
Complete Proof Systems for Algebraic Simply-Typed Terms

Stavros S. Cosmadakis

New York University

Abstract

We show that reasoning by case analysis (on

whether subprograms diverge or converge) is com-

plete for proving PCF observational congruences

of algebraic terms. The latter are applicative com-

binations of first-order variables and a constant O

denoting a diverging program of base type. A re-

stricted version of the logic is complete for prov-

ing equality of algebraic terms in the full contin-

uous type hierarchy (equivalently, observational

congruence in PCF with parallel conditional). We

show that provab~lty in the latter logic is in co-

NP. We also give complete equational proof sys-

tems for a subclass of algebraic terms; provability

in these systems is in linear time,

1 Introduction

The correctness of program transformations

(used, for instance, by optimizing compilers) is

generally established by a global analysis of the

program. In some cases a local analysis, taking

into account only the program fragment trans-

formed, is sufficient. It seems important to un-

derstand these cases; one motivating considera-

tion might be the optimization of separately com-

piled subroutines or modules. We are interested

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-3/94/0006..$3.50

in developing a theory of correctness of such local

transformations. We focus on formal techniques

which might be used (a) to establish the correct-

ness of local program transformations in a sys-

tematic way or (b) to automatically effect such

transformations.

We take as a paradigm the language PCF

[9, 7, 11, 3], a simple statically-typed functional

language with higher-order types. It consists of a.

set of terms extending the simply-typed ~-calculus

by arithmetic and recursion constructs. Local in-

terchangeability of code fragments is formalized in

PCF by a notion of congruence wrto obsewabie be-

havior the latter is taken to be the printable out-

put of the program, or the fact that the program

diverges. Two terms P, Q are obse?wationally con-

g?Went (Written P =pCF Q) iff, fOr any program

context Co, C’[P], C’[Q] have the same observable

behavior. Sound principles for reasoning about

observational congruence in PCF can be devel-

oped by syntactic analysis of program evaluation;

or by finding principles that are sound wrto equal-

ity in computationally adequate semantics, where

equality of meaning (of two terms) implies obser-

vational congruence. For example, the (~) and (?7)

axioms from the simply-typed A-calculus are both

sound for =PcF. This can be established syntac-

tically via the Contezt .Lemma [7]; or semantically

by the computational adequacy of the ~ull contin-

uous type hierarchy, C [9].

PCF can express all partial recursive functions,

and this makes the relation =PCF non-r. e.. Conse-

quently, most reasonable formal systems for prov-

ing PCF observational congruences will only suc-

ceed in deriving a subset of the valid ones. A

proof system is complete for a class of terms if

220

it can prove every valid observational congruence

between terms in the class. For the class of pure

~-terms (containing no constants), Statman’s 1-

SectiOn Theorenz [12, 13]gives acriterionforcom-

pleteness of =pn (equational reasoning with the

(~) and (?) axioms) wrto a given model of the
simply-typed ~-calculus. Congruence classes of

=PCF provide such a model, and the criterion

shows that =p~ is complete for =PCF in the case

of pure terms (Meyer). Complete proof systems

can also be obtained from juiiy abst~act semantics,

where equality of meaning coincides with observa-

tional congruence. For example, the full continu-

ous type hierarchy, C, is fully abstract for PPCF,

the version of PCF which includes a parallel con-

ditional [9, 11]; equality in C, =C, is the same as

observational congruence in PPCF, =PPCF. Since

=pq is complete for proving equality of pure terms

in C [8, 10, 12] it follows that it is also complete

for =ppc~ in the case of pure terms.

In this paper we consider the problem of devel-

oping complete proof systems for terms with con-

stants. In particular, we include a constant W (of

base type) denoting a diverging PCF program (all

such programs are observation ally congruent). It

can be seen that =eq is no longer complete for =C

nor for =pGF, even if the terms considered have

a very simple structure; namely, they are applica-

tive combinations of first-order variables and 0.

We call such terms algebraic.

To illustrate, consider the equation

z “’+’Z’(20Q) = Zzfl. (1)

Clearly, 1 is not provable in =~~. It can be shown

to be valid in C by case analysis: either zflfl = 0,

or zOO # G?, in which case the flatness of the

base type implies that z is constant. Such analysis

is familiar in systems for reasoning about PCF

programs [6].

We give a formalization of case analysis in a

sequent-style logic, and show that it is complete

for =C, fo~ the class of algebraic terms. The main

idea of the formalization and of the complete-

ness proof (a Henkin-type argument) was origi-

nally suggested by J. Riecke. We show further

that the logic has a subterm property: proofi can

be constrained to mention only subterms (of the

terms) of the equation to be proved. This gives a

straightforward decision procedure for provability,

with an exponential time upper bound. By fur-

ther analyzing proofs in the logic, we show that

provability is in CO-NP.

By the computational adequacy of C for PCF,

any equation valid in C is a valid PCF observa-

tional congruence. The converse fails (C is not

fully abstract for PCF [9, 1 l]), even for algebraic

terms: the equation

z ‘-’’+ ’Q(ZZ’O) = Zfio (2)

is not valid in Cl, but is a valid PCF observational

congruence. The latter can be shown by case anal-

ysis, using a property of PCF-definable functions

pointed out by Milner [7]: z (considered as a func-

tion of two arguments) is either constant or strict

in some argument. This stTict- OT-constant princi-

ple is not valid in C, but is valid in the models de-

scribed in [2, 4]. We point out the proof-theoretic

relevance of the strict-or-constant principle by de-

scribing how to include it in the sequent-style logic

given for =C. We show that the extended logic

is complete for =PCF, for the class of algebraic

terms.

Iu attempting to go beyond algebraic terms, it is

not straightforward how techniques such as term

models and logical relations [5, 10, 14] can be ap-

plied to prove completeness for the class of all A-

terms With ~ (Wrh =C, =pcF). we propose h-
stead to develop combinatorial arguments, along

the lines of [8, 12]. Algebraic terms become in~por-

tant in this context (apart from being a natural

class to consider): to prove the l-Section Theo-

rem, Statman shows that, given a model M of
the simply-typed A-calculus, if the implication

P=m Q+ P=pv Q

holds for closed terms P, Q of type (L + L + ~) +

t --+ L, then it holds for all closed terms P, Q (and

thus =p,l is complete for proving equalities in M).

The ~TpllOrlllal forms of type (L + L - L) - L + L

are AZ’+’+’ .Ax’.t, where t is any term generated

by the grammar

t ::= x I(Ztt).

1z cm be the parallel-or function

221

Therefore, =pT iS complete Wrto =M if M dis-

tinguishes these algebraic terms [12]. Still, com-

plete proof systems (for algebraic terms with !2)

designed around case analysis do not seem to pro-

vide a lead towards extending Statman’s result to

A-terms with Cl: it seems essential to the proof of

the result that =Pv is an equational proof system.

We give complete equational proof systems (for

=PCF and =c) for simple algebraic terms; these

are generated by Z’*’+’, z’, W (compare with the

grammar above) in which z occurs at most once

(compare with 2, the algebraic counterexample to

full abstraction of C for PC F). Provability in either

system is decidable in linear time,

2 Preliminaries

2.1 Simply-t yped lambda calculus

Types range over 1 (the base type) and a + ~

(the type of functions from a to r-,) The set of

simply-typed terms over a set of constants Const

is given by the following inductive definition:

● xc is a variable and a term of type o;

● Cc ~ Const is a term of type u;

● (F’ Q) is a term of type r if f’ has type u --+ ~

and Q has type o;

● (AzU. F’) is a term of type a + r if P has type

T.

2.2 PCF

The syntax of PCF follows [9]; PPCF has parallel

conditional as an additional constant. The full set

of PCF constants, with their types, are

. o)l,2, . ..oftype6.

● SUCC, pred of type h -+ L;

● cond of type t ~ L + L (sequential condi-

tional);

● pcond of type ~ + cr + v + n for any type u

(parallel conditional);

The syntax of PCF is the set of simply-typed

terms over these constants. The structured

rewrite rules of Figure 1 completely characterize

an interpreter for this language.

Definition 1 ~ ~pCF Q ifl, for any program

contezt Co, ijC’[P] evaiuates to n then C[Q] eva./-

uates to n.

1’ =PCF Q iff P ~pcF Q and Q ~PCF -P.

3 Completeness and decidabil-

ity for algebraic terms

Algebraic terms contain the constant fl’ and

variables of first-order type, t -+ . . c + 6. They

are generated by the grammar

An atomic joTmula is either an approximation

P ~ Q or a convergence P ~, where P, Q are

algebraic terms. A sequent has the form p F y,

where p is a set of atomic formulas and -y is an

atomic formula. The intended meaning of the se-

quent p t- ~ is that the conjunction of the formulas

in p implies the formula -y. As usual, an empty

conduction denotes “true)).

3.1 A complete decidable logic for =C

The logic ,CC has axioms and rules for approxima-

tions (Figure 2) and rules for convergence (Fig-

ure 3). Divergence of P is expressed by the atomic

formula P ~ G!. Case analysis on whether a term

diverges or converges is formalized by the rule

(div – or – conv).

Theorenl 2 (Riecke) A sequent is valid in the

model C ifl it is provable in the logic LC.

Definition 3 A sequent w is subterm-provable in

& iff there is a pToof of w which uses only sub-

terms oj the teTms occurring in w.

Theorenl 4 A sequent is valid in C ifi it i~

subteTm-pTovab/e in .&.

222

(Jx.M) N + M[z := N] cond O M N +M

succ n + n+l cond(n+l)MN ~ N

pred O +0 pcond O M N +M

pred(n + 1) ~ n pcond(n+l)MN -+ N

(Y M) + M(YM) pcond M n n + n

M+M1 M~M1

(c M) + (c M’) (MN) + (M’ N)

M -+ M) M+M’

cond MN P+cond M’NP pcond M N P h pcond M’ N P

N+N’ p+pl

pcond M N P + pcond M N’ P pcond M N P + pcond M N P’

Figure 1: Structured rewrite rules for PCF; c denotes either succ or pred.

(rejl) $91-Pg P

(tong)
~kPi~Qi

pbfPl ””. pk~fQ1...Q~

(omega) pt-f2~P

Figure 2: Axioms and rules for approximations.

Figure 3: Rules for convergence and divergence,

223

Theorem 4 implies that provab~lty in Cc,

subterm-provabilit y in Lc, and validity in C are

equivalent.

Observe that the number of sequents using only

subterms of a sequent w is exponential in the size

of w. It can be shown from this that subterm-

provability in Lc is in exponential time.

Definition 5 A complete set of assumptions ~o~

a sequent w is a set A oj basic formulas such that,

joT every SUbfeT?Tt P of w, either P ~ OT P L ~

OCCUTSin A.

Theorem 6 A sequent w = (p E T) is subteTm-

pTovab/e in & ifi, for every complete set A of as-

sumptions foT w, the sequent A,p 1- ~ is JubteTm-

provabie in ~c without the rule (div – OT – conv).

Lemma ‘7 $ubteWt-pTovabi~ ity in& without the

rule (div – or – conv) is in polynomial time.

Theorem 8 $ubteTm-prova.bility in CC is in co-

NP.

Proof: By Theorem 6, Lemma 7. ❑

3.2 A complete logic for =Pc~

The .strict-oT-constant principle states that, for ev-

ery PCF term ~ of type ml - . . . - ~Ic -+ l,, either

fxl... Xk =~c~ f~l --- gk

or

fX~...flu%~=~~Fti~Fti’

for some i; i.e., f is either constant or strict in

some argument. In the context of the logic Lc, the

strict-or-constant principle can be formalized in a

simple-minded way as follows: for each variable

f ‘k+l, a proof can use as axioms

either all sequents of the form

(j\f~l...Pk~fQQ~..Q~

or, for some i, all sequents of the form

flkfp~..p,-~~..-l’k~fl

Theorem 9 A sequent is valid foT ~PcF ifl it is

prouflble in the logic CC with the strict-or-constant

pTinciple,

4 Equational systems for sim-

ple terms

Simple terms contain the constant 0’ and vari-

ables Z6-L+L, XL. They are generated by the fol-

lowing grammar:

so ::= t-l [(ZSIJS())

SI ::= ~] (2s0s1) I (2s1s0).

Note that SO generates terms with no occurrences

of z, and SI generates terms with exactly one oc-

currence of z.

Lemma 10 The equations

,zt(zon) = Zto (3)

Z(zQQ)t = Z$-lt (4)

aTe sound fOT =c, =pcF.

Proofi Straightforward case analysis on diver-

gence of (zOO). By the flatness of the base type

(and monotonicity of z), if (zflfl) # 0 then z is

constant. ❑

Consider the subset of simple

by the following grammar:

cl) ::= Q [(zC?!-l)

terms generated

(71 ::= ~ I (Zfw) 1 (zCl Q).

Lemma 11 Using equations 8, ~, every term gen-

erated by SO (Tesp. S1) can be proved equal to a

term geneTated by CO (resp, CI).

Proofi Straightforward induction on structure. 11

Lemma 11 motivates the following shorthand

notation for terms:

-L(P) *f (ZC?P)

Lo(P) = z

L’+’(P) = L(-Li(l’))

m(P) ‘=f (zPO)

RO(P) = z

~“+l(p) = R@(p))

224

4.1 A complete system for =C 4.2 A complete system for =PCF

Lemma 15 The equationsLemma 12 The equations

ILL(t) = (ml)

LR(t) = (200)

(5)

(6)
mu(t) = w(t)

LRL(t) = RL2(t)

RRL2(t) = RL2(t)

LRL2(t) = RL2(t)

aTe SOUndfOT =pcF.

Proofi By the strict-or-constant principle. 9

lWi(t) = RL2(t), i >2

Lemma 16 (’i) Using equations 5, 6, every temn

generated by Cl can be proved equal to some Li(x)

or some Ri(z).

(ii) No non-trivial equation between two of the

terms

Q(zO~), Li(z), 12i(z)

LLR(t) = LR(t)

RLR2(t) = LR2(t)

LLR2(t) = LR2(t)

RLR2(t) = LR2(t)

is valid fOT =PGF.

LRi(t) = LR2(t), i z 2

are sound for =C.

Theorem 17 Equations 3, ~, 5, 6 are sound and

complete for PCF obseTvationa/ congruence of

simple terms.

Lemma 13 (i) Using the equations in Lemma 12,

every term generated by Cl can be proved equal to

one of the following terms:

Proof: By Lemmas 10, 11, 15, 16. ■

Theorem 18 Equality in C and PCF observa-

tional congruence are decidable in linear time for

simple terms.

L*(z), RL(z), RL2(z),

Ri(z), LR(z), LR2(z).

Proofi By Theorems 14, 17. ■

(ii) No non-trivial equation between two of the

terms

0, (ZMI),

Acknowledgments

We thank Albert Meyer, Jon Riecke and Ramesh

Subrahmanyarn for numerous discussions.L’(z), W(z), RL2(z),

R’(z), LR(z), LR2(z)
References

is valid for =C.
[I] Henk P. Barendregt. The Lambda Calcu-

lus: Its Syntax and Semantics, volume 103 of

Studies in Logic. North-Holland, 1981. Re-

vised Edition, 1984.

Theorem 14 Equations 3, 4, and the equations

in Lemma 12 are sound and complete for equality

of simple terms in C.

[2] G. Berry, and P.-L. Curien. Sequential algo-

rithms on concrete data structures. Tl~eoret-

ical Computer Science 20, 1982.
PI-oofi By Lemmas 10, 11, 12, 13. ■

225

[3] G. Berry, P.-L. Curien, and J.-J. L6vY. Full [14] Ramesh Subrahmanyam, Dan Dougherty.

abstraction for sequential languages: the Completeness theorem for the set-theoretic

state of the art. In M. Nivat and J. Reynolds, coproduct model. Manuscript, 1993.

editors, A/gebTaic Methods in Semantics.

Cambridge Univ. Press, 1985.

[4] R. Cartwright, and M. I’elleisen. Observable

sequentiality and full abstraction. Principles

of Programming Langnages, 1992.

[5] Harvey Friedman. Equality between func-

tional. In Rohit Pa.rikh, editor, Logic Col-

loquium ‘7’3, volume 453 of Lect. Notes in

Math., pages 22-37. Springer-Verlag, 1975.

[6] Michael J.C. Gordon, Robin Milner, and

C.P. Wadsworth. Edinburgh LCF: A Me-

chanical Logic of Computation, volume 78

of Lect. Notes in Computer Sci. Springer-

Verlag, 1979.

[7] Robin Milner. Fully abstract models of the

typed lambda calculus. Theoretical ComputeT

Sci., 4:1-22, 1977.

[8] Gordon D. Plotkin. A-definability and log-

ical relations. Technical Report SAI-RM-4,

IJniversity of Edinburgh, School of Artificial

Intelligence, 1973.

[9] Gordon D. Plotkin. LCF considered as a pro-

gramming language. !Z’heoTetica/ 6’omputeT

Sci., 5:223-257, 1977.

[10] Gordon D. Plotkin. Notes on completeness

of the full continuous type hierarchy. Unpub-

lished manuscript, MIT, November 1982,

[11] V.YU. Sazonov. Expressibility of functions in

D. Scott’s LCF language. A/gebTa i Logika,

15:308-330, 1976. (Russian).

[12] Richard Statman. Completeness, invariance

and lambda-definability. J. Symbo/ic Logic,

47:17–26, 1982.

[13] Richard Statman. Equality between func-

tional revisited. In L.A. Hamington, et

al., editor, Ra?wey ~riedman’s ReseaTch on

the Foundations of Mathematics, volume 117

of Studies in Logic, pages 331--338. North-

Holland, 1985.

226

