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Abstract

We examine the problem of type inference for a family of

polymorphic type systems containing the power of Core-
ML. This family comprises the levels of the stratification of
the second-order A-calculus (system F) by “rank” of types.

We show that typabfity is an undecidable problem at every

rank k > 3. While it was already known that typability is
decidable at rank 2, no direct and easy-to-implement algo-
rithm was available. We develop a new notion of A-term

reduction and use it to prove that the problem of typabil-
ity at rank 2 is reducible to the problem of acyclic semi-
unification. We also describe a simple procedure for solving
acyclic semi-unification. Issues related to principal types are

discussed.

1 Introduction

Background and Motivation. Many modern functional pro-

gramming languages use polymorphic type systems that sup
port automatic type inference. Automatic type inference for

untyped or partially typed programs saves the programmer
the work of specifying the type of every identifier. Type
polymorphism lets the programmer write generic functions
that work uniformly on arguments of different types and

it thus avoids the maintenance problem that results from
duplicating similar program code at different types. The

first programming language to use polymorphic type infer-
ence was the functional language ML [GMW79, Mi185].

Due to its usefulness, many of the aspects of ML have
been subsequently incorporated in other languages (e.g. Mi-
randa [Tur85], Haskell [HW88]). ML shares with Algol 68
properties of compile-time type checking, strong typing and
higher-order functions while also providing automatic type
inference and type polymorphism.

The usefulness of a particular polymorphic type system

depends very much on how feasible the task of type inference
is. We define concepts in terms of the A-calculus, which we
use as our pure functional programming language through-
out this paper. By type injerence we mean the problem of
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finding a type derivable for a A-term in the type system.

The problem of type inference involves several issues:

(1) Is typability decidable, i.e. is it decidable
whether any type at all is derivable for a
~-term in the type system?

If typabtity is undecidable, then there is little more to say in

relation to type inference. (Although a programming lan-

guage may work around this problem by asking the pro-
grammer to supply part of the type information and by us-
ing heuristics, we will omit discussion of this possibfity.)
Otherwise, if typabfity is decidable, then it is possible to
construct a type for typable A-terms, i.e. type inference can

be performed, in which case we further ask:

(2) How efficiently can deciding typability and
performing type inference be done?

The answer to this question determines whether the type

system is feasible to implement. Another related issue is:

(3) Can a principal type (a “most general” type)
be constructed for typable A-terms?

Closely related to the issue of principal types is type check-

ing, the problem of deciding, given a A-term M and a type
r, whether r is one of the types that may be derived for M

by the type system under consideration.

In addition to the feasibility of a particular polymorphic

type system, its usefulness also depends on how much flexi-
bfity the type system gives the programmer. Although the
polymorphism of ML is useful, it is too weak to assign types

to some program phrases that are natural for programmers
to write. To overcome these limitations researchers have in-

vestigated the feasibtity of type systems whose typing power
is a superset of that of ML. Over the years, this line of re-

search has dealt with various polymorphic type systems for
functional languages and J-calculi, in particular the pow-
erful type system of the Girard/Reynolds second-order X
calculus [Gir72, Rey74], which we will call by its other name,

System F. In the long quest to settle the type checking and
typability problems for F, researchers have also considered
the problem for F modified by various restrictions. Multi-
ple stratifications of F have been proposed, e.g. by depth

of bound type variable from binding quantifier [GRDR91]
and by limiting the number of generations of instantiation
of quantifiers themselves introduced by instantiation [Lei91].
One natural restriction which we consider in this paper r&-

sults from stratifying F according to the “rank” of types
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allowed in the typing of J-terms and restricting the rank to
various finite values (introduced in [Lei83] and further stud-

ied in [McC84, KT92]). All of these systems improve on the
expressive power of ML.

Unfortunately, it is often the case that the more flexible
and powerful a particular polymorphic type system is, the
more likely that automatic type inference will be infeasible

or impossible. As discouraging examples, the problems of
typabfity and type checking for many of the polymorphic

type systems mentioned above have recently been proven
undecidable. Type checking and t ypabtit y were shown to

be undecidable for System F (cf. recent results submitted
for publication elsewhere [We193]) and for its very powerful
extension, System FW [Urz93]. Other related systems that
are not exactly extensions of ML have also recently been

proven to have undecidable typability, i.e. System F< which
relates to object-oriented languages [Pie92], and tle M_I-
calculus which relates to extensions of ~-Prolog [Dow93].

Against this recent background, it is desirable to demar-
cate precisely where the boundary between decidable and
undecidable typability lies wit hin various stratifications of
System F. In the case of decidable typabfity, it is also de-

sirable to develop simple and easy-to-implement algorithms
for the most powerful level within a stratification that is also

feasible to use. We undertake this task for the stratification

of System F by rank of types.

Contributions of This Paper. We can now firmly establish
the boundary for decidabtity of typability and type check-
ing within the stratification of System F by rank of types.

The two problems are undecidable for every fragment of F
of rank ~ 3 and are decidable for rank < 2. The undecid-

ability of type checking at rank ~ 3 can be seen by observ-
ing that the proof for the undecldability of type checking
in F in [We193] requires only rank-3 types. The undecid-
abtity of typabfity at rank ~ 3 results from the fact that

the constants c and ~ defined in section 5 of [KT92] can
be encoded using the methods of [We193] in System A3 (the

rank-3 fragment of F) and from Theorem 30 of [KT92]. We
give this encoding in this paper. Since it was already known

from [KT92] that typabtity is decidable for System Az (the
rank-2 fragment of F), we know exactly where the bound-
ary of decidability for typability lies. The Systems Al and

AO are both equivalent to the simply-typed J-calculus and

are uninteresting. These circumstances lead us to look for a
simple and direct algorithm for type inference within AZ.

The existing proof that typability is decidable for System

Az uses a succession of several reductions to the typabfity
problem in ML and results in a type inference algorithm

that is neither simple nor easy to understand. Since this

previous algorithm is a reduction to the type inference al-
gorithm of ML, it can not possibly be as simple. In this
paper, we give a simpler and more direct algorithm for the
decidable case of typability in A2 which does not depend
on the type inference algorithm of ML, We first prove that

A2 is equivalent to a restriction named System A;’* hav-

ing many convenient properties. We then develop a notion
of reduction named 0 which converts A-terms into a form

which is more amenable to type inference but which also

preserves every A-term’s set of derivable types in A;’*. We

define a further restricted System A; ‘“’e to take advantage

- ‘*’e for a A-termof this. The type inference problem in A2

in $norrnal form is easily converted into an instance of the

acyclic semi-unification problem. Finally, we give a simple
algorithm for solving the acyclic semi-unification problem.

The complexity of the whole procedure is the same as that
of type inference in ML.

The principal typing situation for AZ is not as nice as
for ML. For a given A-term, there is no principal type such
that every type derivable for the A-term can be seen as a

substitution instance of the type. We show there ia a weak
form of principal typing where the free type variables of a

type can have open types substituted for them, but this does
not allow a single type to generate all of the possible types

for a A-term. Quirks of the typing system that occur due to

the lack of principal types are discussed.

We omit proofs of lemmas and theorems in this confer-
ence report to remain within the page limit. We postpone
to either a later extended version of this paper or another

paper discussion of the relationship between ML-typabtity
and typability in Az and of type checking in A2.

Acknowledgements. A number of definitions used in this
paper were lifted from [KT92, KTU90, KTU93], so credit

goes to both Thryn and Urzyczyn.

2 System Ak and System A;

In this section, we define first the untyped A-calculus, then
System F, then the restriction of System F that results in

System Ak. Then, we define a restriction of System A2 called

System A; which has equivalent typing power.

In our presentation, we use the “Curry view” of type
systems for the A-calculus, in which pure terms of the X
calculus are assigned types, rather than the “Church view”
where terms and types are defined simultaneously to pro-
duce typed terms.

The set of all A-terms A is built from the set of ~-term

variables V using application and abstraction as specified by
the usual grammar A ::= V I (AA) I (AV.A). We use small
Roman letters towards the end of the alphabet as metavari-

ables ranging over V and capital Roman letters aa metavari-

ables ranging over A. When writing A-terms, application
associates to the left so that MNP E (MN) P. The scope

of “k .“ extends as far to the right as possible.

As usual, FV(M) and BV(M) denote the free and bound
variables of a A-term M. By M[z :=N] we mean the result of

substituting N for all free occurrences of x, renaming bound
variables in M to avoid capturing free variables of N. We

will sometimes use this substitution notation on subterms
when we intend free variables to be captured; we will distin-

guish this intention by the proper use of parentheses, e.g. in
kc.(N[g:= z]) we intend for the substituted occurrences of

x to be captured by the binding. A context C[ ] is a A-
term with a hole and if M is a kterm then C[M] denotes
the result of inserting M into the hole in C[ ], incJuding
the capture of free variables in M by the bound variables of
C[ ]. We denote that N is a subterm of M (possibly M
itself ) by N C M. We assume at all times that every A-term

M obeys the restriction that no variable is bound more than

once and no variable occurs both bound and free in M. The
symbol K denotes the standard combinator (kz.~y.x) and
the symbol I denotes (kc.z).

The set of all types T is built from the set of type vari-
ables V using two type constructors specified by the gram-
mar T ::= V I (T+ T) 1 (VV.T). A type is therefore either
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VAR Akx:u A(z) = u

At- M:o+T,
APP

AI-N:u

A1-(MN):r

ABS
Au{z:a}l-M:r

At-( Az.M):a+r

INST
A1-M:Va.o

At- M:u[a:=r]

GEN
AkM:u

A1-M:Va.u
a @ FTV(A)

Figure 1: Inference Rules of System F and Ak.

a type variable or a ~-type or a V-type. We use small Greek
letters from the beginning of the alphabet (e.g. a and ~) as
metavariables over V and small Greek letters towards the
end of the alphabet (e.g. u and r) as metavariables over
T. When writing types, the arrows associate to the right so
that a -+ ~ ~ p = a ~ (r ~ p). We use the same scoping
convention for “V” as we do for “~”. FTV(r) and BTV(r)

denote the free and bound type variables of type T, respec-
tively. We give the notation a[a:= r] the same meaning for
types that it has for A-terms. We write a ~ r to indicate

that u can be instantiated to r, i.e. u = V3.p and there exist
types ~ such that p[d:= fl = r. “so” denotes that the types

~ in the substitution contain no quantifiers. We write 1 to
denote the type Va.a.

We have several conventions about how quantifiers in

types are treated. a-conversion of types and ~eordering of
adjacent quantifiers is allowed at any time. For example,
we consider the types Vcr.V~. a + ,8, V~.Va./3 + a, and
V~.Vcr.a + ~ to all be equal. Using a-conversion we assume
that no variable is bound more than once in any type, that
the bound type variables of any two type instances are dis-

joint, and that all bound type variables of any type inst ante
are disjoint from the free type variables of another type in-

st ante. If u = Va.r and a @ FTV(r), we say that “Van

is a redundant quantifier. We assume types do not contain
redundant quantifiers.

We define a notation for specifying many quantifiers con-

cisely. For type u and set of type variables X ~ FTV(a), the
shorthand notation VX. U is defined so that VB. U = u and
V(X U {11}).u = Vcr.V(X – {a}).a. This defines just one type
because we assume the order of quantifiers does not distin-

guish two types. We may use c1 to stand for a sequence of
type variables al, ..,, an. We allow & to be treated as a set

or as a camma-separated sequence as is most convenient, so
V&.a has the expected meaning. The notation V.a means

V(FTV(a)),u.

To define System Ak, we will use the following inductive
stratification of types by rank. First define R(O) as the set of

open types, i.e. types not mentioning the symbol W“. Then,
for all k ~ O, define R(k + 1) by the grammar

IR(k+ 1) ::= R(k) I (lR(k)+R(k+ 1)) I (vv.lR(k+ 1))

We say that R(k) is the set of types of rank k. For example,
Vcr.(cr+V~.(a+~)) is a type of rank 1 and (Va.(cr~a))~

INST-
Ai-ikf:Vcr.u

At- M:a[cr:=T]
Tc s(o)

Figure 2: INST–: Replacement for INST in A;.

V/3./3 is a type of rank 2 but not of rank 1. Our definition

of rank is exactly the same as the notion of rank introduced
by Leivant [Lei83]. Since R(k) ~ lR(k + 1) it follows that

if a type u is af rank k, then it also belongs to every rank
n > k. Observe that the result of the substitution a[a := r]
may not belong to the same ranks to which u belongs. The
resulting rank depends on the rank of r and how deep in the

negative (left-side) scope of “-” the free occurrences of a
in a are.

To define A;, we will define the set S C T of restricted

types in which quantifiers can not occur immediately to the
right of the arrow “~”. The set S is defined by the two

grammar productions:

s ::= s’ I (Vv.s)
s’ ::= v I (s+s’)

The notation S(k) is defined to mean S n R(k) and S’(k)

similarly means S’ n R(k).
An sequent is an expression of the form A 1- M : r where

A is a type assignment (a finite set {ml : al,... , z~ : an}

associating at most one type u with each variable z), M a
~-term and r a type. We say this sequent’s type is the type

m ~. ..+ IY~~ r and a sequent’s rank is the rank of its type.
For example, a sequent A i- M : T is of rank 2 if and only if

r is of rank 2 and all the types assigned by A are of rank 1.
A(z) denotes the unique type o such that that (z : u) c A.
FTV(A) is the set of all free type variables in all of the types

assigned by A. The notation A[cl:= xl denotes a new type
assignment A’ such that if A(z) = u then A’(z) = a[d:= fl.
We assume that throughout a sequent it is the case that all

bound type variables are named distinctly from each other

and that the bound and free type variables do not overlap

(satisfied by a-conversion).

If K is a type inference system, then the notation A I-K
M : r denotes the claim that A 1- M : r is derivable in K.

System F is the type system that can derive types for

A-terms using the inference rules presented in Figure 1 with
no other restrictions. For every k ~ O, System Ak is the

restriction of F which allows only sequents of rank k to be
derived.

Definition 2.1 (System A;) We define System A; as a

restriction of System Az where the two differences are:

1. In A; all sequents must have types in S(2). Thus, all
assigned types are in S(1) and all derived types are in
S(2).

2. The inference rule INST of A2 is replaced by the rule
INST- described in Figure 2 which forbids instantia-
tion with polymorphic types.

To make this paper more self-contained, we will briefly

describe the difference in the types that can be assigned to
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a A-term in Az and A;. For this description, let us tem-

porarily suppose that quantifiers introduced into types by

the INST rule are marked with the “#” symbol. For exam-
ple, from the sequent A t- M : Vcr.(a + a), we can derive

using INST the sequent A 1- M : (V#/3./3) + (V#~.,8). These

markers on quantifiers do not affect the behavior of the in-
ference rules; they merely allow us to precisely phrase our

description.

Definition 2.2 (Quantifier Shifting) We define a map-

ping ( ) ● that maps every type r, where quantifiers in r

might be marked with #, to a restricted type in S. The

mapping ( )0 is defined inductively on the structure of types
as follows:

(a)” = CY

(u + r)c = W.((u)” + p)

where (r)” = Vd. p and p is not a V-type

(Va.a)” = Vs.(a)”
(v#a.a)’ = (U)”

For a type assignment A, we define (A)* so that for every

term variable z in the domain of A itholds that (A)”(z) =
(A(z))”.

Theorem 2.3 (Az Has Same Power as A;) System A;
types the same set of A-terms as AZ with very similar types.
More precisely, if the claim

AkA2M : r

holds, with the additional assumption that quantifiers intro-
duced by INST are marked, then the claim

(A)”E(hJ)M : (r)”

holds as well. Also, euer~ derivation in A; is immediatel~

a derivation in Az. Thus, AZ and A; type the same set of
A-terms.

Theorem 2.3 is Theorem 9 in [KT92]. Since A; is as

powerful aa A2 and since its restrictions make analysis of

type inference easier, we will use it instead of Az in this
paper.

3 System Ak Typability Undecidable for k ~ 3

In this section, we describe a family of type systems, A~ [C~]

for each k <3, for which typability has already been shown
to be undecidable, Then we show that the typability prob-
lem for each member Ak. [C~] in this family oft ype systems
is reducible to the typabfity problem for the corresponding
type system Ak, thus proving it undecidable aa well.

Section 5 of [KT92] introduces System Ak. [Ck] for each
k z 3. Theorem 30 of the same paper proves that typability
is undecidable for Ak [Ck] for k ~ 3. The original definition

of Ak [ck ] defined it based on Ak by adding two constants, c
and f with predefine types ~c,k and ~f,k which depend on
k. The types &k and #f)k are defined by a simple induction.
Let the type TO = a and then let r~+l = (~k ~ cr) for k >0.
Then define ~@ = V.(CY~rk) and ~f,k = V.((cr+cr)ark-1).
(The fact that both of the types @.,k and g$j,k belong to S(l)

for every k is irrelevant to the definition of System Ak[ck].)
As an example, for k = 3, the types are

4C,3 = VCY.(cl + (((a + a) + a) - a))

4f,3 = vcY.((cr+ a) + ((a + a) + a))
A simple alternate definition of Ak [Ck] which we use in

this paper is to declare that A ~ M : r is derivable in Ak [Ck]

if and only if A U {c: ~,+, ~: @j)k} 1- M : 7 is derivable in

Ak.

Lemma 3.1 (&[Ck] Reducible to &) For each k ~ 3,

the problem of typability in the system Ak[ck] is reducible to
the problem of t~pability in the system Ak. More precisely,
for each k >3, there is a context 11~[ ] with one hole such
that for any type assignment A, the statement:

is true if and only if the following statement is true:

~IJ c R(k) such that AbAk~k[~] : u

As an example, the context Hs [ ] with one hole may
be constructed as depicted in Figure 3. It can be easily

checked that the context in Figure 3 can be typed in As

and somewhat more tediously checked that in any typing
of this context (with any kterm placed in the hole), the
variables c and ~ must be assigned the types ~C,3 and 4Jf,3.

The methods of [We193] may be used in a similar manner to
construct contexts HA [ ], H5 [ ], HS [ ], etc., each more

complicated than the previous one.

Theorem 3.2 (Rank ~ 3 Typability Undecidable) For

k >3, since the problem of typability for Ak[ck] is reducible
to the same problem for Ak, and since typability for Ak[6’k]
is undecidable, it is the case that typability is undecidable for
Ak .

4 System A;’*

In this section, we observe a number of convenient properties

of System A;. We then define System A;’* as a restriction

of A; that embodies these properties and prove that A;’*

is equivalent to A;.

Definition 4.1 (Active Abstractions) Define, by induc-

tion on A-terms M, the sequence act(ikf) of active abstrac-
tions in M:

act(z) = e (the empty sequence)

act(Az.M) = z . act(M)

{

if act(M) = c,
act(MN) = ~’ . . . ~n

if act(M) = Z1 . ..znforn~l.

Observe that, due to our conventions on the naming
of bound variables, there are no repetitions of variables in

act(M). The sequence act(M) represents outstanding ab-
stractions in M, i.e. those abstractions which have not been
“captured” by an application.

Definition 4.2 (Companions) For each application sub-
term Q = RS in a A-term M where act(R) = x.. -, there is
an abstraction subterm N EE (k .P) within R (possibly N
is R itself). In this case, we say that the subterms N and

S are companions. Specifically, N is the companion abstrac-
tion and S the companion argument. If N z R, i.e. Q = NS,

then we say that they are adjacent companions.
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~,[ ] s (~y,.(k,.r(y, v,(g, z,))) )(k,. Kz, (K(z, (z,r))[ ]))(~w,.w,w,)

D[ ] = (Af.r(zl(fz,2h) )(z2(fz2s2))[ 1)(~~.~w.~(~(~(~~))))
E[ ] = (At.r(z,(tz, (x,r)(jx, )))(z,(tz,(x,r) (fz,)))[ ])(Ap.Aq.As.K(p(pq) )(p(sp)))

G[ ] = (~c.r(z, (c(z,r)(~z, )))(z,(c(z,r)(fz, )))[ ])(tr)

Hs[ ] s h.~l [~2[D[E[G[ ]]]]]

Figure 3: The Context Hs [ ] used in Reduction from As[CS] to A3.

It is the case that adjacent companions are always a /3-
redex. A set of non-adj scent companions represents a “po-

tential” $redex in a ~-term whose presence can be detected
by simple inspection without /3-reduction. Consider a A-
term M with subterms (kc. P) and Q which are companions
where (Az. P) is the companion abstraction and Q is the

companion argument. In this case, if (Xc.P) ever partici-
pates in a f?-redex after some number of steps of ~-reduction,
its argument will be Q or Q’s ~-descendent.

Companions will turn out to have convenient properties

in System A;.

Definition 4.3 (Abstraction Labelling) For a A-term

M, we define (M)~ as the effect of traversing M and labeling
each of its abstraction subterms with an index z c {1,2, 3},

depending on the subterm’s position and whether it has
companions. (M)~ is defined in terms of an auxiliary func-

tion label which takes as parameters a A-term, a set of term
variables, and an index. The inductive definition of label

follows for i ~ {1,2, 3}:

/abe2(z, X, i) = z

{

(Jiz. /abe/(M, X,,)) if z c X,

~abei((Az”M)’ “i) = (J’z. label(M, X, Z)) ifzfl X.

label((MN), X, i) = (/abel(M, X, i) . label(N, act(N), 3))

We then finish the definition by specifying that

(M)’ = 2abe/(M, act(M),2)

Informally, labeling the A-term M affects each abstrac-
tion subterm (kr. N) as follows. If (Az.iV) haa a companion

within M, then it is labelled as (Jlz. N). If (Xz. N) does

not have a companion within M and if there is no subterm
P = LR of M such that N lies within R (the right subterm),
then it is labelled as (~2z.N). Otherwise it is labelled as
(A3X.N).

When dealing with a labelled A-term M after this point,
we will assume that the Iabeling is the result of the ( )J

operator and not any arbitrary labeling, i.e. we assume that
either M = (N)a or M c (N)~ for some unlabeled A-term
N.

Lemma 4.4 (A3 Binds Monomorphically) The bound
variable of a companionless, A3 -labelled abstraction must be

assigned a monomorphic type. More precisely, if D is a

derivation in A; that types the ~-terrn M, and there is
an abstraction subterm (Az. N) in .M, and there is a sub-
ternr (PQ) in M such that z appears in act(Q) (i.e. 2abe22ing

WOW produce (J3Z, N)), then jor every sequent AU {z: a} 1-
N : T in D it is the case thata c S(O).

Lemma 4.5 (Free Type Variable Substitution) Ij D

is a derivation in A; ending with the sequent A t- M : r,
then for any type variable substitution [d:= ~], it is the case

that there is a derivation D’ in A; ending with the sequent
A[d := jj k M : r[ii := fl and, furthermore, D and D’ are
of the same length and there is a one-to-one correspondence
between rule applications in both derivations.

Lemma 4.5 is used by Lemma 4.6. For Lemma 4.6, let us

temporarily suppose that quantifiers introduced into types

by the GEN rule are marked with the “b” symbol. For ex-
ample, from the sequent A 1- M : ~ where a ~ FTV(A) we

can derive using GEN the sequent A 1- M : V bar. These

markers on quantifiers do not affect the behavior of the in-
ference rules; they merely allow us to precisely phrase the

claim of the lemma.

Lemma 4.6 (GEN Quantifiers Not Instantiated) We
may freely assume that quantifiers introduced by GEN are

never instantiated. More precisely, if D is a derivation in

A; ending with the sequent A F M : r, then there is a

derivation D’ in A; ending with the same sequent such that

in D’ there is no use of the INST rule whose premise is a

sequent of the form B t- N : Vbcr. p.

Lemma 4.7 (Outermost Quantifiers Only at Com-

panion Arguments) The only proper subterms of a A-
term for which the final derived type may be a V-type are

companion arguments. More precisely, if D is a derivation

in A; that types the A-term Ml and i} D includes the se-
quent A 1- N : Va.T, and if there are no subsequent gequents

in D for the same occurrence oj the subterm N, then either
N E M or this occurrence of N is the argument rmbterm of

a subterm (PN) in M where act(P) # e.

Lemma 4.8 results from Lemmas 4.6 and 4.7,

Lemma 4.8 (GEN Only at Companion Arguments)

The only proper subterms oj a A-term for which the GEN
rule may be used are companion arguments. More precisely,

if ‘D is a derivation in A; that types the A-term M, and if
D includes the ~equent A 1- N : Vcs.T as a consequence of the
GEN A., and if N $ M, then N is a companion argument.

Lemma 4.9 (INST Only at Variables) We may freely

assume that all uses of the INST rule occur at the leaves
oj the derivation (viewing the derivation as a tree). More

precisely, if D is a derivation in A; ending with the sequent

A 1- M : T, then there is a derivation D’ in A; ending with

the same sequent such that if the sequent B 1- N ; v in D’ is
the consequence of the INST rule, then N is a term variable.
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VAR * A1-z:Vi$.r A(z) so r, r c S(O), d @ FTV(A)

APP *
AI- M:u4T, AI-N:u

A 1- (M N) : V&.T
a c s(o), r c S’(2), act(M) = e, & @ FTV(A)

App *>+ A1-M:u~T, AI-N:u

A 1- (M N) : Vd.r
a 6 S(l), r c S’(2), act(M) # c, c? f? FTV(A)

ABS “’~’2
Au{z:a}t-M:r

A i- (A’z.M) : Vd.(a + T)
c G s(l), ‘J-G s(o), i G {1,2}, c1’@ FTV(A)

AIM *,3
Au{z:c}PM:T

A 1- (A3Z.M) : W.(a + r)
a G s(o), r G s(o), & # FTV(A)

Figure 4: Inference Rules of System A;’*.

Definition 4.10 (System A;’* ) The new System A; ‘“

formally includes the restrictions on A; proven by the pre-

vious lemmas in a type system. The inference rules for A;’*

are in Figure 4. As in A;, all sequents are required to be

of rank 2, i.e. assigned types must be in S(l) and derived
types must be in S(2),

Theorem 4.11 (A; ‘“ Equivalent to A;) EverV A; typ-

ing is equivalent to a A;’* typing and vice versa. More
precisely, the claim:

‘E(A~) M:7-

holds if and only ij the following claim holds:

A$A1,. @ : r

5 O-Reduction and System A; ‘“’e

In this section, we define a new notion of reduction and then

use it to reduce System A;’* typabfity to an even more

restricted type discipline, System A; ‘“e.

Definition 5.1 (0-Reduction) We define 4 notions of re-
duction denoted O1i 132,t?3, and 84which will transform a la-
belled A-term (M) in a useful way. These transformations
are defined as follows:

● 131 transforms a subterm of the form (((~1 z. N)P)Q)

to ((AI z. NQ)P).

\
● /32 transforms a subterm A3 Z.(A1 y.N)P) into the form

(( A1V.A3Z.(A1’[~: =WZ]))(A w.(P[z:=w]))), where v and
w are fresh variables.

● 83 transforms a subterm of the form (N((Al z. P) Q))

to (( Alz.NP)Q).

● 84 transforms a subterm of the form ((A] z.(A2y.N))P)

to (~2y.((A1z.N)P)).

Capture of free variables in (?1, 03, and 04 does not occur
due to our assumption that all bound variables are named

distinctly from all free variables. 01, 03, and 64 affect sub-

terms that are applications, while 02 is applied to subterms
that are abstractions. When ~-terms are viewed as trees,
01, Oz, and th can be seen to have the effect of hoisting
&redexes higher in the transformed term, while 81 has the

effect of raising an abstraction above a /?-redex. In section 6,
we will use properties of these transformations to prove that

a typability problem is reducible to acyclic semi-unification.

We use the notation Oi where i ~ {1,2,3,4] to stand for

one of tL, f%, 03, or 6h. We define @ = 01 u02 U03 u04.
Since these transformations are all notions of reduction, the
not ations del, -W2, 441, etc., have the expected meaning.

We say that a term is in @-normal form if it has no 0-

redexes. A d-normal form of M is a J-term N in O-normal

form such that M -w N. A A-term may have more than one
6-normal form, e.g. the A-term ((( XZ.M)N)((AV.P)Q)) haa
two 8-normal forms: the A-term (( Az.(/!y.MP)Q)N) and
the A-term (( Ay.(Az.MP)N)Q).

We now describe some useful properties of 0-reduction.

Lemma 5.2 (Shape of &Normal Forms) Let M be in

O-normal form. Then M is of the form

M = ~2zl.~2x2. . ..~2Zm.

(Alyl.(A’y2.(.. . (( A’~n.Tn+,)Tn) . . . ))T2)T,

where m, n ~ O and where for 1 < i < n + 1 each subterm
TI is in fl-normal form and any abstractions within Ti are
A3 -la belled.

Observe that in a 0-normal form all A1-labelled abstrac-
tions belong to ~-redexes, i.e. there are no non-adjacent com-
panions. The J-term M detailed in Lemma 5.2 can also be
viewed as the following ML term:

fnxl+fnzz+...+fnzm+
letyl=Z’l inlet yz=Z’Z in...

let Y. = T. in T.+l

Lemma 5.3 (@Equivalence Preserved) 81, 02, 03, and
94 always transform a A-term M into a fl-equivalent J-term
N, i.e. if M -W N, then M =@ N.

To prove that any tLreduction terminates, we establish a
metric on A-terms and we then show that @-reduction strictly
decreases this metric.
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Definition 5.4 (Distance from &Normal Form) We

will define a function from labelled A-terms to natural num-
bers using the following components. In the following defini-
tions, we presume that each subterm of a J-term is somehow
distinctly indexed, so that otherwise identical subterms in
different positions are distinguished. This is important so

that the desired answers are produced when counting the
size of a set of subterms and when asking whether one sub-
term is a subterm of another subterm.

Let A (for “ancestors”) be a function that takes a labeiled
A-term M and a subterm N within M, and returns the set

of all subterms of M which contain N (including M and N).
Let ~ (for “/3-redexes”) be a function that takes a ~-term

M and returns the set of all of the subterms of M that are
either ~-redexes or are the function of a ~-redex. Let A’

for each z E {1,2,3} be a function that takes a J-term M

and returns the set of all subterms of M that are ~i-labelled
abstractions.

Now define three metric functions 61, 62, and & which

are used to measure the distance of a A-term from 0-normal
form. 61 takes a A-term M and a subterm N and returns
the number of subterms of M that contain N that are nei-
ther $redexes, the function of a $redex, nor a ~2-labelled

abstraction:

6,(M, N) = I A(M, N) - /3(M) - A2(M) I

62 takes a A-term M and a subterm N and returns the num-

ber of application subterms in M that contain N as a sub-

term of their right subterm:

62( M, N)=l{Pl PGA(M, N), P~QR, RGA(M, N)}l

63 takes a A-term M and a subterm N and returns the num-
ber of subterms in M that are A2-labelled abstraction and

do not properly contain N:

63(M, N) = I A’(M) - {N} - A(M, N) I

Now use 61, 6’, and & to define the metric function d to

measure how far a A-term is from 0-normal form. Define d

as follows:

d(M) = ~ 6,(M, N) + 62(M, N) + ~ 63(M, N)

Nc~1(A4) NcM

Note that 61 and 62 are applied just to the ,11-labe13ed ab-
stractions in M, i.e. the abstractions that have companions,

but 63 is applied to all subterms of M.

Lemma 5.5 (@-Reduction Terminates) 0-recfuction al-
ways terminate9 (strongly normalizes). More precisely, if
M ~e, N, then d(M) > d(N). Furthermore, for a A-term

M, it holds that d(M) 6 0(lM12), so it takes 0( IM12) steps
of @-reduction to reach 6-normal jorm.

Lemma 5.6 (@ Redex Binds Partly Closed Type)
We may freely assume that for the type u assigned to the

bound variable of a Al -abstraction which is the function of

a ,L?-redex, it is the case that any free type variables in u
must also be free somewhers else in the type assignment.

More precisely, if D is a derivation in A~’* containing the

sequent A t- (AI X.M)N : T which is derived from the earlier
sequents A u {z : u} 1- M : r and A 1- N : u, then there is

also a derivation D’ in A; ‘“ containing the same sequent but
in which the sequent is derived instead from earlier sequents

AU{z:a’} FM:rand Al- N:cr’ where c#=V(FTV(u)–
FTV(A)).a.

Lemma 5.6 is used by Lemma 5.7.

Lemma 5.7 (A; 7“ Typings Preserved) If 01, 82, &, or
04 tmnsform M into N in one step, then with any particular
type assignment, both M and N are typable with the same

types in A; ‘“. In other words, if M -W N, then in A;’” it

holds that A 1- M : T is derivable if and only if A 1- N : T is

derivable. As a result, AI-( A1,.)M : r is true if and only if

At-( Aj,. )t?-nf(M) : r is true.

Lemma 5.8 (Active Abstractions Preserved) The set
of active abstractions of a l-term is preserved b~ @-reduction.
As a restdt, act(O-nf((M)a)) = act(M).

Lemma 5.9 (Shape of Derivable Types) h A;)*, it

A 1- M : p is derivable and lact(M)l = n, then

p = Vd.ul + . ..+un+r

Lemma 5.9 was proven in [KT92].

Lemma 5.10 (A2 Can Bind Closed Type) We can al-

ways assign a closed type or even the type 1 = Va.a to the
bound variable of a companionless, ,42-labelled abstmction

without aflecting the whole A-term’s typability. More pre-

cisely, if D is a typing in A~’* of the A-term M ending with
the sequent

A1-M:VG.ul~...hUnbr

where lact(M)l = n, then there is a typing D’ ending with
the sequent

Al- M :V@.(V.a, )-+... +(an)n+r+r

where $ = c?-(FTV(&) -FTV(i-)) and there is also a deriva-
tion D“ ending with the sequent

Lemma 5.11 (A1 Can Bind Closed Type in O-nf)
Provided the final type assignment in a derivation assigns
closed types to all free variables, and provided that every A2 -
abstraction binds a variable with a closed type, and provided
we are typing a A-term in 0-normal form, then we can as-
sign closed types to the bound variables of every /11-labelled
abstraction without aflecting the whoJe J-term’s typability.

- ‘“’e) The new System A~’*’eDefinition 5.12 (System AZ
takes advantage of the typing properties of A-terms in 0-

normal form in A;’”. System A; ‘*’S is intended to be used

only for O-normal forms; its behavior on other J-terms has

not been investigated. The inference rules for A; ‘;’O are pre-

sented in Figure 5. As for A;’*, all sequents are required
to be of rank 2, i.e. assigned types must be in S(l) and
derived types must be in S(2). We adopt the convention

that the final type assignment of any typing in A; ‘“e must

assign closed (universally polymorphic) types to every free
variable, otherwise the derivation is considered incomplete.
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VAR e A1-z:r A(z) so r, r < S(O)

APP e
Ai-M: u-r, Al-N:o

AF(MN):r
U, r c S(O), M not abstraction

LET e
Au{z:V.cr}l-M:r, A1-N:u

A 1- (( Nz.M) N) : r
u, r E S(O), FTV(A) = 0

ABS9,2 Au{z:V.U}t-M:r

A 1- (A2Z.M) : (V.cr) + ~
a E S(O), r 6 S’(2)

ABS “3
Au{z:cr}FM:r

Al- (A3z. M) : a~r
u, r- E s(o)

Figure 5: Inference Rules of System A; ‘“’e.

Theorem 5.13 (A; ‘“ Reducible to A; ‘“’e) Typability
and type inference in A~p* are reducible to the same prob-

lems in A; ‘“’e. For a labelled A-term M where lact(M)l =
n, if

A$A1,*)M : V&.UI + . . . + un + T

is true, then using the type assignment B such that for x G
FV(M) it behaves so that B(z) = V. A(z), it is the case that

B1-(A1,.,~)6-nf(M) : (V.UI) + . ..+ (V.un) + T

and using the type assignment C that maps all free variables

to t~pe -1 it is the case that

_,.,e)8-nf(M) :1 ~ ,,. ~ 1 ~ r
ck(A2

Also, every derivation in A~’*’e is immediately a derivation

in A;’”, so if
e 6-nf(M) : pA$AJ,., ~

is true, then
At-( A_,.)M : p

2

must be true as well.

6 System A~’”’e Type Inference Reducible to ASU P

In this section, we define acyclic semi-unification, give an

algorithm for solving this problem, and develop a construc-

tion for reducing the problem of typability in System A; ‘“’e

to acyclic semi-unification.

Definition 6.1 (Semi-Unification (SUP)) For conve-
nience, we define semi-unification using the set of open types

R(O) as the set of algebraic terms ‘T. Let X = V denote
the set of term variables to emphasize their use in algebraic
terms as opposed to types. Although the members of ‘T are
also types, we will refer to them as terms when using them

in semi-unification. A substitution is a function S : X ~ T
that differs from the identity on only finitely many vari-

ables. Every substitution extends in a natural way to a “~”-
homomorphism S : T ~ T so that S(a ~ r) = S(a) e S(r).
An instance I’ of semi-unification is a finite set of pairs
(called inequalities) in T x 7. Each such pair is written

as T ~ # where r, p c T. A substitution S is a solution of

instance r = {rI < PI,. . . , r~ < P.} if and only if there
exist substitutions RI, . . . , R- such that:

Rl(S(~l)) = s(~l ) , . . . , Rn(S(rn)) = S(pn)

The semi-unification problem (henceforth abbreviated SUP)
is the problem of deciding, for a SUP instance I’, whether r
has a solution.

Definition 6.2 (Acyclic Semi-Unification (ASUP))

An instance 1? of semi-unification is acyclic if it can be or-
ganized as follows. There are n + 1 disjoint sets of variables,
Vo, ..., V-, for some n ~ 1, such that the inequalities of I’
can be placed into n columns:

T1’1 g pl’1 #,1 < @l ., . ~%1 < pn!l

~l,z < ~l,s #w < @2 . . . T’J’s < p=’z

~l}rl < ~zra <
- I.@ - P2’” “ “ “ r“’”” s P*’rn

where for O ~ i < n:

U = { a I 3j. a c FTV(ri+l’~) or cr c FTV(P’”) }

The acyclic semi-unification problem (henceforth abbrevi-
ated ASUP) is the problem of deciding, for an ASUP in-

stance I’, whether 1?has a solution.

Definition 6.3 (Paths in Terms) For an arbitrary alge-
braic term r, we define the left and right subterms of r, de-

noted L(T) and R(r). More precisely, if r is a variable then
L(r) and R(r) are undefined, otherwise we set L(TI ~ r2) =
# and R(rl~T2) = r2. Ifl_I c {L, R}*, say II = Z1Z2 . ..~p.

the notation II(r) means Z1 (x2(... (zP(r) . . . )). For an arbi-
trary II e {L, 1?}*, the subterm If(r) is defined provided II
(read from right to left) is a path (from the root to an inter-

nal node or to a leaf node) in the bhary tree representation
of r.

The following algorithm is an important sub-algorithm
of the overall type-inference algorithm for As.
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Algorithm 6.4 (Redex Procedure) We now define a pro

cedure (modified from [KTU93]) to solve instances of ASUP.

This procedure repeatedly reduces redezes of two kinds and
it halts if there are no more redexes or if a conflict is de-

tected that precludes a solution. Each reduction substitutes
a term for a variable throughout I’ and the composition of
the reductions done so far represents the construction of the
solution.

Redex I Reduction: Let ~ c X and let # ~ X be

a term with the property that there is a path II G
{L, R}” and ~ < p is an inequality of I’ such that:

n(r) = r’ and II(p) = f

The pair of terms (f, T(r’)) where T is a one-to-one
substitution that maps all variables in r’ to fresh names

is called a redez L Reducing this redex substitutes
2’(T’) for all occurrences off throughout l?.

Redex II Reduction: Let ~ E X and p’ c T have the
property that < # p’ and there are paths II, A, Z c

{L, R}” and T < p is an inequality in r such that:

II(7) G x II(T) = A(r)

MI(p) = < ZA(p) = p’

Such a pair (~, p’ ) is called a redez 11. Reducing this
redex consists of substituting p’ for all occurrences of ~
throughout I’. However, if there is a path @ E {L, R}*
such that @(p’) = f, then no solution to r is possible,

so the procedure halts and outputs the answer that
there is no solution if this is detected.

Although the general case of SUP haa been proven to be
undecidable [KTU93], ASU P has been proven to be decid-
able and in fact it is DEXPTIME-complete [KTU90] (where

DEXPTIME means DTIME(2n0(’) )). In addition, we have

the following result for AS UP.

Lemma 6.5 (Redex Procedure Solves ASUP) For an
instance I? of ASUP, the redex procedure either constructs a

solution S to r and halts or correctly answers that 1? has no

solution and halts. Furthermore, it halts within exponential

time.

We now define another important sub-algorithm of the
type-inference algorithm for AQ.

Algorithm 6.6 (Constructing I’M) To solve the typa-

bility and type inference problems for A; ‘“e for A-terms
in O-normal form, we construct for a A-term M an ASUP
instance r~. Consider the labelled ~-term M in O-normal

form:

M z ~2Xl.~2XQ.. ..~2XrW

(AI V1.(A1V2.(. . . (( AI WJCn+I)Tn) . . . )) T,)TI

We will adopt the convention that the abstractions in a com-
ponent T, for some i bind variables named z,,l, Z,,Z, etc., and

that the free variables of M are named W1, WQ, . . . . WP. By
writing the inequality (r <i p), we assert that the inequality
will belong to column i of r, which will have n + 2 columns
numbered from O through n+ 1. (We omit the proof that the
resulting set of inequalities 17~ is of the correct acyclic form
to be an instance of ASUP.) Most of the inequalities will be

of a certain special form, so (r +1 p) denotes the inequality
(a ~ a ~, ~ ~ p) where a is a fresh variable mentioned in

no other term in r. This will have the effect of unifying r
and p sa in ordinary first-order unification. We will assume

that the subterms of M are indexed so that two otherwise
identical subterms in different positions within M will be
considered distinct in what follows.

We construct the instance I’M of ASUP from the A-
term M sa follows. In constructing I’M, each subterm N C
T, for some i will contribute one inequality, each $redex
((A’ vi .P,)!G) will contribute one inequality, each variable y,
will contribute n — i + 1 inequalities, and each variable x,
or w, will contribute n inequalities. For each subterm N of
T, for some i, the term variable 6fJ will represent the de-
rived type of N. For each bound variable Z,,j (which must

be monomorphic), the term variable ~l,j will represent its

assigned type. For each variable z, (respectively vi or ~a ),

which must be assigned a universally polymorphic type, the
term variables ~f,,, . . . . /3~,, (respectively ,8:,, . . . . /3~,i and

P&i 9 . . . . B#,:) will represent its assigned type.

Now we define the inequalities that will be in I’M. For
each subterm N of Ti for some i, we add an inequality to

I’M that will depend on N:

1. For N s w,, we add (8Y-1,, ~, 61V).

2. For N z Xl, we add (~~_l,j ~, 6N).

3. For N z yj, we add (~~_l,j ~$ 6iv).

4. For N = z,,,, we add (~i,j =, 6N).

5. For N s (PQ), we add (6P =, 6Q + 6N).

6. For N ~ (A3zi,j.P), we tid (~i,j + 6P =i 6N).

For each ~-redex ((AI y, .Pi)T, ), we add (~~i +i 6Ti ). For

each variable X3 (respectively ~j or Wj ) and for 1 ~ i ~ n
(for IJj require i > j + 1 aa well) we add the inequahty

(i%l,j <, ,%i) (respectively (P’y-l,j s, PY,3) or (pY_l,J S,

~~j))

The only remaining consideration is what types to as-

sign to the A2-bound variables xl, ... , x~ and to the free
variables WI, . . . . WP. If our only concern is whether M

can be typed at all, then we can assign the type 1 to these
variables, in which case we do not need to add anything

more to I’M. On the other hand, we may wish to specify
more complex assigned types for these variables. Let A be a

type assignment whose domain is {z1,... , x~, w1,... , WP}
and whose range is in (S(1) — S(O)), We define r&f,A to be
r&f with the addition of more inequalities. If A(Zi) (respec-
tively A(~l)) is V.U where u E S(0), we add (~~,, +0 a)

(respectively (~fl, % m)).

Theorem 6.7 (A~’*’e Reducible to ASUP) Type infer-

ence in A2““’e is reducible to ASUP. More precisely, let M
be a l-term in O-normal form of the shape mentioned in

Algorithm 6.6. Let act(M) = xl . . . Xm. Let A be a type as-
signment whose domain is FV(M)U{Z1, . . . , Zm} and whose
range is in (S(1) — S(O)), Let I’M be the ASUP instance
dejined by the algorithm. Let 6Tn+1 be the term variabie ap-
pearing in r&f which is mentioned in the algorithm. The
following statements are true:
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1. ~M has a solution S if and onlg if M is typable in

A~I*9e. Furthermore, if r is the type

~=~+...
~ L - (s(6Tr.+i ))

where the number of “1” components in T is m, then

r is a type derivable for M in A~]*’o.

2. If S be a solution for rM,A, then the type

r = A(zl) ~ . . . # A(zm) ~ (S($~.+1 ))

is a type derivable for M in A; ‘“’e.

Algorithm 6.8 (Type Inference for Az) We can finally
summarize our type inference algorithm for System Az. If M
is typable in Az, then the following procedure will produce a
type for it and will otherwise answer that M is not typable
in Az:

1,

2.

3.

4.

5.

6.

Compute the labelled A-term Ml - (M)~.

Compute the A-term Mz - 0-nf (Ml) using fAreduction.

Choose a type assignment A for the free and A2-bound
variables of M. If act(M) = Z1 . . . Zm, let the domain

of Abe FV(M)U{zl, . . . , z~} and let the range of A
be in (S(1) - S(0)). It is possible to choose the trivial

type assignment that assigns 1 to all variables.

Compute the ASUP instance rM2,A (Algorithm 6.6).

Run the redex procedure (Algorithm 6.4) on r&4 to
either produce a solution S for rM2 ,A or the answer
that r&f2,A haa no solution. In the latter case, halt

with the answer that M is not typable in Az with the

assumptions of the type assignment A. If A is the

trivial type assignment, then M is not typable at all

in A2.

Compute and output the type

A(xl) ~ 0.0 e A(zm) - (S(&.+, ))

where c$~n+l is the term variable appearing in r~

which is mentioned in Algorithm 6.4.

The reader should observe that Algorithm :8* Takes no

reference to the type systems A;, A;’”, or A2 ‘ . These

type systems are used solely to prove that the output of

the algorithm in its final step is a correct result. The final

result is a valid typing in A; ‘“’e, but it is also immediately

a valid typing in A;’*, A;, and Az aa well (after removing
any Llabelling).

We now analyze the complexity of Algorithm 6.8. The

initial stages of computing the labelling Ml z (M) ~, the 0-
normal form M2 s 6-nf(Ml ), and the ASUP instance rM2,A

can be done in polynomial time. Algorithm 6.4 solves the
ASUP instance 1“~, ,A in exponential time. Thus, Algo-

rithm 6.8 takes exponential time. Since Az typability has
been shown to be DEXPTIMEcomplete [KT92], the algo-

rithm is optimal.

To use System Az or A; in an actual programming lan-

guage, we will have to take account of constants with con-
stant types, e.g. “true : Bool”. This might seem difficult
to do, since the type inference algorithm is baaed on System

A;,%g which requires all types assigned to identifiers to be
completely closed (polymorphic). However, the redex pro-

cedure for solving ASUP instances can be simply told that
certain variables are actually constants (e.g. Bool) and not

to be changed by substitution. Then the type inference al-
gorithm will work correctly with constants.

7 Principal Typing in System A2

In this section, we first observe that in general there are no
principal types for Az. Then we describe the principality
of solutions to instances of SUP and ASUP and how this
relates to types in Az. Finally, we discuss the weak forms of
type principality that exist in A2.

It is easy to observe that principal types do not exist in
System Az in the same sense that they do in ML. Consider

the identity function, I s (XT ,z), In A;, all of the types

p = (Va.rr) -(P 4 P)

@ = (Vcr.(a+ a)) -+ (P+ P)
r = Vcr.(a+a)

can be derived for 1. (Note that x can not be derived for

1 in A~}*>e .) However, there is no type r derivable for 1 in

Az such that T ~ p, T ~ $, and T ~ x. When we consider
the full power of Az and the polymorphic instantiation and
types in (R(2) – S(2)) that it allows, the situation seems
even more disconcerting.

We do not currently know of a convenient way to repre-
sent all of the possible rank-2 types that can be derived for a

A-term. The types derived by our type inference algorithm
are principal in a weak sense. The rest of this section will

present what is known about the kind of weak principality
of types that exists.

The solutions to instances of SUP and ASUP are princi-

pal in a weak sense. For substitutions S, R : X ~ T, let the

notation S L R mean that there exists some substitution

S’ : X ~ T such that for all term variables a in the domain
of S it holds that R(a) = S’(S(CY)).

Lemma 7.1 (Principal SUP Solution) lj I’ is an in-

stance of SUP, then I’ has a principal solution S such that
for every solution R of I’ it is the case that S ~ R.

Lemma 7.1 is Proposition 3 in [KTU93].

Lemma 7.2 (Principal ASUP Solution) Suppose I’ is
an instance of ASUP with n columns. There are therefore

n + 1 disjoint sets of variables occurring in I’, which we
call VO, VI, . . . . V~, satis~ing the property that for every

inequality (r s p), if a c V: occurs in r, then all the term
variables in r also belong to Vi and all of the term variables
in p belong to U+l. Let V = VOU c . . U V~. For a substitution
T : V ~ T, let the notation [Tl; denote the restriction of T
to the domain of K. Suppose S is the principal solution of I’
according to Lemma 7.1. Then the conclusion of this lemma

is that for any substitution P : V: ~ T such that [S]g Q P,
there is a substitution R : V ~ T wch that:

1. R is a solution of I’.

2. [R], = P.

Now, from Lemma 7.2 follows the weak principal typing

property for System A; ‘“e.
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Theorem 7.3 (Weak Principal Types) Consider the type

computed by Algorithm 6.8 from 17M,A for A-term M relative

to type assignment A for the free and A2 -bound variables of
M:

A(xl) - . . . ~ A(zm) ~ (S(6~.+, ))

For any substitution P : X -+ T, the following type is deriv-
abJe for M relative to A:

A(zl) -+...-+ A(zm) ~ (P(S(~~n+, )))

Theorem 7.3 holds since S is a solution for rM,A and
S ~ S o P, so there is a solution R such that [R]n+l = S o P
(where V~+l is the rightmost set of variables in I’~,~).

Now consider the types inferred by Algorithm 6.8 for a

J-term M under various restrictions. Suppose M has no

J2-labeiled abstractions and no free variables. In that case,
the computed type is exactly S(6Tm+, ). By Theorem 7.3,

any substitution instance of this type is also a valid type

for M. Thus, in this case there is the same sort of strong
principality of types that there is in ML.

Now consider various cases where M has either AZ-bound
variables or free variables or both.

Suppose in type inference we decide to assign the type

L to all free and A2-bound variables, which provides the
maximum possibtities for M to be typed. In this case, the

final sequent of the typing will look like this:

{W, :L,..., WP :L}~M:~~.,.~L~(S(6To+,))

The rightmost component of the type, S(6Tn+, ), can be re-
placed with any substitution instance of it. However, since

there are no closed J-terms in AQ for which the type 1 can
be derived, this typing does not help us know with what
other A-terms M can be combined. Although assigning J-
to all free and A2-bound variables alIows us to tell whether

a A-term is typable at all, it seems unlikely to be useful in
practice.

A problem with the type inference algorithm and A; ‘“ ‘o

is that certain important and natural types will not be as-
signed to A-terms unless a trick is used. For example, the

type inference sJgorithm wiU not derive the type YCY.(IY~ cr)

for the A-term I s (Az.z). The rewon for this is that af-

ter labelling, the A-term is (A2 Z.Z) and the type assigned to
A2-bound variables is required to be closed. The type infer-

ence algorithm can assign the type Vrr. (a ~ a ) to the A-term
(A3Z.X), which is the same A-term labelled differently. This
is not a problem in typing a real program, because whenever
the type Vrr. (a -+ a) is needed for (Az.z), it will be the case

that (kc .z) is embedded inside a larger term in a position
where the abstraction will be ~3 -labelled. If it is desired to

know what type will be assigned to the A-term M in such a
position, the type inference algorithm can be asked to type

(IM) instead. The primary problem with this typing quirk
is that the type derived for a free-standing A-term does not
indicate to the human viewer the actuaJ possible types the
A-term can take in combination with other A-terms. The
type inference algorithm must pick some type, but, due to
the lack of principal types, the type it picks can not be a
most general type.

It may be desired to know the most general open type
that can be assigned to a A-term M, ignoring all of the possi-

ble rank-2 but not rank-1 final types. (This is different from
ML typing in that rank-2 types are allowed in intermediate

steps in the type derivation. ) This is quite simple to do:

simply ask the type inference algorithm the type of (lAZ).

Any rank-1 type derivable for M in A; is also derivable for
(lM), but no rank-2 but not rank-1 types are derivable for
(lM).

Similarly, it may also be desired to find a most general
typing in which all types in the final sequent are open, To

find such a typing for A-term M with free variables W1, . . . .
W., use the type inference algorithm to compute the type
for the A-term (l(Awl. . . . .Awn.M)), which will be of the
shape P1 ~ . . . ~ pn ~ p, where ~,p c S(O). In this case,

any type-substitution instance of the following sequent will
be derivable:

{W, :p,,..., wn:pn}!-M:p

It may be desired to use specific closed types for some of
the free or A2-bound variables of a A-term, but to have the

type inference algorithm compute most general open types

for the rest of the free or ~2-bound variables. Let the X
term M have free variables W1, . . . . W. and let act(M) =

~1 . . . zm. It will be the case that

&nf((M)X) S (A2z~.... .A2zm.N)

for some N which is not an abstraction and which contains

no 12-bindings. Suppose we want to fix the type of Z1 as

Vcr.(a ~ a ~ a) but we wish the type inference aJgorithm

to find most general open types for the rest of the free and
A2-bound variables. To accomplish thki, we can run the type

inference aJgorithm on the A-term

(A2Z,.I(A’W,. . . . .A3WJ3S2. . . . .A3%.N))

using the type assignment A = {z1 : Va. (a +cr +a)}, which
wili produce a type

A(zl)~pl~...~pn~@2~.. .-&-~

From this, we can conclude that any type-substitution in-
stance (where V-bound variables are unchanged of course)
of the following sequent is derivable:

Au{wl:pl,..., wn:pn}t- M: A(zl) +$2--t . ..+@m+p

At times, we may want to assign more complex closed
types to the free and A2-bound variables of a A-term, It

would be nice if the type inference algorithm would provide
enough information so that we could know if a particular
combhration of closed types would work. Unfortunately, we

do not currently have a method of knowing which closed
types can be used without actually trying the type inference

algorithm with that set of types assigned to the free and A2-
bound variables.
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