
Semantics of Type Classes Revisited

Satish R. Thatte

Department of Mathematics and Computer Science

Clarkson University, Potsdam, NY 13699-5815

satish@sun .mcs, clarkson. edu

Abstract

We present a new approach to the semantics of

languages with ML-like polymorphic types and type

classes. The goals of the new approach are simplic-

ity and generality. Our typing rules are a relatively

straightforward extension of the rules for translating

core-ML to core-XML [11]. The new features are an

encoding of classes as recursive sets of types, and class-

membership constraints on types. We show that the

soundness of this type system is independent of the

fixedpoint operator used to interpret (recursive) classes,

and thus there is room to engineer a sound notion of

well-typing based on other considerations such as de-

citability. These ideas are applied to investigate the

appropriateness of HA SKELL-st yle type inference which

uses backward chaining for inference of instance rela-

tionships. HASKELL’S algorithm turns out to imply a

least fixed point semantics for classes. We show that the

HASKELL approach is correct and complete for the spe-

cial case of convergent classes. Although this includes

all classes definable in HASKELL, most proper exten-

sions of HASKELL allow classes that are not convergent,

which helps explain the negative results for decidability

of type inference for many extensions [16, 17].

1 Introduction

The use of type classes is the major innovation in the

functional programming language HASKELL [4]. Type

classes permit a very organized form of overloading

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

LISP 94- 6/94 Orlando, Florida USA
0 1994 ACM 0-89791 -643-3/94/0006..$3.50

that approaches the use of abstract classes in object-

oriented languages in its expressive power. Overload-

ing resolution requires a translation of the source pro-

gram guided by the typing process. Type systems of this

kind are usually prescriptive: only programs considered

well-t yped are meaningful, since meaning depends upon

translation. The original system of Wadler and Blott

[18] (on which HASKELL’S classes are based) specified

this translation with a rather complex extension of the

underlying Hindley-Milner type system, including a new

notion of predicated types in which typing assumptions

about program variables are incorporated in types, new

kinds of typing assumptions, and complex new notions

of instantiation of polymorphic types and valid sets of

assumptions. Volpano and Smith [17] showed that the

Wadler-Blott system is undecidable (even their notion

of instantiation is undecidable). There have been sev-

eral attempts to present a simple algorithmic account of

type inference in the presence of type classes, most no-

tably those of Nipkow and Snelting [13] and Nipkow and

Prehofer [12]. Their goal has been to stay as close to the

original Hindley-Milner system as possible, adding only

classes (viewed as sets of types) and class-membership

constraints on types. However, their systems confirm

closely to HASKELL and rely on its restrictions on class

and inst ante declarations, and moreover, they leave out

semantics altogether, Like Nipkow, et az, we strive for

simplicity and closeness to the original Hindley-Milner

system, and our extensions are intuitively similar to

theirs. However, we focus on semantics rather than

type inference and we attempt to treat type classes in as

much generality as possible. To this end, we eliminate

all the restrictions on the form of classes and instances

imposed by HASKELL, as well as the (need for) explicit

declaration of inst ante contexts. \

One of the motivations for studying a general seman-

tics for type classes is that it is not clear how arbitrary

HASKELL’S particular choice of a notion of well-typing

for type classes is, and even exactly what parameters

are available to choose from. This is of interest particu-

208



larly when considering extensions since many extensions

based on a HASKELL-like approach appear to lead to un-

decidable type reconstruction problems. For instance, it

is easy to show that type reconstruction in some reason-

able extensions of HASKELL with multiparameter classes

is undecidable [16]. The issue is complicated by the fact

that Milner’s dictum for well-typing (well-typed pro-

grams do not go wrong) is meant to apply to descriptive

type systems where program meaning is independent of

any notion of well-typing. However, given that overload-

ing resolution may occur at run-time, it is quite easy to

formulate typing/translation rules that avoid rejecting

programs for overloading errors if we accept the stan-

dard notion of well-typing for the underlying core-ML-

like base language. We use XML [11] enhanced with a

simple typecase construct as the target language for

our translation of programs with overloading. The de-

tails are given in Section 3, but the idea is simple enough

to be grasped with an example. Consider two instances

of the familiar class Eq:

class Eq a where (==) :: a -> a -> bool

instance Eq int where (==) = eqInt

instance Eq a => Eq [a] where

(==) = eqList where eqList x y = . .

The translation of the overloaded symbol== is, in part 1:

(==) = Ar. typecase r of

Int: eqInt

[7’1 : eqList ~’

. . .

It should be obvious that each instance declaration sim-

ply adds a new case (corresponding to the instance type)

to the typecast for the overloaded symbol(s) in-

volved. The context in the inst ante declaration, which

is so problematic in the decidabilit y of typing, plays no

role in the translation. How can a program translated

in this way “go wrong” at run-time? The only possi-

ble run-time type error is the application of an over-

loaded symbol (z. e., of the corresponding t ypecase) at

a type for which it is not defined-the translation re-

stricts the well-typing question precisely to the over-

loading aspect. Using an encoding of classes as recur-

sive sets of types, we show that well-typing is indepen-

dent of the particular fixedpoint operator used to in-

terpret recursive classes. Therefore, a liberal notion of

well-typing based on a greatest fixedpoint semantics for

classes would also exclude these type errors, whereas

the standard approach implies a much more restrictive

least fixed point semantics. This creates options for en-

gineering the notion of well-typing to make decidable

1Note that all polymorphic functions such se eqLkt have an

extra type parameter in the usual XML style.

type reconstruction possible for extensions such as mul-

tiparameter classes where the standard notion based on

least-fixedpoints fails.

Of course, there are many classes for which the least

and greatest fixed point semantics coincide. In fact, it is

possible to define a natural notion of convergent classes

based on treating sets of ground types as the points
of a complete metric space. We show that Banach’s

fixed point theorem can be used to prove that the se-

mantics of such classes is independent of the choice of

fixed points since there is no choice in their case. For

convergent classes, which include all classes definable in

HA SKELL, the established type inference approach for

type classes based on Prolog-like reasoning (treating in-

stance declarations like Horn clauses) and the associated

dictionary-based implementation can be used without

loss of generality.

The rest of the paper is organized as follows. In Sec-

tion 2, we describe our encoding of type classes as set

expressions, and their semantics. Section 3 gives a se-

mantics for a language (OML) consisting of core ML

with a class construct that eliminates all the restrictions

of HASKELL. The semantics is based on typing rules

that specify the typing and translation of OML to a lan-

guage (OXML) consisting of core XML with a t ypecase

construct and a polymorphic fixedpoint operatorz. The

typing rules allow a definition of well-typing which is

independent of the fixedpoint operator used in the se-

mant ics of classes. In Section 4, we define the notion of

convergent classes and show that HASKELL classes are

convergent and their semantics is unique (independent

of the choice of fixedpoints). Finally, Section 5 briefly

surveys related work and Section 6 concludes with some

directions for future work.

2 Types and Classes

To motivate our notation for class expressions, consider

the following example which uses HASKELL-like syntax

but violates various restrictions of HASKELL:

class Eq a where (==) :: a -> a -> bool

instance Eq Int

where (==) = eqInt

instance Eq a => Eq (a, a)

where (==) = eqMatchedPair

instance Ord (a->Int) => Eq (Int->a)

where (==) = eqIntFun

Note that both instances and contexts can have nested

constructors (e.g., Eq (a->Int ) and Ord (a->Int ) ),

2The latter is needed because an overloaded symbol can be

used at any type in any of its own definitions. This does not
lead to the problems associated with polymorphic A-abstraction
in ML/2 [9] because the types concerned are explicitly declared

rat her than being inferred.

209



and instances may be nonlinear (e. g., Eq (a, a) ).

Thinking of class Eq as a set of ground types, and as-

suming that the three instance declarations above com-

pletely describe this set, we could use the following equa-

tion to define Eq:

Eq = Int V ‘da. (a, a) .&Eq Vva. Int->a~(a->int) cOrd

where V is essentially union, and the form TJTI EC ex-

presses a constraint on type variables in T in an obvious

way. The use of universal quantifiers permits encod-

ing of nonlinear and constrained instances. The recur-

sive equation can be eliminated by using the fixed point

construct p, giving us an expression

pl+q. Int V Va. (a, a) $aeEq Vya. lnt->a~(a->int) eOrd

that captures the set we want (see the semantics of

classes below). In the syntax for class expressions given

below, we also have the intersection (A) operator, which

is useful for representing multiple constraints on a sin-

gle variable (similar to the way Nipkow and Prehofer

[12] use sorts to represent intersections of classes). The

notation can be used to represent very general kinds of

overloading, since it places no restrictions on the form

of inst ante declarations. For example, it permits the

encoding of unusual inst ante declarations such as:

instance Ord a => Eq a where

(==) x y = (x<=y) and (y<=x)

which could be used as a default instance declaration

to provide an instance of Eq corresponding to every

instance of Ord (since Eq is a superclass of Ord in

HAsKELL—this default allows instances of both the Ord

and Eq classes to be derived from a definition of <=

alone).

Syntax of Types and Classes

In the following, r ranges over monotypes, K over type

constructors (including base types, which are zero-arity

constructors), u over constrained types, a over type

variables, ~ over claw variables, C over (set expressions

representing) type classes. We use 0 to denote the empty

class and L/ to denote the class of all ground types. The

syntax of types and classes is given in Table 1. We shall

use F’V(C’) to denote the set of free type variables in

C, and Tvar, Cvar, GroundType, and ClassExpr to de-

note the sets of all type variables, class variables, ground

types, and class expressions, respectively. GTypeSet is

the powerset of GroundType (and the domain in which

closed classes are interpreted).

Our class expressions are general enough to encode

HASKELL classes as well as most extensions includ-

ing multiparameter classes and instances with arbitrary

r ..—..— al KIT, . . ..T]

u ..—..— 7- I u&~c

c ::= olulzil tc[c,..., c]lc$,~c
lCVCICAC1’v’ff.Cl@.C

Table 1: Syntax of Types and Classes

contexts. However, note that encoded classes are nec-

essarily static (all instances of a class appear in the en-

coding). This is both natural and advantageous: for

instance in preserving principal typing in the presence

of local class declarations. HASKELL classes are dynamic

relative to modules (new instances may be added to an

existing class in a new module), which means that an

overloaded expression has a potentially distinct mean-

ing relative to each module. The effect can be simulated

in practice with an additional environment of class defi-

nitions. We do not consider multimodule programs and

dynamic classes in this paper.

Semantics of Classes

The semantic domain for the interpretation of class ex-
pressions is the complete lattice of finite and infinite sets

of ground types (based on the subset ordering). The

lattice admits (among others) least and greatest fixed

point operators, denoted by ,C and ~, respectively, for

continuous functions. Fixed points are clearly neces-

sary for the interpretation of the p construct, but which

fixed point to use is not always clear. For instance, the

(pathological) class PFOO. a.&eF~~ will map to either 0

or GroundType depending on whether the least or the

greatest fixedpoint operator is used. For the moment,

we defer a decision on choice of fixed point and para-

metrize the semantics of classes with respect to an ar-

bitrary fixed point operator 7 (shown as a superscript

for the semantic function [ ]). The semantics of class

expressions is given in Table 2. The semantic equations

are the obvious ones. The only point to note is that they

apply to classes which may contain free class variables

but no free type variables. The environment argument

p : Cvar -+ GTgpeSet for [ ]7 maps free class variables

to sets of ground types.

The applicability of (at least) the least and greatest

fixedpoint operators ,C and ~ in the semantics is stated

in Lemma 1 (which relies on Tarski’s lattice-theoretic

fixedpoint theorem [15]).

Lemma 1 Given any class expression C without free

210



IIIr: ClassExpr +( Cvar-+GTypeSet)~ GTypeSet

[O]%p = 0

[U]yp = GroundType

[zq~p = p(a)

[~[Cl,... jC7ra]]7~ = {~[Tl,..., ~7n] : ‘G6[Ci]7P}

[c,vc,]~p = [c,]~pu[c,]~p

[CIAC#p = [CI]~Pfl[CZ]3P

~a.c]>p = UreGroundTyPe [[~/~]C]~p

{

[CIFP if ~e[C’J7p

[C$.EC’]FP =

0 otherwise

[pa.c]~p = Y-(AZ. ([c]7 (p+ [= - *])))

Table 2: Semantics of Class Expressions

type variables, any class uariable E, any jixedpoint op-

erator F and any environment p, the function

Az.[c]r(p +n + z)

is well-defined and monotonic, and hence possesses a

complete lattice of jixedpoints.

3 OML: Typing and Semantics

This section describes a set of rules for typing OML

programs and translating them to OXML programs in a

way that incorporates the overloading resolution process

in the OXML program without rejecting any program

for an overloading-related type error. We also prove

the soundness of this type system in an F-independent

way. In combination with an 3-independent notion of

consistency of sets of overloading constraints, this leads

to an F-independent notion of well-typing.

Syntax of OML and OXML

In the following, x ranges over program variables, e over

OML expressions, E over OXML expressions, O over

declarations of overloaded symbols and T over t ypecase

expressions. The syntax of OML and OXM L is given in

Table 3. OXML is just XML with typecase expressions

e ..—..— zlkc. eleelletx=ein elOine

T ::= typecaser of r: E,. ... r:E

E::= xl Ax:r. EIEElletx:u=Ein E

lAa..Z71 E(7) lTlfixz:a. E

Table 3: OML and OXML Syntax

and a polymorphic fix (fixedpoint ) operator. The lat-

ter is needed because an overloaded symbol can be used

at any type in any of its own definitions (see inference

rule OVER in Table 4 for the sole use of this construct).

For simplicity in the formalism, we assume that there

are constants in the environment for the introduction

and elimination of pairing. We recall that all class ex-

pressions used in type schemes are closed with respect

to clses variables. As an example of OML notation,

consider the following HASKELL-like declarations:

class Eq t where eq: :t->t->bool

instance Eq Int where eq = eqInt

instance Eq a, Eq b => Eq (a, b)

where eq = eqPair

where eqPair (x, y) (u, v)

= (eq x u) and (eq y v)

instance Ord a => Eq a

where eq a b = (a <= b) and (b <= a)

In OML these would be rendered (taking some liberties

with the notation for abstractions) as:

eq(t) :t->t->bool with
eq (Int) = eqInt,

eq(axb) = let eqpair (x~YJ (UJV)
= (eq x u) and (eq y v)

in eqPair

eq(c) = let eqord x Y = (X <= y) and (y <= X)
in eqOrd

In any declaration

Z(TO) : uo with x(71) = el, . . ..r(rk) = ek

of an overloaded symbol in OML, we assume the follow-

ing well-formedness conditions:

1. The sets FV(TO), F’V(rI), . . . . Ft’(m) of type vari-

ables are all disjoint, and moreover, all these vari-

ables are distinct from the variables used in all

other declarations of overloaded symbols.

211



2. T~ = (~ro, 1 < i < k, for some substitutions

cl,...,~k.

3. FV(ro) = FV(OO) (where a. is an arbitrary type

scheme that is closed with respect to class vari-

ables).

The language(s) we consider incorporate a number

of simplifications and generalizations as compared with

HASKELL. The most important one is that in the typing

rules and semantics given below, we impose no restric-

tions at all on the form of declarations of overloaded

symbols other than those given above. The question

of restrictions (and the decidability of type inference)

is separated and associated with a constraint resolution

problem. The “parameter” in a class declaration is a

type pattern rather than a single variable. This ab-

stracts generalizations such as multiparameter classes

in a simple way. A class with two parameters a and b

could be coded as in the following example:

f (axb) :a->b with

f (Int XBOO1) = let eqZero x = eq x O in eqZero,

f (BooIxBoo1)= not

We allow only one overloaded symbol per class (mul-

tiple symbols are easy to code as a derived form). We

omit superclass declarations since they have no role

in the semantics or typing—superclass declarations in

HASKELL serve only to make contexts more concise. Fi-

nally, contexts in instance declarations are omitted since

they can be inferred. Note that we allow local declara-

tions of overloaded symbols in contrast to [18], where

it is claimed that this leads to lack of principal types.

The problem disappears in our case since class expres-

sions allow environment-independent types to be given

to overloaded symbols. However, to avoid semantic am-

biguity, we require that all instance declarations for a

class occur together with the class declaration. In a lan-

guage which allows multiple modules, this would have

to be generalized to also allow an instance declaration

to occur in the same scope as the declaration of one of

the type constructors involved in the instance type.

Semantics of OML and OXML

Constructing implementations for overloaded symbols
is straightforward except for ambiguity issues. The

simplest way to avoid ambiguity is to ban overlap-

ping instances, but it is possible to use ordering or

“best match” schemes to resolve ambiguity when in-

stances do overlap. In this paper we use instance

ordering, reflected in the ordering of cases in the

typecase construct used in the implementation, to re-

solve ambiguit y—t ypecase anal yzes ground types by

pattern matching in exactly the same way that the case

construct of Standard ML analyses ordinary data val-

ues. For inst ante, in the Eq example, the code for eq is

simply

At. typecase t of Int : eqInt,

axb : eqPair(a)(b)

c : eqOrd(c)

where t ranges over ground types, and the variables a,

b and c used in the last two cases are local to their

respective cases. The code for eqpair is translated to

Aa. Ab. A(x:a, y: b). ~(u:a, v: b).

(eq(a) x u) and (eq(b) y v)

and the translation for eqOrd is similar. In contrast to

the dictionary-based approach, this approach to trans-

lation is independent of the constraints on class and

instance declarations. The code produced is simple and

is amenable to many standard optimization including

partial evaluation. It also avoids many of the prob-

lems of dictionary-based translations, such as repeated

construction of dictionaries, which require sophisticated

optimization [5].

The semantics of OML expressions cannot be given

directly since it depends upon the resolution of over-

loading, which is a part of the typing process. The typ-

ing/translation rules are a straightforward adaptation of

the rules for the translation from ML to XML given in

[11]. The general form of a rule is TE, CE t- e ~ E : a

where TE denotes the typing-assumptions environment

for free variables, CE denotes an environment of con-

straints on type variables of the form T G C, e is the

(OML) expression being typed, E is its (OXML) trans-

lation and u is the “manifest” type of E. The new

rules are J-INTRO, &ELIM and OVER, which are

given in Table 4. The complete set of rules is given

in Table 6 in Appendix A. The interesting point about

the rules J-INTRO and &ELIM is that the intro-

duction and elimination of “predicates” (conditions of

the form J,Ec ) in types has no eflect on the transla-

tion. This is the technical essence of the descriptiveness

of our semantics of overloading, since it is the presence

or absence of these predicates that marks the difference

between overloaded and ordinary types.

The last rule (OVER) requires a more detailed ex-

planation. It is helpful to use class Eq as a running

example. The elements of the overloading declaration

O are

● The overloaded symbol x (e.g., eq).

● The instance template To (e.g., t).

. The type template U. (e.g., t->t->bool).

● The instances Ti, i >0 (e. g., Int and ax b).

212



(J.-INTRO)

(.J.-ELIM)

/,-l, ,*n\

Z’E, CEU{7GC’}Pe*.E:cr

TE, GE 1- e ~ E : UJ.7ec

TE+x:u, CEUCE1l-el~E1: &luo

Tk?i-x: u,cEU6’Ekkek+k?k: &UcI

TE+x:u, C’El-e+E:r’
(uv Jzlt)

TE, CEk Oine~letx:u= fix x:u. Tin E:#

Table 4: Selected Typing Rules: OML ~ OXML

● The instance substitutions&, i >0 (e.g., {teInt ]

and {t@axb]).

● The instance definitions ei, i >0 (e.g., eqPair).

Clearly, each (clam) instance must be an instance of the
inst ante template (i. e., Ti = &To), and the correspond-

ing instance definition must possess a type equal to the

corresponding instance of the type template (roughly,

e; : &ao). For example, the definition eqpair for in-
st ante ax b must possess (after translation) the type

~t+axb}t->t->bool (i. e., axb->axb->bool). Now in
general such a type cannot be inferred without making

some assumptions about the free type variables a and b

involved in the inst ante ax b—in this case the assump-

tions that aEEq and bGEq. These assumptions consti-

tute the context for an instance declaration in HASKELL,

but we do not have such contexts in the declaration of

an overloaded symbol. In the rule OVER, these con-

texts are represented by the sets CEi and they appear

as (local) assumptions in the premises of the rule cor-

responding to each instance: these premises are of the

form

TE+x:u, CEUCEi+ei~Ei: ~iao

where Ei is the translation of the instance definition

e~ and CE represents the global overloading constraints

assumed in the final .judgement. The typing assumption
x : a for the overloaded symbol being declared appears

in the typing of each of its own instances because the

overloaded symbol may be used recursively in any in-

stance definition. With this explanation, the definition

of the class C in the rule should be clear: the class con-

sists of the union of (explicitly quantified versions) of all

inst antes, where each instance Ti is constrained by the

context CEi used in establishing the type of the corre-

sponding definition. The translation T of the declara-

tion of the overloaded symbol x is equally straightfor-

ward: it abstracts the type variables of the inst ante tem-

plate To and then pattern-matches the actual instance

type with the instance template to select the appropri-

ate (translated) definition for execution. Finally, the

type u of the overloaded symbol x is just an explicitly

quantified version of the type template U. with the con-

straint that the instance template constructed with the

quantified variables must belong to the class C.

The rule OVER is admittedly complex, but note that

it deals with the translation and typing of both CISSS

and instance declarations in a self-contained way. As

such, it is considerably simpler and more direct than the

existing treatment of the static sematics of HASKELL-

style overloading due to Wadler and Blott [18].

The dynamically typed semantics of OXML expres-

sions is given in Table 5 using the following notation:

● d in V (where d E D and D is a summand of V) is

the injection of d into V. Therefore we always have

(din V) 6 V.

213



ur : Exp ~ (Pvar d V) -i ( Tvar j GroundType) ~ V

[z]~p x = p(z)

[Az : u. E]Y p x = Au. if v ~ [xa]F then ([EJjF (p + [z I+ v]) x) else wrong

[E li?]~p x = let ,f= [E]rpx; z= [E’]7p Xin if ~E V--+ Vthen ~(z)
else wrong

[let z : a = E’ in E]rp x = let v = [E’JJrp x in if v E [jya]y then [ll]~(p + [z s v]) x
else wrong

[As. E]rp x = ~q G GroundType. [E]xp (X + [a ~ q])

[E(T)]Y p x = let o = [EJjX p x in if o E O then O(XT) else wrong

[fix z : cr. E]>p x = YO([AZ : a. EJJ7p X)

[typecase To of rl : El,..., m : Ek]7 ~ x = if there is a least i such that <Ti = xro then [E~]7 p (x + <) else wrong

Table 5: Dynamically Typed Semantics for OXML

● wrong is just w in V.

● v E D (where v c V and D is a summand of V)

yields LB if v =lV, true if v = d in V for some

d 6 D, and false otherwise.

VI D (where v c V and D is a summand of V) yields

d if v = d in V for some d 6 D, and ~f) otherwise.

Y. is a type specific fixedpoint operator. Given a

function j E V + V, Y. returns its fixedpoint iff

~([u]r) < [u]fi, and wrong otherwise.

where the domain V is defined by

v= N+B+ V+ V+ VXV+O+ w
O = GroundType -+ V

w = {u}

Note that the semantic equation for A-abstraction (in

Table 5) permits polymorphic abstraction. The follow-

ing theorem asserts the soundness of the typing rules.

The most interesting aspect of the theorem is that its

statement is “parametrized with respect to the choice

of 7 in the semantics of classes.

Definition A substitution x : Tvar ~ GroundType

satisfies a constraint environment CE relative to a fixed-

point operator ~ (written x ~ CE) iff Dom (x) z

FV(CE) and (~ E C) E x(C13) + ~ 6 [C]70. A

map p from program variables to V satisfies a closed set

of typing assumptions TE relative to a fixedpoint op-

erator 7 (written p ~ TE) if for every z G Dom(TE),

p(z) E [TE(z)]7.

Theorem 2 If TE, CE 1- e ~ E : u, x ~ CE (wzth

Dom(X) = FV(CE) uFV(T.E) UF’V(CT)) and p ~ x(T.E)

then ([E]r px) E [xa]7.

Well-typing

It is easy to see that the typing/translation system of

Table 6 does not guarantee lack of semantic ambiguity.

For instance, let TE be the set

{z : Va. int ~ c&~~, ~ : Vcr. a ~ int.&E~, 3: int}

Given, say, C = Int V Bool, it is possible to derive both

TE, (?J l-- f(x 3) > (~(Int))((x(Int) )3) : Int

and

TE, k! + f(z 3) a (~(Bool))((z(Bool) )3) : Int

Clearly, the two translations for the same typing are

semantically distinct. This is the familiar situation

of an “ambiguously overloaded” expression [4, Section

4.3.4]. The problem is flagged by the “uncoupled” type

Int .$6CC used during the derivation. Such types are

prohibited in HA SKELL and we conjecture that if deriva-

tions are constrained not to use such types, the resulting

214



inference system is indeed coherent. Similar results have

been reported in [2, 7] for overloading systems related

to HASKELL.

Definition Consider the sequent TE, CE F e 3 E :

‘d{al, ..., crk} .~~c~). Assume without loss of general-

ity that (F V(TE) U FV(CE)) n {al, ..., CU}= 0. This

sequent is considered uncoupled iff FV(CE U CE’) –

(FV(r)UFV(TE)) #0. A sequent TE, CE 1- e + E : m

is considered hygienic if it is not uncoupled and it has

a proof that does not involve uncoupled sequents.

Conjecture 3 (Coherence of hygienic Typing) 1$

TE, CE!- e ~ El :uand TE, CE1-e+E2 :U

are hygienic typings then VX # CE, Vp ~ xTE,

[EI]7pX = [E2]XpX.

The definition of well-typing in our context needs a

little care. In general, the semantics [a]F of a type

scheme u may contain wrong, but the semantics of a

simple type ~ never does. Moreover, as in inference with

subtypes, the proof of a typing TE, CE t e ~ E : r

does not imply that e is well-typed, since the con-

straint set CE may be inconsistent, implying an over-

loading related type error. The exact notion of consis-

tency is a bit tricky to fix. The simplest definition is

that an environment CE is consistent only if there is a

x : Tvar --+ GroundType such that x ~ CE. However,

note that any particular solution of CE in a sequent

TE, CE 1- e + E : r does not have any effect on the re-

constructed term E. If the only reason to check for con-

sistency is to ensure the absence oft ype errors, the def-

inition suggested above seems too strong. For inst ante,

this definition would imply that the type VCY.Q J[al<o

is “wrong” even though [Va. a j.IalEO]x does not con-

tain wrong and therefore does not imply any run-time

type error. This suggests that only those constraints

T c C in CE where r is a ground type need to be sat-

isfied. However, there are two arguments against this.

First, although ~a. a.J.[alGO]r does not contain wrong,

the only nontrivial value it contains maps all ground

types to wrong. Any use of such a value yields a type

error, and so it does not seem unreasonable to treat the

corresponding expression as being ill-typed, Secondly,

it is technically possible to separate the constraints with

ground types only if all class and instance declarations

are global, since local class declarations may yield class

expressions that cent ain free type variables. For both

these reasons, we use the following simple definition:

Definition Suppose TE is a a set of typing assump-

tions with no free variables. An OML expression e

is well-typed under TE iff there is a hygienic typing

TE, CE 1- e + E : T and a x : Tvar + GroundType

such that Dom(X) ~ FV(r) and x ~ CE.

Note that hygienic typing ensures that FV(CE) U

FV(E) ~ FV(~) in the definition above. Therefore,

given any p ~ TE, [E]7 p x is meaningful. The lack of

type errors in the execution of well-typed expressions is

then a corollary of Theorem 2.

Corollary 4 If cm OML expression e is well-typed un-

der a closed set of assumptions TE with a hygienic typ-

ing TE, CE 1- e + E : T such that x ~ CE, then given

any p ~ TE, [E]x px # wrong.

To illustrate the relationship between the choice of

F and well-typing, consider the following typing judge-

ment, which is easy to derive from the rules in Table 6.

{f : Vb. b + bool$beFoo, 3: Int}, {Int C Foo}

Ff3:bool

where Foo = pH. a &I.I. Is f 3 well-typed? This de-

pends on whether we can find a x such that x ~ {Int 6

Foo}, which in turn depends on the choice of F. Since

[Foo]c = 0, but [Foo]g = Z./, f 3 is ill-typed under C

but well-typed under ~. In general, given a hygienic

typing TE, CE 1- e + E : r, well-typing reduces to

the consistency of CE, which in turn is dependent on

the choice of F. Since our class expressions are posi-

tive (the set-complement operation is absent), ~ is al-

ways the most liberal choice in defining consistency, and

therefore is the best choice for 3 if we wish to reject the

fewest possible programs, assuming that the resulting

type reconstruction problem is tractable.

4 Convergent Classes

In this section, we show that the choice of fixedpoint op-

erators is moot in the semantics of classes in HASKELL.

The proof uses Banach’s unique fixedpoint theorem for

contractile maps in complete metric spaces [14]. The

powerset of GroundType (i. e., GTypeSet) can be in-

terpreted as a complete metric space in a fairly stan-

dard way using a metric based on the rank of a wit-

ness element—in this case the rank is based on an

inductive construction of GroundType. The following

brief sketch of the construction follows [10]. Suppose

S1, S2 ~ GTypeSet. A witness element (for the differ-

ence between S1 and S2 ) is a ground type q such that

q E (SI – S2) U (SZ – SI). The closeness c (SI, S2) of S1

and S2 is the least possible height of a witness element,

and it is m if no such element exists.

Lemma 5 The following are some elementary proper-

ties of the closeness function.

215



1. c(sl, s2)=co2fsl=s2.

2. C(S1,S?,)=C(S2, SI).

L?.C(sl, s2)zmin(C(sl, s3), C(s3js2)).

Given such a closeness function, one can define a met-

ric d (S1, S2) = 2–C [s’’s’) where, by convention, 2-Q =

O. The resulting metric space of the set GTypeSet of

points is complete (every Cauchy sequence converges).

A detailed proof for this fact is given in [10]. By Ba-

nach’s well-known theorem [14, p. 130], fixed points of

contractile functions in such a space are unique, and

obtained as limits of sequences starting at an arbitrary

point and extended by applying the contractile func-

tion iteratively. Note that in our case points are sets of

ground types, and the limit of a (converging) increasing

sequence is obtained simply as the union of all points in

the sequence. A class expression C can be seen as an

abstraction of a class variable ~, i.e., a function in the

space GTypeSet+ GTypeSet, given a fixed environment

p that maps all other free class variables in C. If it is a

conh-active function, then it seems likely that [pa. C]>p

will be independent of 3.

Definition A class expression C is said to be cora-

tractiue in Z if, given any environment p : Cvar -i

GTypeSet which maps all free class variables in C ex-

cept E and any fixedpoint operator F, there is a fixed

real coefficient r, O S r < 1, such that for any two dis-

tinct sets S1, S2 of ground types, it is always the case

that

d([c]~(p+a * Sl), [c]~(p+?i H S2)) < ?’. 4s1, s2)

C is nonexpansive in@ if the same property holds with

O<r <l.

Note that all class expressions are not nonexpan-

sive, For instance, RI .JK,IK,le~ is expansive in a.

T-independence attaches to the notion of convergent

classes:

Definition A class expression C is convergent if in

every subexpression (including C itself) of the form

p~. C’, C’ is contractile in Z.

Clearly, every subexpression of a convergent expres-

sion is also convergent.

Lemma 6 If C is a convergent class expression w~th

no free type variables, then its semantics is invariant

relative to the choice of jixed point, i.e., given any en-

vironment p : Cvar + GTypeSet, [Cjr’p = [C]r’p for

any two jixedpoint operators 71 and 32.

The fixedpoints needed in interpreting convergent

classes are always the unique fixedpoints of Banach’s

theorem. We shall use B to denote the fixedpoint oper-

ator which returns these fixedpoints. Lemma 6 proves

that this operator is meaningful for convergent classes.

The following mostly syntactic sufficient conditions

are useful in characterizing contractile and nonexpan-

sive class expressions. Clearly, a cent ractive expression

is nonexpansive, and a variable is nonexpansive in itself.

Lemma 7

1.

2.

3.

4.

5.

6.

7.

0 and Z./ are contractile tn every ti.

~’ is contractile in Z ifl~l # 5.

K[cl, . . . , Cm] is contractile tn z if each C; is non-

expansive in Z.

Cl A Cz is contractile (nonexpansive) in Z if Cl

and C2 are both contractile (nonexpansive) in Z.

Cl V Cz is contractile (nonexpansive) in @ if Cl

and C2 are both contractile (nonexpansive) tn E.

VP. C is contractile (nonexpansive) in Z if [r//3]C

is contractile (nonexpansive) in Z for every i- G

Ground Type.

Cl $TEc, (where r is a ground type) is contractile

in E if Cl is contractile tn E, Cz is nonexpansive

in @, and for any p and Y, [C1]Yp contains no

element of height less than or equal to the height of

T.

Lemma 7 omits the most interesting case: that of

recursive classes. This is addressed in the following:

Lemma 8 A convergent class expression pzt. C is con-

tractile in E if C is contractile in E,

It is not hard to see that all HASKELL classes are

convergent in our sense.

Definition A class expression C is said to be a

HASKELL class if C = PZ. CIV. .vCnJ each Ci is of the

form VCVI, . . .Va~,. K[71, . . . . I-n,]J-alECe, . . ..Jam,GCem,
Fv(rl) u . .

.
. u FV(rn, ) = {al, . . ,a~t}, and each C~,

is of the form C{ A . . . A C; where each C; is either a

HASKELL class or a class variable.

For instance, suppose there are two HASKELL classes

Eq and Ord defined by the following declarations:

3The statement and proof of Lemma 8 are quite similar to
those of Theorem 9 in [10].

216



instance Eq int

instance Eq a, Ord a => Eq (Tree a)

instance Ord bool

instance Eq a => Ord [a]

The class Eq is encoded as P~.intVV~.V[~]~~~~*C

where C = pg. bool V V@. L[/1] $8G7. In the encoding,

? and G represent the classes Eq and Ord, and q and L

represent the type constructors tree and [ ] (list), re-

spectively. In general, the definition of HASKELL classes

assumes that each class is the solution of a recursive

equation E = C, and is therefore encoded as @. C. Of

course, z does not always occur free in C. The defini-

tion above in fact generalizes HA SKELL classes to allow

nonlinearity and nested constructors in instance types,

but keeps HASKELL’S restriction that contexts consist

of elements of the form C a where a is a variable. As

we state below, this is sufficient to ensure convergence,

which implies that the only problem with nonlinearity

and nested constructors in instance types is semantic

ambiguity, not decidabilit y of type inference.

Theorem 9 if H is a HASKELL class then

1. H is convergent.

2. H is contractile in all class variables.

It is interesting to consider the relationship between

the HAsKELL-like decision procedure for class member-

ship, and the choice of fixed point in the interpretation

of classes. This can be done by considering a decision

procedure Member(r ~ C) which attempts to establish

the membership of r in C’ by using instance declarations

like Horn clauses. It should be obvious that Member

does not always terminate for arbitrary classes. How-

ever, it turns out to be complete for convergent classes,

which, as we saw above, include all classes definable

in HASKELL. Most extensions of HASKELL do not yield

convergent classes and for most categories of nonconver-

gent classes the problem of deciding whether r ~ [C]%

is undecidable. This is one way to explain the undecid-

ability results in [17, 16], since in these studies mem-

bership of a type in a class is intuitively linked with the

success of a Member-like procedure. Detailed defini-

tion and analysis of Member are omitted in this paper

for lack of space, but informally, Member(~ G C) suc-

ceeds if and only if r c [C’]’% (assuming both r and C

are closed). This is the basis for saying that HASKELL’S

type inference algorithm is based on least fixedpoint se-

mant ics for classes. Partly as a result of the duality of

~ and U to L and 0, respectively, it turns out that just

as the success of Member is linked with L, its failure

is linked with ~: if r @ [SC]gO, then Member(~ E C)

terminates with failure. As a consequence, if L and

~ coincide, as in the case of convergent classes, then

Member is a complete decision procedure. This means

(not surprisingly) that HASKELL’S overloading resolu-

tion algorithm correctly implements the unique seman-

tics of its classes.

5 Related Work

Kaes [8] and Wadler and Blott [18] introduced typing

systems for combinations of ad hoc and parametric poly-

morphism. The latter introduced type classes and a new

form of types called “predicated types” to account for

overloaded expressions. The type system of HA SKELL

incorporates these ideas in constrained form. Volpano

and Smith [17] have shown that type inference with

predicated types is undecidable. Nipkow and Snelting

show that (a slightly constrained version of) HASKELL

is decidable using order-sorted unification [13]. Nipkow

and Prehofer [12] extend this to the full HA SKELL sys-

tem using notions of classes and constraints similar in

spirit to ours but tailored to HA SKELL’S restrictions. It

would be relatively easy to extend their system with a

notion of translation using a restricted version of the

system presented here. Chen, Hudak and Odersky have

described an extension of HASKELL classes [3] to allow

classes of type constructors (independently using many

notions similar to those of Nipkow and Prehofer). They

call these classes “parametric”, but their “parameters”

are not arguments and they do not allow classes with

multiple parameters in the normal sense. Jones [6] de-

scribes an interesting general approach to “qualified”

types which is inspired by the potential similarities be-

tween type systems with predicated types, and those

with subtypes, among others. Our typing rules resem-

ble the general form described by Jones—in fact it is

possible to see our approach as a special case where

type expressions are used as evidence.

6 Conclusions and Further Work

Type classes are a relatively new feature in the type

systems of functional languages. Most descriptions of

semantics, algorithms and extensions of type classes so

far (e.g., [12, 13, 17]) have been based on what one might

call the ‘%t andard interpretation” in [18]. In this paper,

we showed that there is a range of possible interpreta-

tions independent of any particular algorithm for decid-

ing the instance relation. We obtained a natural gen-

eralization of HASKELL’S type classes which we called

convergent classes. We then showed that

● HASKELL’S notion of well-typing is the only possible

one for convergent classes.

217



● Haskell’s algorithm for deciding the instance rela-

tion is complete for all convergent classes.

There are natural examples of extensions which are

not convergent, and which may therefore need a dif-

ferent interpretation ofwell-typing to permit decidable

type reconstruction. One obvious direction for future

work is to obtain decidability results for type inference

based on greatest fixedpoint semantics. If both the in-

stance type and context types in instance declarations

are constrained to be linear, type inference based on

greatest fixedpoints can be reduced to the problem of

finding a representation for the greatest solution for a

set constraint resolution problem which appears to be

amenable to solution using recent results of Aiken and

Wimmers [1]. However, the details of this approach re-

main to be worked out.

It would also be attractive to obtain a fixedpoint-

independent coherence result for hygienic typing judgm-

ents. The approach used in the related general coher-

ence result of Jones for qualified types [7] is a promising

starting point.

Acknowledgements

In developing the ideaa of this paper, I benefited from E-

mail discussions with Cordelia Hall, Kevin Hammond,

Mark Lillibridge, Mark Jones, Simon Peyton Jones and

Philip Wadler.

References

[1]

[2]

[3]

[4]

[5]

Alexander Aiken and Edward L. Wimmers. Solv-

ing systems of set constraints. In Proceedings of

Seventh LICS Symposium. IEEE Computer Soci-

ety Press, 1992.

Stephen Blott. Type Classes. PhD thesis, Univer-

sity of Glasgow, 1991.

Kung Chen, Paul Hudak, and Martin Odersky.

Parametric type classes. In Proceedings of 1992

ACM Conf. on LISP and Functional Programming.

ACM Press, 1992.

P. Hudak, S. Peyton Jones, and P. Wadler (ed-

itors). Report on the Programming Lan-

guage Haskell, A Non-strict Purely Functional

Language (Version 1.1). Technical Report

YALEU/DCS/RR777, Yale University, Depart-

ment of Computer Science, August 1991.

Mark Jones. Efficient implementation of type class

overloading. Manuscript, March 1992.

[6]

[7]

[8]

. [9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Mark Jones. A theory of qualified types. In

B. Krieg-Bruckner, editor, Proceedings of F’iflh

European Symposium on Programming. Springer-

Verlag, 1992. LNCS 582.

Mark P. Jones. Qualijied types: Theory and prac-

tice. D. Phil. Thesis, Programming Research Group,

Oxford University Computing Laboratory, July

1992.

Stefan Kaes. Parametric overloading in polymor-

phic programming languages. In Harald Ganzinger,

editor, Proceedings of ESOP ’88. Springer-Verlag,

1988. LNCS 300.

A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. Computa-

tional consequences and prtial solutions of a gener-

alized unification problem. In Proceedings of Fourth

LICS Symposium, pages 98–105. IEEE Computer

Society Press, June 1989.

David MacQueen, Gordon Plotkin, and Ravi Sethi.

An ideal model for recursive polymorphic types.

Information and Control, 71:95-130, 1986.

John C. Mitchell and Robert Harper. Thy essence

of ML. In Proceedings of Fifteenth POPL Sympo-

sium, pages 28–46. ACM Press, 1988.

Tobias Nipkow and Christian Prehofer. Type

checking type classes. In Proceedings of Twentieth

POPL Symposium. ACM Press, January 1993.

Tobias Nipkow and Gregor Snelting. Type classes

and overloading resolution via order-sorted unifica-

tion. In Proceedings of FPCA ’91, pages 1-14. ACM

Press, 1991.

W.A. Sutherland. Introduction to Metric and Topo-

logical Spaces. Oxford University Press, 1975.

Alfred Tarski. A lattice-theoretical fixpoint theo-

rem and its applications. Pacific Journal of Math-

ematics, 5:285–309, 1955.

Satish R. Thatt6. A simple notion of multipara-

meter classes with an undecidable type reconstruc-

tion problem. Unpublished note (available upon

request), 1993.

Dennis M. Volpano and Geoffrey S. Smith. On the

complexity of ML typability with overloading. In

Proceedings of FPCA ’91. ACM Press, 1991.

Philip Wadler and Stephen Blott. How to make

ad-hoc polymorphism less ad hoc. In Proceedings

of Sixteenth POPL Symposium, pages 60–76. ACM

Press, 1989.

218



A Typing Rules

(VAR)

(+-INTRO)

(-+-ELIM)

(V-INTRO)

(V-ELIM)

(LET)

($-INTRO)

(.$-ELIll)

z G Dom(TE)

TE, CE t X ~ X : TE(x)

TE, CE1-e~E:Va. u

TE, CE t- e a E(T) : [r/a]u

TE, CE 1- elocal +- Elocal :0

TE ~ X : U, CE k ebodv * EbO@ : T

TE, CE k let x = elocal in eb.dy + let x : u = E[.cal in Ebody : T

TE, CE 1- e ~ E : U&eG

TE, CEU{r~C}l-e~E:u

[

O= Z(~O) :aowith z(rl)=el, . . ..z(~~)=e~

where rl =<l~o, . . ..n =&TO

C = b’~v(~l). ~l~c~, V . . . V VFV(qc). rk$CEk

T= AFV(rO). typecase To of ~1 : El, . . ..m : Ek

a = VFV(ro). m&Occ 1

TE+x:u, CEUCElkel~ El: fluo

TE+x:u,CEUCEkkek~Ek: &C7iJ

(OVER)
TE-i-z: u, CEl-e~E:r’

TE, CE1-Oin e+letx:u= fix x:cr. Tin E:#

Table 6: Typing Rules: OML + OXML

219


