We will later show how to relax this restriction

without affecting the analysis. Now, instead of aaking how
good the randomization scheme can be, our first question is:

how bad we can expect from it in the worst cases?

Proposition 4.1 R(O, m) = O, and

for all 1>0. ❑

PROOF. We give a upper bound of R(l, m) by employing

an adaptive on–line adversary. It is obvious that R(O, m) =

O because a configuration with no edge contains only root
nodes, and reads to a root node incur no overhead. If 1>0,

then a read to a differential node may cut, randomly, along

its rerooting path. After each read operation, the adversary
looks at the resulting configuration. It then picks a node in

the forest which has the longest distance to its corresponding

root node. It demands this array to be read next,

The initial configuration is a tree of / edges. Successive
read operations may cut the tree into a forest, and each cut

reduces the number of edges by one. For a configuration

of 1 edges, the adversary, at most, can pick an node with a
rerooting path of length 1.

After such an node is picked by the adversary, the ran-

()1domination scheme with probability ~ p’q~-’ cuts the

rerooting path of 1 edges into z disjoint s;gments. It slso
reduces the total number of edges by i. Such a rerooting

costs 1 + ~ time, where 1 is for the rotations and ~ is for

the duplications of i caches which each costs ~ = n units of

time. At the next round, the adversary, at most, can only

pick a node with a rerooting path of length 1 – i.
Summing up the costs for all O < i <1, each with prob-

()

1
ability i p’qt-’, we then bound R(2, m) by

1

() ‘ 1-’(2+~+ R(/-i,l ))))R(l, m)S~ ~ Pq

,=0

for all 1>0. 0

But, how large is l?(l, m) actually? The recurrence rela-
tion is solved in the following lemma. A detailed proof is in
Appendix A.

Lemma 4.2 R(l, m) <21. ~. ❑

Since 1 – q = p = ~, we then have R(Z, m) < 2nl(l –
qm) < 2ni. That is, in the worst cases, the expected over-
head of the randomization scheme is bounded only by Z (the
total number of updates) and n (the array size), but not

bv m (the total number of reads). This is suite different
f~om the fragmented shallow binding scheme ‘and the shal-

low binding scheme in that their overheads are also bounded
by m. In those two schemes, there can be some reads whose

associated overhead (which can be linear to i or n) remains
the same during the entire sequence. In the randomiza-
tion scheme, however, we can expect the overhead associated

with a read to the same array diminishes exponentially for
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each successive read. Also note that we bound R(l, m) by
a very powerful opponent, an on–line adversary that peeks
into the resulting configuration in order to give us the most

headache. But in fact the resulting configuration is hidden

from the users, and they cannot construct those mischievous
sequences. So we can expected a much less upper bound.

Function R(l, m) describes the overall computational be-
havior of the randomization scheme, but does not give any
information on the effect of the randomization on an existing
configuration. We now set out to show the effect of random

cutting on some configurations.

Let WO, VI,. ... V;, W.. ,W be a sequence of nodes in the

configuration such that v, points to V,+l for each O < z <
1-1. Furthermore, let VI be a root node. A read operation

directed to node vo will cause a rerooting from node V1 to
node ZJoand cut the path between them randomly. Let -L(z)

be the expected distance between node w and its root (which

is not necessarily V.) just after the rerooting. We then can

show the following.

Lemma 4.3 L(z) = (n – 1)(1 – q’), for all O < i <1. ❑

PROOF. Let us look at the edge connecting nodes vi and
v,_I. This edge can be cut, with probability p, during the
rerooting. In this case, the distance between v, and its root

is O because vi is already a root. If, with probability g, the
edge is not cut, we then look at the edges between node v,-1
and v,_2 too see if it is cut or not. If it is, then L(i) = 1, with

probability pq. If it is not cut, we then look at the edges

between node V,-Z and v,--3, and so on. Until we reach
node V., which must be a root node. If we reach V. without

cutting any edges in between, we then conclude that, with
probability q’, L(i) = i.

Summing up, we get

i-l

-q;) = ~kpq~ + iq’.

k=O

:—1 i

(1 - q)s = ~kpqk - ~(k - l)pqk

k=O k=l

t-l

= ~pqk - (i- l)pq’ = (q-q’)- (2- l)pq’.

k=l

Since 1 – q = p = ~, itfollows that

L(i) = S+iq’ =nq–nq’+q’ = (n– 1)(1–q’).

o
In order to get an idea of how large, or small, L(z) is, we

need to show the following two results. The proofs are not
difficult and are omitted to save space.

Lemma 4.41f O<i<n, thenl–~ <q’<1–~. ❑

Corollary 4.5 If z > n >0, then O < q’ < ~. •1

By Lemma 4.3, 4.4, and Corollary 4.5, we now bound

L(i) by the following.

Corollary 4.6

+.qi

*.(n-l)

< L(i) < qi, if O<i <n;

< L(i) < (n–l), ifi>n.

❑

What does this mean? It means that, after a rerooting
sequence passing node u and reaching at node v, the root

for node u can be found in distance related to the distance
between u and v. More precisely, if the dist ante between u

and v is larger then n, then the root for u can be expected
to be n – 1 edges away from it at the most. If the distance is

smaller than n, then dist ante between u and its root dimin-
ishes at the rate of q = 1 — ~ for each successive rerooting.

This implies that the random cutting can be expected to
work well for both long and short rerooting paths.

Now, let us try an example to see how well the random.

ization performs. In particular, we want to compare it to

the optimal algorithm. This example is a generalized case
described by Figure 4. That is, we want to consider the
case of issuing m alternative reads to two versions of an ar-
ray which are 1 edges away from each other. Formally, let
us assume that there are 1 + 1 different versions of array:

VC),Vi). ... Vi, V~. ,V~. They form a single line in the version
tree, with V. at one end and V1 at the other. Initially V. is

the root, with w points to vo, . . . . and VI points to Vt–l.

A sequence of m read operations is then directed to node

vo and vi alternatively, with the first read to ZJt, the second

read to vo, the third read to V1, the fourth read to V., and
so on.

How well will the optimal off-line method perform? If
ml < 1 + n, then it does not pay to duplicate any cache,

Therefore the optimal algorithm will need ml additional
overhead to reroot the cache between node V. and V1 repeat-

edly for m times. If ml >1 + n, then the optimal algorithm,
at the very first read, will duplicate the cache associated

with node vo and reroot this cache to node VI, leaving both
V. and V1 each with its own cache. Successive reads then

fetch data from the caches at node vo and VI with no addi-
tional overhead. The total overhead is then 1 + n, where n

is for duplicating the cache and 1 for the first, and the only,
rerooting between V. and VI. In short, we have

Opt(l, m) = ml, if O<ml<l+n;
Opt(i, m) = /+n, ifmi>i+n.

We now relate the expected performance of the random-
ization scheme to that of the optimal solution.

Theorem 4.7 If m reads are issued alternatively to two
arrays which are initially 1 edges apart as described above,
then

R(l, m) <2. Opt(l, m)

for all 1 and m. ❑

PROOF. For the randomized method, it is expected to incur
21 overhead for the first read. This is because each of the
1 rotation between vo and v needs 1 unit of time for the
rotation and is expected to need another pn = 1 unit of
time to duplicate the cache, After the first read, the second
read is directed to node V., which, by Lemma 4.3, will expect
2(n – 1)(1 – qi) unit of time. (Again, two units of time for
each of the expected edges between w and its root. ) But
what about the reads afterward ?
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If the third read finds out that V1 has the cache, then

it costs no additional overhead for the read, so is all the

following reads. This is because both wo and vi are root
nodes now. If vi is not a root node, then the nearest root

can only be as far as at VO. It costs at most 2(n – 1)(1 – qi)

for rerooting. But what is the probability that q is not the
root node in the first place? That V1 is not a root node at the

beginning of the third read means that the root had been
rerooted to ZIOfor the purpose of the second read. But this is
possible only if the first read does not cut any edges between

node V. and VI. This occurs with probability qt. Therefore,
the expected cost of the third read is 2(n – 1)(1 – qi)q~.

By the same reasoning, the expected cost for the (Z+2)th

read is 2(n —1)(1 —qt)(g{)’. Summing up, the total expected

overhead of the m reads is

m—2

R(l, m) = 2/+ ~ 2(n – 1)(1 –q’)(g’)’

,=0

—— 21+2(?z – 1)(1 –q(’’J-l)~)

for all m z 1. We then conclude

R(l, m) < 21+ 2(n – 1) < 2(1+ n) = 2. Opt(l, m)

ifmi>l+n. Ifml<i+ n,theneither O~(m —l)l~nor

m = O. If O ~ (m – 1)1 ~ n, by Lemma 4.4,

R(l, m) < 21+2q(m– 1)1 = 2(p+qm)l < 2ml = 2. Opt(l, m).

For the remaining case of m = O, it is obviously that

R(1> O) = O = 2. O@(i, O).

Summarized, we get R(l, m) <2. Opt(l, m) for all i and m.
o

Note that the above Theorem is true no matter how
large, or small, 1 is. The randomization scheme solves both

the problems described by Figure 2 and 4! The additional

overhead incurred by the randomization scheme is expected
to be less than twice of that of the optimal solution.

However, in the above case, only two nodes, vo and vt,
are read in the entire read sequence. This is too restrictive.

We now generalize the case to the following: the (2z)th read

is directed to node vo, but the (22 + l)th read is directed to

node Vf(,), where $ is a monotonic function. That is, while
the even–numbered read operation is always directed to the

original node vo, we allow the odd–numbered read operation
to be further away from the original node for each successive
alternation. This is a useful generalization in the following
sense: the odd–numbered reads can be thought of mixing

with incoming upd+tes, We can think of the gap between

the (22 + I)th read and the (22 + 3) ‘h read being created

by ~(i + 1) – ~(i) additional updates directed to node of(,),
one by one. After the updates, we read the resulting array.
We will character a read/update sequence with this kind of
reference behavior as a thread. Right now we have only one
thread (which can look back to its origin periodically). We
will later show how to generalize it to the multi–threaded

cases.
To analyze the performance of a single thread, we still

assume that, initially, nodes VO,q, . . . . w,, . . . . zq, form a sin-
gle line in the version tree, with W. — the root node — at

one end and tiz at the other. The last read, the m th, & ~~_

sumed to be directed to node V1 if m = 2k + 1 is odd and

i = ~(k). If m = 2k + 2 is even, the last read is directed to

node vo. By an argument similar to Theorem 4.7, we can

show the following.

Corollary 4.8 For the above case of m alternations, in

which the even–numbered read operations move successive
further away from the origin and finally reach node VI, we

have
J?(1, m) ~ 21+ 2(n – 1)(1 – q(m-l)t)

and

R(i, m) <2. Opt(l, m)

for all 1 and m. ❑

So, the expected performance of a single thread (with
periodical looking–back) under the randomization scheme is

still comparable to that of the optimal performance. Now,
we consider the cases of w independent threads sharing a sin-

gle origin, resulting a “spokey” configuration as illustrated
in Figure 5. This is exactly the image processing situation

we discuss earlier in Section 1. The execution of a thread
can be interrupted by another thread if the reroot operation
occurring in the other thread happens to request the cache
under the possession of the current thread. Notice that the

execution of a thread can be switched to other threads with-
out interruption if other threads have their own caches.

Theorem 4.9 Suppose that, in the above described spokey

w–threads case, thread s,, 1 s i ~ w, is switched m, times in

order to execute other threads. Further suppose that thread

s, performs i, update operations. Then the total overhead
incurred by the randomization scheme is bounded by

u

PROOF. If a thread s, is switched m, times, then it requires

at most 2m, + 1 alternations between the tip of the thread

and the origin. When a thread is switched, the root at its tip

is rerooted to the origin, then the root is rerooted to the tip
of requesting thread to satisfy the request. Notice that not

each switch would need a rerooting en route to the origin
in order to satisfv the reauestin~ thread. But the overhead
incurred by such a route- is an upper bound of the actual
overhead.

By Corollary 4.8, the m, interrupts to thread s: causes
at most 2i, + 2(n – 1)(1 – qzm’ti) overhead. Summing up
the overheads for rdl threads, the result follows. o

Notice that we are not able to bound the above overhead
wit h respect to that of the optimal solution. This is because
the composition of local optimal solutions not necessarily

gives a global optimal solution. That is, although we have
bound like

R(l,,2m, + 1) s 2. 0pt(i,,2m, +1)

for each thread s,. we do not know the relation between

~.~=, OPt(~~, 2mt + 1) and Opt(W,T=l L, W:l m:), where Ij
is Just an ad–hoc notation to describe the composition of the
whole problem from the isolated local problems. Also, using

~~=1 R(L, 2mi + 1) to bound R((j~=l 1,,(-j~=l m,) gives a
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Case 1. Case 2.

Figure 5: Two “spokey” configurations.

NOTE. There are five independent threads updating the same array. Case 2 may result from case 1 after the following
three read operations: a read to the tip of thread s, then a read to the tip of t, and then a read to the tip of u.

overlv ~essimistic estimation of the actual overhead. Still. and are properly decorated to give out useful heap profil-

by The&em 4.9, we now have

R(&,&) < 2wn+25L

“=1 ,=1 ,=1

which states that the total overhead of the randomization
scheme is less than twice the total cost of updates and caches
(with one cache for each thread).

The spokey configuration is a special case of trees. In
a tree, there may be updating threads that shared a com-
mon update sequence to the origin node. We can count 1,,
the number of updates in that thread, by the number of

edges from its tip to the origin. Such counting will over–
count because shared paths are counted more more than

once. Therefore, ~~=1 1, can be larger than the total num-
ber of updates. Nevertheless, Theorem 4.9 gives an upper
bound of the total overhead.

5 A Preliminary Implementation

We have implemented the randomization scheme on top
of the Chalmers Lazy ML (LML) compiler [3, 4]. LML
i= titron~ly typed, lazy, and purely functional. It provides

primitives to construct monolithic arrays but admits no up-

date to these arrays. We add a function, write, which per-

forms destructive modification to an array. We also write

a small library for references h la Standard ML, to provide

a general mechanism for referencing, dereferencing, and as-

signment at the programmer level. These added–on routines

are written in a low level machine language, the M–code,

ing information when executed. The heap profiling tool is
designed by Runciman and Wakeling [18].

Adding write and references to LML amounts to adding

side–effecting features to the language. Together with these
low-level routines and the LML primitive seq, which is of
type *a ~ xb -+ *b and returns the second argument af-

ter evaluating the first argument, we then write — all in

LML — a module for purely functional arrays. Parts of
the code are included in Appendix B. Notice that, in a

lazy language like LML, seq is very useful for synchroniz-

ing side-effects. For example, seq (reroot array) (read
array index) dictates that a reroot operation has to be per-
formed first when reading an array not yet represented by a

root node.

There is one problem we have not addressed: how to gen-
erate fast (and good) random bits. We are not too concerned
about this problem because random bits are required only

when performing rerooting. If read operations are mostly
directed to root nodes, random bits are not needed at all.

Update operations do not need random bits either. There-
fore, we probably will not need too many random bits once
the resulting version forest has evolved to fit the read pat-
tern of a given program. Another way of saying this is that]
for programs with good reference locality, the overhead in-
curred by rerooting (and that of generating random bits)
may not be so significant when compared to the overall cost

of array operations. We use the built–in random number
generator of LML.

Instead of running a number of benchmark to see how
well the randomization scheme performs, we choose to test
the randomization scheme, along with other schemes for
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purely functional arrays, on only one problem: the his-
togram problem. The histogram problem is to classify a se-

quence of incoming events into a fixed set of categories, and

to query the distribution of events among the categories. It

is common to represent the fixed set of categories as an array

and have each entry of the array store the number of events

which have happened so far in the given category. The his-
togram problem is interesting in itself in several ways, For

example, the problem can be expressed single–threadedly
if we know in advance that only the final distribution will

ever be needed. In a strict language like Standard ML, it is

easy to express this single–threadedness because program-

mers have firm cent rol over the evaluation order of function
applications. In a lazy language like LML, however, the

evaluation order is not so clear to the programmers. It has
been shown that, in a lazy setting, a straightforward im-

plementation of a histogram by the shallow binding scheme
results in bizarre zip–zap multi–threaded accesses to the as-

sociated cache, even only the final distribution is ever de-
manded [13]. It will be interesting to see how well the ran-

domization scheme performs in this multi-threaded setting,
and, under a lazy setting, how to conduct a single–threaded

execution of the histogram.
We show the heap profiles resulting from using different

implementation schemes of functional arrays when evaluat-
ing the final distribution of a 64–entry histogram after a

sequence of 64 x 64 random events. The results, along with

some explanations, are shown in Figure 6. The histogram
program is shown in Appendix B. All runs use the same
histogram program, but utilize different implementations of

functional arrays.

6 Implications

The concept of normal forms, and its unique existence for a

terminating expression, occupies an important place in the
foundations of functional programming. Evaluating an ex-

pression corresponds to its reduction to the normal form,
and, once evaluated, an expression remains in its normal

form. Suppose we take the above principle literally, and use
the cache representation as the normal form of an array ex-

pression. Then, after evaluating an array update expression,
we should get a cache normal form for the newly updated ar-

ray, withoutdisturbing the cache normal form of the old ver-
sion. This is too costly because we end up with two caches.

One interesting aspect of Baker’s shallow binding scheme is
that, even after it is evaluated, an array expression may not

always retain its normal form — the cache. An array in its
normal form may get un–evaluat ed if evalu at ions of other

array expressions demand the cache currently under its pos-

session. That is the reroot operation. The randomization

scheme takes this further. An array in its normal form will
remain so only with probabilistic assurance if its cache is

demanded by other arrays. Even though an evaluated ex-

pression may not always in its normal form representation,
however, it still provides the same functionality. This sep-
aration of representation and functionality of an evaluated
expression is a key design in the shallow binding scheme,
the randomization scheme, and several other efficient imple-
mentations of functional aggregates [9, 11, 22].

It has been suggested that cuts to rerooting paths have
some beneficial effects to garbage collection [14]. For ex-

ample, in the final configuration of Figure 3, the segment
with arrays E and F can be garbage collected if the only

remaining references are to arrays D and G. However, we
cannot collect E or F in the previous two configurations (of

the same figure) because D and G are mutually defined by

these intermediate nodes. In short, cutting rerooting paths

also cuts out some artificial dependency, and this is good
for efficient usage of heap space. We can observe this phe-

nomenon in the heap profile of the randomization scheme
as shown in Figure 6, where the heap space usage dimin-
ishes quickly after sufficiently many links are cut (and many
copies of the cache are made).

The randomization scheme can be applied to implement
other function al aggregates as well. Suppose that an func-

tional aggregate is implemented by the method of reversible
differential list. That is, there is a unique ephemeral rep-

resentation of the aggregate and other versions are repre-
sented by a modification sequence to this ephemeral copy.

Modifications can be performed, and undone, by means of
rotations. (In the array case, the modification and the undo
operations happen to be the same: a destructive update to
the cache.) If the current root node has an ephemeral ag-

gregate E of size IE[, then a rotation, originally of cost t,
between this node and a differential node pointing to it will
cut the edge between them, and duplicate E, with prob-

ability &. Such a rotation-with-random–copying is then

expected to cost 2t time, twice the original rotation cost, but

at the benefit of cutting dependency in the long run. The
ephemerzd size, IE[, and the rotation cost, t,are fixed in the

array case, but may not so in other settings. E may grow
or shrink after each rotation, and its size may not be eas-
ily calculated, especially when some parts of E are shared.

Still, such a randomization scheme may be worthy of further

investigation.

7

To

8

Conclusion

copy or not to copy? Let’s toss a coin and see!
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A Proof

Lemma A.1O R(l, m) ~ 21. ~. ❑

PROOF. From Proposition 4.1, we can derive, for 1>0,

R(l, m) < i’( :)P’,[-’+i’(:)“,’-’;+
1

1x( ) ‘ 1–8R(1 – i,m – 1)
2 Pq

,=0
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shallow -D 40.10 15.371.827 bvtes x seconds Thu Mar 102030221994
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andomized -p-iO.l O 3,652,890 bytes x seconds Thu Mar 1020:36391994

400k

200k

Ok

❑ “pd.,.

I ❑ .w

0.6 0,5 1.0 1.5 2.0 2,5 30 3,5 4.0 4.5 5.0 s6ccmds

?aaer -D -iO.05 1,611 bvlesxseconds Thu Mar 102026581994

I ■ sYsTEM(C)

I rotate
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I

E .Iw

H “mate

❑ SYSTEM[ZaP)

I Pmai.

❑ create

I mw

~ Firomlcp

I rercal

I mad

0’0 0.1 0’1 0:2 0:2 0:2 0:3 0:4 0:4 0:5 0:5 0:6 seconds

17he heap profile of the histogram program,

when the arrays are implemented bytheshal-
ow binding scheme. First we notice that there

ire many spines. If we count very careful, we

:anseethereare64 of them. Each spine repre-

~ents the usage of transient space when reroot-

ng the path between the final array and the

nitial array. That is because, when reading
;he final distribution at the end of events, each

mtryin the final array is represented as an ex-

pression of a sequence of increments over the
corresponding entry of the initial array. Eval-
~ating this expression will demand the initiaJ

mray, hence, the rerooting. The 4096 -edge-
.ong path between the final array and the ini-

kial array never get broken, and occupies a big
:huck of the heap (i. e., the space in “build,”

“chop,” and “update” ) to the end. This run

iemands 15.37 mbs (million byte second), and

takes 38 seconds.

rhe heap profile of the randomization scheme,
running the same histogram program. The

krst thing to notice is that the profiles are not
~f the same scale. This run demands 3.65 mbs

md takes 6 seconds. Similarly to the shal-
low binding scheme, evaluating the final ar-

ray will demand the initial array. However,
when rerooting the cache from the initial ar-

ray to the final array, the path between them

ire randomly cut. We can expect that, after

z few rerooting, both the initial array and the

final array have their own caches. No reroot-
ing is needed afterward. The cuts, however,

need space for copies of caches. That is the

space occupied by “copy,” “rotate, ” and “ar-
ray.” This additional space takes up roughly
400 kb at the peak, almost the same amount

used by the original 4096–edge-long path.

The heap profile of a single-threaded execu-
tion of the same histogram program. It de-

mands only 1.6 kbs and takes under 0.7 sec-
onds. This is done with the EAGER flag

turned on (in the code of update, see Ap-
pendix B). This causes the update operation
to evaluate the value to be assigned to the ar-
ray when updating. (Previously an update is

non–strict in all of its 3 arguments. ) Though
unsound, in this case we get rid of the depen-
dency to the old histogram ae soon as possible.
The old histogram can be discarded accord-
ingly as well. The cache is overwritten in a
single–threaded matter and is passed from the
initial array to the final array. Only one ar-
ray is kept and the execution takes up at most
2.7 kb heap space at all time. This is what a
clever compiler would have done.

Figure 6: The heap profiles of the histogram program, under three implementation schemes of functional arrays,
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prove the lemma by an induction on 1. The
induction base, for R(O, m), is true because R(O, m) = O <

z.o.~.

From ~he induction hypotheses, that I?(k, m) s 2k. ~

for all O < k <1, we derive the inductive step by the follow-

ing. We first observe that

R(l+ l,m)

1+1

()

< 2(1+1)+X ~:1 p’*’+ l-iR(l+l-i, m-1)

,=0

< 2(/+1)+9 ‘+lll(l+l, m-1)+

But

5( ‘:’ )p’~’+1-’(2(’+l-’)1;1)1)
i=l

=21;2-]5(T )Q+’-’)p++l+l-’,=]
= 21 ;::-l (/+ ,)q~ ( : )P’q’-’

,=1

21 – g’”-]
= ~ _q (/+ l)q((p+ q)’ -q’)

21 – gin-l
= ~ _ * (1+ 1)*(1 - ~).

We now have

R(l+l, m)

m-l

< 2(2+1)(1 +q(l–g~)l; :q )+9’+ lR(l+l, ?7Z-1).

Solving the above recurrence relation yields

R(2+l, m)

m-1

s ~(d+’)i(w+ 1)(1 +,(1 - *’)1 -::;l-’))

1=0

This completes the proof. o

B Code

The main program for the histogram problem is written aa

the following. The characters following “--” are comments.

#include “array. t“
let
rec

II

and

II

and
and
and

and
and
and

in
.-

build [] array = array
build (head. tail) array =
build tail (update array head (read array head + 1))
sum array bound index acc k (index > bound) = acc

sum array bound index acc =
sum array bound (index + 1 ) (read array index + ace)

(low, high, mod) = (1, 64, high - low + 1)
zeros = create low high O
chop num = random num z mod + low
events = map chop [1 . . mod * mod]
histogram = build events zeros
summation = sum histogram high low O

summation -- will demand all entries of the histogram
shall be evaluated to 4096

The file array. t contains the interface to an implemen-

tation of functional arrays. The data type of arrays are
defined by the following:

rec type Info == Int ~ Int # Int
and type Mode *a . MEW *a

+ CACHE (LArray (Ref *a))
+ DIFF (Ref (Array *a)) Int (Ilef *a)

and type Array *a = ARRAY (Ref (Info ~ (Kode *a))) !

where “#” is for tupling, Ref for references, and LArray the

built-in LML monolithic arrays. Info specifies the lower-
bound, the upperbound, and the size of the array. A Node
either denotes a new array with all entries to be initialized

to an identical value, or a cache, or a differential node. The

array operations are implemented as following:

rec create low high item = -- lazy creation
ARRAY (REF ((low, high, high - low + 1) , EEW item))

and update (A as ARRAY (REF (info, node) ) ) index value =

#ifdef EAGER

seq value -- strict in *value*
#end if

and

II
and

II
II

(ARRAY (RRF (info, DIFF (RRF A) index (REF value))))
read (ARRAY (REF (-, CACHE cache) ) ) index =
case cache ? index in REF value : value end
read A index = seq (reroot A) (read A index)
reroot (A as ARRAY (REF (-, DIFF (REF B) - -))) =
seq (reroot B) (rotate A)

reroot (ARRAY (REF L, CACHE -))) = U’EIT
reroot (ARRAY (a as REF ((info as (low, high, -)) ,

HEW item))) =
let cache = aarray low high O [(index, REF item) ; ;

index <- [low . . high]]
in assign a (info, CACHE cache)
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where ? and s array are respectively the LML primitives
for indexing and constructing a monolithic array. The con-

struction needs the array’s lowerbound, upperbound, index

offset, and an associate list. The assign function overwrites

the content of a reference. The real thing, rotate, is defined
by the following:

-- ICids, don>t try this at home!
rec swap (a as REF va) (b as REF vb)

seq (assign a vb) (assign b va)

#ifdef RMJDOMIZE

and seed = REF 19640824 -- Someone >s
and duplicate cache low high =

let rec items = [(index, cache ?
index <- [low .

-.

.

birthday

index) ; ;

high]]

and copy (index, REF v) = (index ,-REF v)
in sarray low high O (map copy items)

#end if

and rotate (ARRAY (A as REF ( (1ou, high, count) ,

DIFF (RB as REF

(ARRAY (B as It!W (info, CACHE cache))))
index (ra as REF va) )) ) =

#ifdef RANDOMIZE

case

#endif

case

end

seed in REF r :
seq (assign seed (random r))

(if r % count = O -- once in *count* times!

[7]

[8]

[9]

[10]

[11]

[12]

then case duplicate cache low high in copy :

[13]seq (Hrite copy index (REF va) )
(assign A (info, CACHE copy)) end

else

cache ? index in REF vb :
seq (assign ra vb) (

seq (write cache index (REF va) ) (
seq (assign 88 (ARRAY A))

(swap A B)))

#ifdef RAMDO141ZE

) end
#end if

where write is the destructive array update operation,
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