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Abstract

We show that reasoning by case analysis (on

whether subprograms diverge or converge) is com-

plete for proving PCF observational congruences

of algebraic terms. The latter are applicative com-

binations of first-order variables and a constant O

denoting a diverging program of base type. A re-

stricted version of the logic is complete for prov-

ing equality of algebraic terms in the full contin-

uous type hierarchy (equivalently, observational

congruence in PCF with parallel conditional). We

show that provab~lty in the latter logic is in co-

NP. We also give complete equational proof sys-

tems for a subclass of algebraic terms; provability

in these systems is in linear time,

1 Introduction

The correctness of program transformations

(used, for instance, by optimizing compilers) is

generally established by a global analysis of the

program. In some cases a local analysis, taking

into account only the program fragment trans-

formed, is sufficient. It seems important to un-

derstand these cases; one motivating considera-

tion might be the optimization of separately com-

piled subroutines or modules. We are interested
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in developing a theory of correctness of such local

transformations. We focus on formal techniques

which might be used (a) to establish the correct-

ness of local program transformations in a sys-

tematic way or (b) to automatically effect such

transformations.

We take as a paradigm the language PCF

[9, 7, 11, 3], a simple statically-typed functional

language with higher-order types. It consists of a.

set of terms extending the simply-typed ~-calculus

by arithmetic and recursion constructs. Local in-

terchangeability of code fragments is formalized in

PCF by a notion of congruence wrto obsewabie be-

havior the latter is taken to be the printable out-

put of the program, or the fact that the program

diverges. Two terms P, Q are obse?wationally con-

g?Went (Written P =pCF Q) iff, fOr any program

context Co, C’[P], C’[Q] have the same observable

behavior. Sound principles for reasoning about

observational congruence in PCF can be devel-

oped by syntactic analysis of program evaluation;

or by finding principles that are sound wrto equal-

ity in computationally adequate semantics, where

equality of meaning (of two terms) implies obser-

vational congruence. For example, the (~) and (?7)

axioms from the simply-typed A-calculus are both

sound for =PcF. This can be established syntac-

tically via the Contezt .Lemma [7]; or semantically

by the computational adequacy of the ~ull contin-

uous type hierarchy, C [9].

PCF can express all partial recursive functions,

and this makes the relation =PCF non-r. e.. Conse-

quently, most reasonable formal systems for prov-

ing PCF observational congruences will only suc-

ceed in deriving a subset of the valid ones. A

proof system is complete for a class of terms if
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it can prove every valid observational congruence

between terms in the class. For the class of pure

~-terms (containing no constants), Statman’s 1-

SectiOn Theorenz [12, 13]gives acriterionforcom-

pleteness of =pn (equational reasoning with the

(~) and (?) axioms) wrto a given model of the
simply-typed ~-calculus. Congruence classes of

=PCF provide such a model, and the criterion

shows that =p~ is complete for =PCF in the case

of pure terms (Meyer). Complete proof systems

can also be obtained from juiiy abst~act semantics,

where equality of meaning coincides with observa-

tional congruence. For example, the full continu-

ous type hierarchy, C, is fully abstract for PPCF,

the version of PCF which includes a parallel con-

ditional [9, 11]; equality in C, =C, is the same as

observational congruence in PPCF, =PPCF. Since

=pq is complete for proving equality of pure terms

in C [8, 10, 12] it follows that it is also complete

for =ppc~ in the case of pure terms.

In this paper we consider the problem of devel-

oping complete proof systems for terms with con-

stants. In particular, we include a constant W (of

base type) denoting a diverging PCF program (all

such programs are observation ally congruent). It

can be seen that =eq is no longer complete for =C

nor for =pGF, even if the terms considered have

a very simple structure; namely, they are applica-

tive combinations of first-order variables and 0.

We call such terms algebraic.

To illustrate, consider the equation

z “’+’Z’(20Q) = Zzfl. (1)

Clearly, 1 is not provable in =~~. It can be shown

to be valid in C by case analysis: either zflfl = 0,

or zOO # G?, in which case the flatness of the

base type implies that z is constant. Such analysis

is familiar in systems for reasoning about PCF

programs [6].

We give a formalization of case analysis in a

sequent-style logic, and show that it is complete

for =C, fo~ the class of algebraic terms. The main

idea of the formalization and of the complete-

ness proof (a Henkin-type argument) was origi-

nally suggested by J. Riecke. We show further

that the logic has a subterm property: proofi can

be constrained to mention only subterms (of the

terms) of the equation to be proved. This gives a

straightforward decision procedure for provability,

with an exponential time upper bound. By fur-

ther analyzing proofs in the logic, we show that

provability is in CO-NP.

By the computational adequacy of C for PCF,

any equation valid in C is a valid PCF observa-

tional congruence. The converse fails (C is not

fully abstract for PCF [9, 1 l]), even for algebraic

terms: the equation

z ‘-’’+ ’Q(ZZ’O) = Zfio (2)

is not valid in Cl, but is a valid PCF observational

congruence. The latter can be shown by case anal-

ysis, using a property of PCF-definable functions

pointed out by Milner [7]: z (considered as a func-

tion of two arguments) is either constant or strict

in some argument. This stTict- OT-constant princi-

ple is not valid in C, but is valid in the models de-

scribed in [2, 4]. We point out the proof-theoretic

relevance of the strict-or-constant principle by de-

scribing how to include it in the sequent-style logic

given for =C. We show that the extended logic

is complete for =PCF, for the class of algebraic

terms.

Iu attempting to go beyond algebraic terms, it is

not straightforward how techniques such as term

models and logical relations [5, 10, 14] can be ap-

plied to prove completeness for the class of all A-

terms With ~ (Wrh =C, =pcF). we propose h-
stead to develop combinatorial arguments, along

the lines of [8, 12]. Algebraic terms become in~por-

tant in this context (apart from being a natural

class to consider): to prove the l-Section Theo-

rem, Statman shows that, given a model M of
the simply-typed A-calculus, if the implication

P=m Q+ P=pv Q

holds for closed terms P, Q of type (L + L + ~) +

t --+ L, then it holds for all closed terms P, Q (and

thus =p,l is complete for proving equalities in M).

The ~TpllOrlllal forms of type (L + L - L) - L + L

are AZ’+’+’ .Ax’.t, where t is any term generated

by the grammar

t ::= x I(Ztt).

1z cm be the parallel-or function
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Therefore, =pT iS complete Wrto =M if M dis-

tinguishes these algebraic terms [12]. Still, com-

plete proof systems (for algebraic terms with !2)

designed around case analysis do not seem to pro-

vide a lead towards extending Statman’s result to

A-terms with Cl: it seems essential to the proof of

the result that =Pv is an equational proof system.

We give complete equational proof systems (for

=PCF and =c) for simple algebraic terms; these

are generated by Z’*’+’, z’, W (compare with the

grammar above) in which z occurs at most once

(compare with 2, the algebraic counterexample to

full abstraction of C for PC F). Provability in either

system is decidable in linear time,

2 Preliminaries

2.1 Simply-t yped lambda calculus

Types range over 1 (the base type) and a + ~

(the type of functions from a to r-,) The set of

simply-typed terms over a set of constants Const

is given by the following inductive definition:

● xc is a variable and a term of type o;

● Cc ~ Const is a term of type u;

● (F’ Q) is a term of type r if f’ has type u --+ ~

and Q has type o;

● (AzU. F’) is a term of type a + r if P has type

T.

2.2 PCF

The syntax of PCF follows [9]; PPCF has parallel

conditional as an additional constant. The full set

of PCF constants, with their types, are

. o)l,2, . ..oftype6.

● SUCC, pred of type h -+ L;

● cond of type t ~ L + L (sequential condi-

tional);

● pcond of type ~ + cr + v + n for any type u

(parallel conditional);

The syntax of PCF is the set of simply-typed

terms over these constants. The structured

rewrite rules of Figure 1 completely characterize

an interpreter for this language.

Definition 1 ~ ~pCF Q ifl, for any program

contezt Co, ijC’[P] evaiuates to n then C[Q] eva./-

uates to n.

1’ =PCF Q iff P ~pcF Q and Q ~PCF -P.

3 Completeness and decidabil-

ity for algebraic terms

Algebraic terms contain the constant fl’ and

variables of first-order type, t -+ . . c + 6. They

are generated by the grammar

An atomic joTmula is either an approximation

P ~ Q or a convergence P ~, where P, Q are

algebraic terms. A sequent has the form p F y,

where p is a set of atomic formulas and -y is an

atomic formula. The intended meaning of the se-

quent p t- ~ is that the conjunction of the formulas

in p implies the formula -y. As usual, an empty

conduction denotes “true)).

3.1 A complete decidable logic for =C

The logic ,CC has axioms and rules for approxima-

tions (Figure 2) and rules for convergence (Fig-

ure 3). Divergence of P is expressed by the atomic

formula P ~ G!. Case analysis on whether a term

diverges or converges is formalized by the rule

(div – or – conv).

Theorenl 2 (Riecke) A sequent is valid in the

model C ifl it is provable in the logic LC.

Definition 3 A sequent w is subterm-provable in

& iff there is a pToof of w which uses only sub-

terms oj the teTms occurring in w.

Theorenl 4 A sequent is valid in C ifi it i~

subteTm-pTovab/e in .&.
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(Jx.M) N + M[z := N] cond O M N +M

succ n + n+l cond(n+l)MN ~ N

pred O +0 pcond O M N +M

pred(n + 1) ~ n pcond(n+l)MN -+ N

(Y M) + M(YM) pcond M n n + n

M+M1 M~M1

(c M) + (c M’) (MN) + (M’ N)

M -+ M) M+M’

cond MN P+cond M’NP pcond M N P h pcond M’ N P

N+N’ p+pl

pcond M N P + pcond M N’ P pcond M N P + pcond M N P’

Figure 1: Structured rewrite rules for PCF; c denotes either succ or pred.

(rejl) $91-Pg P

(tong)
~kPi~Qi

pbfPl ””. pk~fQ1...Q~

(omega) pt-f2~P

Figure 2: Axioms and rules for approximations.

Figure 3: Rules for convergence and divergence,
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Theorem 4 implies that provab~lty in Cc,

subterm-provabilit y in Lc, and validity in C are

equivalent.

Observe that the number of sequents using only

subterms of a sequent w is exponential in the size

of w. It can be shown from this that subterm-

provability in Lc is in exponential time.

Definition 5 A complete set of assumptions ~o~

a sequent w is a set A oj basic formulas such that,

joT every SUbfeT?Tt P of w, either P ~ OT P L ~

OCCUTSin A.

Theorem 6 A sequent w = (p E T) is subteTm-

pTovab/e in & ifi, for every complete set A of as-

sumptions foT w, the sequent A,p 1- ~ is JubteTm-

provabie in ~c without the rule (div – OT – conv).

Lemma ‘7 $ubteWt-pTovabi~ ity in& without the

rule (div – or – conv) is in polynomial time.

Theorem 8 $ubteTm-prova.bility in CC is in co-

NP.

Proof: By Theorem 6, Lemma 7. ❑

3.2 A complete logic for =Pc~

The .strict-oT-constant principle states that, for ev-

ery PCF term ~ of type ml - . . . - ~Ic -+ l,, either

fxl... Xk =~c~ f~l --- gk

or

fX~...flu%~=~~Fti~Fti’

for some i; i.e., f is either constant or strict in

some argument. In the context of the logic Lc, the

strict-or-constant principle can be formalized in a

simple-minded way as follows: for each variable

f ‘k+l, a proof can use as axioms

either all sequents of the form

(j\f~l...Pk~fQQ~..Q~

or, for some i, all sequents of the form

flkfp~..p,-~~..-l’k~fl

Theorem 9 A sequent is valid foT ~PcF ifl it is

prouflble in the logic CC with the strict-or-constant

pTinciple,

4 Equational systems for sim-

ple terms

Simple terms contain the constant 0’ and vari-

ables Z6-L+L, XL. They are generated by the fol-

lowing grammar:

so ::= t-l [ (ZSIJS())

SI ::= ~ ] (2s0s1) I (2s1s0).

Note that SO generates terms with no occurrences

of z, and SI generates terms with exactly one oc-

currence of z.

Lemma 10 The equations

,zt(zon) = Zto (3)

Z(zQQ)t = Z$-lt (4)

aTe sound fOT =c, =pcF.

Proofi Straightforward case analysis on diver-

gence of (zOO). By the flatness of the base type

(and monotonicity of z), if (zflfl) # 0 then z is

constant. ❑

Consider the subset of simple

by the following grammar:

cl) ::= Q [ (zC?!-l)

terms generated

(71 ::= ~ I (Zfw) 1 (zCl Q).

Lemma 11 Using equations 8, ~, every term gen-

erated by SO (Tesp. S1) can be proved equal to a

term geneTated by CO (resp, CI).

Proofi Straightforward induction on structure. 11

Lemma 11 motivates the following shorthand

notation for terms:

-L(P) *f (ZC?P)

Lo(P) = z

L’+’(P) = L(-Li(l’))

m(P) ‘=f (zPO)

RO(P) = z

~“+l(p) = R@(p))
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4.1 A complete system for =C 4.2 A complete system for =PCF

Lemma 15 The equationsLemma 12 The equations

ILL(t) = (ml)

LR(t) = (200)

(5)

(6)
mu(t) = w(t)

LRL(t) = RL2(t)

RRL2(t) = RL2(t)

LRL2(t) = RL2(t)

aTe SOUndfOT =pcF.

Proofi By the strict-or-constant principle. 9

lWi(t) = RL2(t), i >2

Lemma 16 (’i) Using equations 5, 6, every temn

generated by Cl can be proved equal to some Li(x)

or some Ri(z).

(ii) No non-trivial equation between two of the

terms

Q(zO~), Li(z), 12i(z)

LLR(t) = LR(t)

RLR2(t) = LR2(t)

LLR2(t) = LR2(t)

RLR2(t) = LR2(t)

is valid fOT =PGF.

LRi(t) = LR2(t), i z 2

are sound for =C.

Theorem 17 Equations 3, ~, 5, 6 are sound and

complete for PCF obseTvationa/ congruence of

simple terms.

Lemma 13 (i) Using the equations in Lemma 12,

every term generated by Cl can be proved equal to

one of the following terms:

Proof: By Lemmas 10, 11, 15, 16. ■

Theorem 18 Equality in C and PCF observa-

tional congruence are decidable in linear time for

simple terms.

L*(z), RL(z), RL2(z),

Ri(z), LR(z), LR2(z).

Proofi By Theorems 14, 17. ■

(ii) No non-trivial equation between two of the

terms

0, (ZMI),
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