
Continuation-Based Partial Evaluation

Julia L. Lawall Olivier Danvy

Computer Science Department Computer Science Department

Brandeis University * Aarhus University **

(jll@cs.brandeis.edu) (danvy@daimi.aau. dk)

Abstract

Binding-time improvements aim at making partial evalua-
tion (a.k.a. program speciahzation) yield a better result.

‘I’hey have been achieved so far mostly by hand-transforming
the source program. We observe that as they are better un-

derstood, these hand-transformations are progressively inte-

grated into partial evaluators, thereby alleviating the need
for source-level binding-time improvements.

Control-baaed binding-time improvements, for example,

follow this pattern: they have evolved from ad-hoc source-
level rewrites to a systematic source-level transformation

into continuation-passing style (CPS). Recently, Bondorf
has explicitly integrated the CPS transformation into the
specialize, thus partly alleviating the need for source-level

CPS transformation. This CPS integration is remarkably
effective but very complex and goes beyond a simple CPS
transformation. We show that it can be achieved directly by

using the cent rol operators shift and reset, which provide ac-

cess to the current continuation as a composable procedure.

We automate, reproduce, and extend Bondorf’s results,

and describe how this approach scales up to hand-writing

partial-evaluation compilers. The first author has used this
method to bootstrap thenew release of Consel’s partial eval-
uator Schism. The control operators not only allow the par-

tial evaluator to remain in direct style, but also can speed

up partial evaluation significantly.

1 Introduction

Partial evaluation is a program-transformation technique for

specializing programs [11, 23]. It was developed in the six-

ties and seventies [1, 25], drastically simplified in the eight-

ies for purposes of self-application [24], and is now evolv-
ing both quantitatively and qualitatively. Quantitatively,

partial evaluators handle more and more programming-
language features — types, higher-order procedures, data

“ Waltham, Massachusetts 02254, USA, This work was initiated at

the Oregon Graduate Institute of Science & Technology m summer

1993; continued at Indiana University in fall 1993; and was completed

at Brande]s University. It was partially supported by NSF under

grant CCR-9224375 and by ONR under grant NOOO14-93-1-1O15,

* ●NY Munkegade, 8000 Aarhus C, Denmark,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

structures, and so on. Qualitatively, these features need to

be handled effectively. This is where binding-time improvem-
ents intervene [23, Chap. 12].

1.1 Binding-time improvements

The notion of binding time arises naturally in partial eval-

uation since source programs are evaluated in two stages:
at partial-evaluation time (statically) and at run time (dy-

namically). The parts of the source program that can be

evaluated statically are referred to as “static” and the oth-
ers as “dynamic”.

Obviously, the more static parts there are in a source

program, the better it gets specialized. A binding-time
improvement is a source-level transformation that enables

more parts to be classified aa static. Say that we want to
partially evaluate the expression

z+ (?/-l)

where we know that x is bound statically and y is bound

dynamically. A naive binding-time analysis would classify

both the subtraction and the addition to be dynamic, since
in each case one of the operands is dynamic. Using the

associativity and commutativity laws of arithmetic, we can

rewrite the expression as follows.

?/+ (Z-l)

The same naive binding-time analysis would now classify the

subtraction to be static (since z will be known at partial-

evaluation time and 1 is an immediate constant) and the

addition to be dynamic (since y will not be known until

run time). By rewriting the expression, we have achieved a

binding-time improvement: the same binding-time analysis

classifies more expressions as static, thus enabling the same

specialize to do a better job. Overall, the same partial
evaluator yields a better result.

1.2 Evaluation and partial evaluation

Partial evaluation mimics evaluation — computing values

of static expressions, but residualizing (i. e., reconstructing)

dynamic expressions, to produce the specialized program.

When an expression is residualized, the continuation of the
partial evaluation of its components may differ from the con-

tinuation of their evaluation. This can cause a loss of static

information. Consider the Scheme expression*

1 The square brackets can be read as parentheses,

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-319410006..$3.50

227

(+ I (let ([x D]) 3))

where D is a dynamic expression. The let expression must

be residualized.2 The value of the body, 3, is thus returned

to the reconstructor of the let expression rather than to the

outer addition, as would happen under ordinary evaluation.
Continuations themselves provide a solution to this prob-

lem. Propagating the result of specializing 3 directly to the
continuation of the let expression allows the outer addition
to take place at specialization time.

A series of approaches have been suggested to take ad-

vantage of continuations during the process of partial evalua-
tion. Gonsel and Danvy [10] make the continuations explicit,
by rewriting the source program into continuation-passing

style. This transformation provides an inter-procedural im-
provement when the continuation is static. Writing the

source program in CPS allows the user to control the

binding-time value of the continuation using e.g,, Schism’s

filters [8]. Furthermore continuations that are explicit in the
source program can benefit from polyvariant binding-time
analysis, if available [7].

Hoist and Gomard [21], on the other hand, propose

rewriting each source procedure to relocate the context of

every let expression into its body. Because only the context

syntactically apparent from the body of the source proce-
dure is relocated, this is a purely intra-procedural improve-

ment. The transformation is a reflection of a transformation
on continuations back into the direct-style world. As a con-

sequence, the source program remains in the familiar direct

style.

Alternatively, this binding-time improvement can be in-
tegrated into the specialize. Then the source program is

completely unchanged. Bondorf develops such a specialize
in two steps [3]. First, the specialize (PE~) is rewritten
in Cps by hand (PEC), to make its continuations exphc-

itly accessible. Then, the continuations are manipulated

in non-standard ways (PE~) so that, in effect, static values
reach their consumer statically, i.e., at partiaJ-evaJuation

time. Bondorf’s approach is characterized by the following
diagram:

manual

CPS transformation

[3, Sect. 3] I
Pic * PE;

manual

binding-time improvement

[3, Sect. 5]

This approach is documented furthez in Jones, Gomard, and
Sestoft’s textbook on partial evaluation [23, Chap. 10].

The resulting specialize achieves inter-procedural im-
provements as well. Because, however, access to contin-
uations is built into the specialize, significant strategic
changes to the partial evaluator are required to achieve all

2 In general, d ynamlc let-expressions are residualized to preserve

the termination properties of the source program (as is the case in

this example), to preserve the sequencing order of the source program

(should D contain side-effects), or to avo,d rampant duplication in

the specialization phase (should the let-bound variable occur several

times).

the improvements possible with hand CPS transformation

[3, Sect. 6.4], as analyzed elsewhere [26].

Nevertheless, in most situations, continuation-based spe-

cialization yields good results. It improves the specialization

of both source let expressions and let expressions introduced
to preserve the linearity of dynamic computation (see Foot-

note 2). It is even necessary in Similix, where it enabled the
treatment of partially-static vaJues [3, Sec. 7]

Unfortunately, in Bondorf’s paper and in Jones et aL’s
textbook,

●

●

●

the speciahzer is CPS-transformed by hand;

its continuations need skillful massage — the more
complicated the specialize, the more skillful the mas-
sage; and

the resulting specialize is written in something almost

like CPS, ~hi~h requires even more sophistic~tion to

develop further, let alone maintain.

In this paper, we show that the non-standard uses of the
continuation in a continuation-based specialize PE~ pre-

cisely correspond to the effect of the control operators shift
and reset [13, 14], and that inserting shift and reset at a few

selected places (PEj) and then converting the specialize
into CPS (P E:) automatically yields Similix’s continuation-

based speciahzer [3]. This makes it possible to keep both
the source program- and the specialize in the familiar di-

rect style. Our approach is characterized by the following

diagram:

manuaJ

binding-time improvement

pEd
(Section 2) PE,

d

automatic
CPS transformation

The transformation from PEj to PE~ is not an issue here,

since it can be carried out automatically, as indeed the trans-
formation from pEd to PEC in Bondorf’s work could have
been. We express the cent rol-based binding-time improve-
ments at the source (direct-style) level, in essence ‘improvi-

ng binding times wit bout explicit C PS-conversion”, neither
of the source programs nor of the specialize. At no point

do we CPS-transform by hand. In fact it is not necessary

to CPS transform at all, if we use Filinski’s implementation

of shift and reset using call/cc and set! [17]. The resulting

direct-style specialize appears to be more efficient than its

CPS counterpart.

2 Continuation-Based Program Specialization

2.1 Similix’s continuation-based specialize

We start from a simple specialize for Scheme programs
(see Figure 2). It is adapted from Bondorf’s original spe-

cialize for Similix [3, Fig. 3]. The source language is a side-
effect free subset of Scheme extended with a Lift operator

228

(define-type Annotated-Expression
(Over Expression)
(Under Expression))

(define-type Expression
(Lift Annotated-Expression)
(Constant Literal)
(Identifier Symbol)
(Conditional Annotated-Expression Annotated-Expression Annotated-Expression)
(Let-Block Symbol Armotatecl-Expression Annotated-Expression)
(Operation Symbol Annotated-Expressions)
(First-Order-Application Symbol Amotated-Expressions)
(Higher-Order-Application Annotated-Expression Annotated-Expressions)
(Tagged-Abstraction Unique-Tag))

Figure 1: BNF of the source language

that converts a value into a residual expression. The special- abstracted by shift cau be composed, whereas first-class con-
izer is implemented in Scheme extend-ed with some Schism

synt act it-sugar — destruct uring let -type expressions and
case-t ype expressions to pattern-match structured data [8].

A program to be specialized (i.e., the source program)
is first annotated by a binding-time analysis, An expression

to be evaluated during specialization is marked !)ver,while
an expression to be residuahzed is marked Under (see Figure

1). The correctness of the binding-time analysis ensures that

the annotations are consistent.

Figure 3 displays a fragment of the continuation-based

specialize of Similix, specialize-c [3]. The treatment of

dynamic let expressions deserves commeut. The specialize
processes a dynamic let expression with some continuation k.

After its header is processed, the let expression is residual-

ized, and its body is specifllzed with the same continuation
k, thus achieving the control-based binding-time improve-
ment described in Section 1.2.

Such a continuation-based specialize is deliberately de-
signed not to be in CPS, as illustrated by the following ex-

amples.

b

●

●

tinuations abstracted by call/cc cannot. Unlike call/cc, the
value of the body of a shift expression is not returned to the
context, unless the continuation is explicitly applied. Using

the continuation linearly enables one to relocate a context
without duplicating or discarding computation — which is

our motivation here.

2.2.1 Example

(2x(3x4))+1 =

= 25

reset(2x shift kin3x4)+l = (3x4)+1

= 13

reset(2 x shift k in k(3 x 4)) + 1 = (2 x (3 x 4)) + 1

= 25

reset(2 x shift k in 3 x k(4)) + 1 = (3 x (2 x 4)) + 1

= 25

The call to specialize-c is notatail callin the treat-
reset(2 x shift k in 3 x k(k(4))) + 1 = (3 x (2 x (2 x 4)))

.
ment of the body of a dynamic let expression. +1

= 49
The call to specialize-c is not a tail call in the

branches of a dynamic conditional expression. In the first term, where there is no shift expression, the

In the treatment of dynamic conditional branches, the
computations are’ a multiplication by 2, a multiplication of

continuation is reset to be the identity procedure.
4 by 3, and an increment by 1. In the remaining terms, k is
bound to a procedural abstraction of the delimited context

In the direct-style world, these manipulations over contin-

uations are precisely captured by the following two control
operators.

2.2 The control operators shift and reset

Shift and reset were introduced to capture composition and

identity over continuations [13, 14]. Reset delimits a cent ext,
and is identical to Felleisen’s prompt; shift abstracts a delim-
ited context into a procedure, and is similar (though not in

general equivalent) to Felleisen’s control [16]. Unlike call/cc,
which captures the whole context of a computation [5], shift
captures a de[imited context. Thus first-class continuations

[2 x []]. In the second term, k is not used and thus the
cent ext [2 x []] is abandoned. In the third term, the con-
text is relocated on site. In the fourth term, the context is

relocated inside the multiplication by 3. The continuation
is used linearly and thus the same computations occur as in
the first and third terms, albeit in a different order. In the
last term, the context is relocated and duplicated inside the

multiplication by 3.
In the rest of this paper, we do not use the full power

of shift, in that we do not discard coutexts and we do not
duplicate them. Instead, we only use continuations linearly

to relocate contexts.

229

(define specialize

(lambda (e env)
(case-type e

[(Over e)
(case-type e

[(Constant c)

cl

[(Identifier i)
(lookup-local i env)]

[(Conditional test consequent alternative)
(if (specialize test env)

(specialize consequent env)

(specialize alternative env))l
[(Let-Block formal actual body)

(specialize body (extend-one formal (specialize actual env) env))l
[(Operation operator actuals)

(call operator (map (lambda (e) (specialize env)) actuals))l

[(First-Order-Applicationprocedure actuals)
(let-type ([(First-Order-Closure formals body) (lookup-global Frocedure)l)

(specialize body (extend formals

(map (lambda (e) (specialize e env)) actuals)
empty-env)))l

[(Higher-Order-Applicationprocedure actuals)

(let-type ([(Higher-Order-Closure tag free-vals) (specialize procedure env)])

(let-type ([(Annotated-Abstraction formals body free-vars) (lookup-lambda tag)])

(specialize body (extend formals

(map (lambda (e) (specialize e env)) actuals)
(extend free-vars free-vals empty-env)))))1

[(Tagged-Abstraction tag)
(let-type ([(Annotated-Abstraction formals body free-vars) (lookup-lambda tag)])

(Higher-Order-Closure tag (map (lambda (x) (lookup-localx env)) free-vars)))])]
[(Under e)

(case-type e

[(Lift e)

(Constant (specialize env))l

[(Conditional test consequent alternative)
(Conditional (specialize test env)

(specialize consequent env)
(specialize alternative env))l

[(Let-F?lock formal actual body)
(let (Cnev-formal (gensym! formal)])

(Let-Block new-formal
(specialize actual env)

(specialize body (extend-one formal new-forrnalenv))))]
[(Operation operator actuals)

(Operation operator (map (lambda (e) (specialize e env)) actuals))l

[(First-Order-Application procedure actuals)

(let-type ([(Memoized new-procedure new-actuals)

(memoize! procedure (map (lambda (e) (specialize env)) actual))])

(First-Order-Application new-procedure new-actuals))]
[(Higher-Order-Applicationprocedure actuals)

(Higher-Order-Application (specialize procedure env)

(map (lambda (e) (specialize env)) actuals))]
[(Tagged-Abstraction tag)

(let-type ([(Annotated-Abstraction formals body free-vars) (lookup-lambda tag)l)

(let ([new-formals (map gensym! formals)])
(Abstraction new-formals

(specialize bocly (extend formals new-forrnalsenv)))))1)1)))

Figure 2: Direct-style specialize for Similix

230

rdefine specialize-c

(lambda (e env k)

(case-type e

[((lver e)

(case-type e
. . .

[(Identifier i)

(k (lookup-local i env))l
[(Conditional test consequent alternative)

(specialize-c test env (lambda (b)

(if b

(specialize-c consequent env k)

. ..)1
(specialize-c alternati.veenvk))))]

[(Undere)
(case-type e

[(Lift e)
(specialize-ce env (lambda (v) (k (Constant))))]

[(Conditional test consequent alternative)
(specialize-c test env (lambda (b)

(k (Conditional

(specialize-c consequent env (lambda (a) a))
(specialize-c alternativeenv (lambda (a) a))))))]

[(Let-Block formal actual body)
(let ([new-formal (gensym! formal)])

(specialize-c actual
env

(lambda (v)

(Let-Block new-formalv (specialize-c body

(extend-one formal new-formal env)
k)))))] ;;; <---***---

. . .
[(Tagged-Abstraction tag)

(let-type ([(Armotated-Abstraction formals body free-vars) (lookup-lambda tag)])

(let ([new-formals (map gensym! formals)])

(k (Abstraction new-formals
(specialize-c body (extend formals new-formals env) (lambda (a) a))))))])])))

Figure 3: Purely functional, continuation-based specialize for Similix (excerpts)

2.2.2 CPS transformation of shift and reset expressions

A shift expression is naturally CPS-transformed by abstract-

ing the current (delimited) continuation into a procedure.
This continuation is composed with the new current con-

tinuation at any point where the procedure is applied. A

reset expression is naturally CPS-transformed by supply-

ing the identity procedure as a continuation. The following
equations summarize Plot kin’s call-by-value CPS t ransfor-

mation for the A-calculus extended with shift and reset. This
CPS transformation is documented further in the literature
[13, 14].

2.2.3 Direct implementation of shift and reset

Implementing shift and reset does not require a CPS trans-

formation. Their expressive power lies in a single-threaded
“meta-continuation” [13, 34] that in effect is structured like

a push-down stack, and thus can be globalized in a regis-

ter [31] (see also [28]). This led Filinski to a direct-style

implementation using only call/cc and side-effects over the
met a-continuation register [17]. The Scheme implement a-

tionis shownin Figure 7, at the endof the paper.

2.3 Continuation-based specialization indirect style

We now show how shift and reset can implement the non-

standard uses of continuations in Similix. To determine
where control operators should be int reduced, we use the

intuition from the beginning of Section 1.2 that static in-
formation is hidden when the continuation of the partial

evaluator differs from that of the evaluator.

231

2.3.1 A relation over continuations

As pointed out at the beginning of Section 1.2, a partial

evaluator mimics an evaluator: it computes static expres-
sions but residualizes dynamic expressions. Let us rephrase

this statement in terms of continuations.3

Essentially, a continuation rc is either the initial contin-

uation or is constructed by composing a function j and a
continuation K’:

K= K’ Of.

Every function in the continuation of the evaluator performs

an evaluation step. The functions comprising the continua-
tion of the partial evaluator can be classified as follows.

●

●

●

Evaluating functions, which perform an evaluation
step.

Residualizing functions, which residualize an evalua-

tion step.

Bookkeeping functions, which do not correspond to an
evaluation step.

As an example of the relationship between the contin-

uation of the evaluator and the continuation of the partial

evaluator of Figure 2, consider the expression

(Operationop2 (Lift (Over (Operation opl cl))) e2)

The expression ei is evaluated with a continuation begin-

ning with a function that applies opl. The continuation of
its partial evaluation begins with the same function, which

is thus an evaluating function. The expression

(Lift (Over (Operation opl ei)))

is evaluated with a continuation beginning with a function
that evaluates e2 followed by a function that applies op2.4

It is partially evaluated with a continuation beginning with
two functions, of which the first speciahzes e2 and the second

residualizes op2. The first of these functions is an evaluating
function while the second is a residualizing function.

As another example, consider a conditional expression.
The continuation of the evaluation of either branch is the

continuation of the entire conditional expression. If the test

part is dynamic, the consequent branch is partially evaluated

with a continuation beginning with two functions: the first

partially evaluates the alternative branch, and the second

reconstructs the entire conditional expression. Both of these
are bookkeeping functions.

We now use the classification to achieve a control-based

binding-time improvement. Consider an expression whose
evaluation reduces to the evaluation of a subexpression. The
value of the subexpression is sent to the continuation of
the expression. If, during partial evaluation, the continu-

ation starts with a bookkeeping function, the value of the
subexpression is lost to further partial evaluation. We can

achieve a control-based binding-time improvement by by-

paasing the bookkeeping function and relocating the con-
tinuation of the expression from the residualized expression
to the subexpression. For example, the following semantic

equality (modulo renaming) illustrates this relocation for let
expressions in the CPS world.

3T~e fact ~ha~ COntlnuatjons are Imphclt (m a direct-style PrO-

gram) or explicit (in a continuation-passing program) IS n-relevant

here since programs can be transformed between dn-ect style and CPS

automatically

4This scenario assumes left-to-right sequencing order A corre-

sponding scenario holds for any other sequencing order

(k (let ([ii el] . ..) e))

‘= (let ([ii ell . ..) (k e))

To preserve the semantics of the entire program, we can
only apply such a transformation when the continuation of

the partial evaluator contains only residualizing or evaluat-
ing functions. The correctness of the transformation then

follows by compositionality.
We call residualizing and evaluating functions safe junc-

tions. They correspond to Bondorf’s safe contexts [3, Def.
11].

In general, K, the continuation of the partial evaluator,
may also cent ain bookkeeping functions. There is, however,
always a prefix of the sequence of functions comprising K
that contains only safe functions (in the minimal case, ~a. a).

Let us divide K as K’ 06, where 6 is a composition only of
safe functions. We call 6 a safe prefix.

Of course, there may be many such divisions of the con-

tinuation. Achieving the greatest improvement depends on
choosing the largest possible safe prefix. By the composi-

tionality of both the evaluator and the partial evaluator,
we may then use semantic equalities to transform the ap-

plication of 8. K’ is applied, as before, to the result of the

transformation.

The problem of implementing the binding-time improve-
ment on let expressions then reduces to the problem of iden-
tifying the safe prefix. Bondorf keeps track of it as a sepa-
rate argument to the partial evaluator (k in Figure 3; thus,

his “well-behaved continuations” [3, Def. 14] are our safe
prefixes.). We propose instead to use the control operator

reset to separate 6 from K’. The control operator shift
then provides access to 6 when necessary.

2.3.2 Delimiting a safe prefix with reset

Let us locate where the continuation of the specialize is ex-

tended with a bookkeeping function. In such cases we set the
safe prefix to the identity function, Aa. a. This is precisely
the effect of a reset operation (see Section 2.2.2). Through-
out our analysis, we assume the following invariant: in the

continuation of the current call to the specialize, the safe

prefix has been separated from the rest of the continuation.

The specialization of a static expression follows its eval-

uation, so each extension to the continuation is a safe func-

tion. Thus no cent rol operators are needed.
Dynamic expressions are residualized. The continuation

of the specialization of a subexpression might thus begin
with a bookkeeping function. Let us proceed case by case.

In the case of the argument of a lift expression, the test in

a conditional expression, the header of a let expression, and
all the arguments of each kind of application, the continua-
tion of the specialization residualizes the action performed
by the continuation of their evaluation. Thus no cent zol
operators are needed.

In the specialization of the following subexpressions,

however, the continuation begins with a bookkeeping func-
tion.

1. The body of a let expression.

2. The branches of a conditional expression (as described

in Section 2.3.1).

3. The body of a lambda abstraction.

4. The body of the top-level definition of a memoized
procedure (i. e,, a specialization point [23]).

232

(define specialize
(lambda (e env)

(case-type e
[(Overe) ;;; as in Figure 2

.1
[~under e)

(case-type e
[(Lift e)
(Constant (specialize env))l

[(Conditional test consequent alternative)
(Conditional (specialize test env)

(RESET (specialize consequent env))
(RESET (specialize alternative env)))l

[(1-et-Block formal actual body)
(SHIFTk (let ([new-formal (gensym! formal)])

(Let-1310ck new-formal
(specialize actual env)

(RESET (k (specialize body (extend-one formal new-formal env)))))))1
. ...;; as in Figure 2

[(Tagged-Abstraction tag)
(let-type ([(Annotated-Abstraction formals body free-vars) (lookup-lambda tag)])

(let ([new-formals (map gensym! formals)])
(Abstraction new-formals

(RESET (specialize body (extend formals new-formals env))))))1)1)))

Figure 4: Direct-style, continuation-based specialize for Similix (excerpts)

In each case, the specialize reconstructs the enclosing Similarly, each conditional branch is evaluated with the con-

expression while the evaluator sends the value to some othe~ tinuation of the entire conditional expression. We could use
continuation. Thus we enclose each specialization in a reset

expression. In the fourth case, the reset expression occurs
in the definition ofmemoize!, which is not shown.

In the resulting specialize, the continuation up to the
enclosing reset contains only safe functions.

Fact 1 Transforming this speciahzer into CPS automati-

cally yields Bondorf ’s C1 [3, Fig. s].

2.3.3 Improving the safe prefix with shift

Each reset expression delimits a minimal safe prefix, In some

cases, however, a longer prefix is locally available. Exploit-

ing it achieves a binding-time improvement. Let us consider

where a shift expression can be used to access a longer safe

prefix for each of the four cases above.
The body of a let expression is evaluated with the con-

tinuation of the entire let expression. Thus, we may rewrite
the specialization of a let expression as follows.

(shift k

(let ([nev-formal (gensym! formal)])
(Let-Block

new-formal
(specialize actual env)

(reset (k (specialize body
(extend-one formal

new-formal
env)))))))

shift to access a safe prefix here, but_ doing so would dupli-

cate the context in each branch. Not making the improve-
ment, as in Figure 4, causes a (safe) loss of information and

avoids residual-code explosion.
Finally, for the body of a lambda abstraction, the con-

tinuation of the evaluation is not available until the lambda
abstraction is applied. As for the conditional branches, our

specialize is still correct, but it could produce better results
if the specialization of the body could interact directly with

the continuation of each corresponding call. Specialization
points (i. e., memoized procedures), however, should not be

specialized with respect to a continuation, to increase shar-

ing in residual programs [3, 26, 29].

Figure 4 shows the direct-style specialize with the con-
trol operators inserted as described above. (For readability,

the occurrences of shift and reset are capitalized.)

Fact 2 Transforming this specialize into CPS automati-

cally yields the continuation-based specialize of Similix [.9,
Fig. 6] (See also Figure 5’).

2.4 Assessment

The specializes in Figures 2 and 4 are almost identical.
Only in five places do they differ. In the four cases listed in

Section 2.3.2 a reset separates the safe prefix from the rest
of the continuation. In the specialization of a dynamic let

expression, a shift enables the binding-time improvement.
Superimposing the two diagrams of Section 1.2 yields the

following commuting diagram.

233

—

(define specialize
(lambda (e env)

(case-type e
[(Over e)

.1
[~Under e)

(case-type e

~~Higher-Order-Applicat ion procedure actuals)

(case-type procedure
[(Tagged-Abstraction tag)

(let-type ([(Armotated-Abstraction formals body free-vars) (lookup-lsmbda tag)])
(SHIFTk (let ([new-formals (map gensym! formals)])

(lIigher-Order-Application (Abstraction new-formals
(RESET (k (specialize body

(extend formals
new-formals
env)))))

(map (lambda (e) (specialize env)) actual)))))]
[else

(Higher-Order-Application (specialize procedure env)
(map (lambda (e) (specialize env)) actuals))l)l

. . .)1)))

Figure 5: Extension of Figure 4 for beta-redexes

the let expression does not introduce any extra opportunity

for speciahzation. Since there is no benefit from the reorga-
nization of the continuations in this case, we may leave the

continuation as it is in the originaJ specialize (see Figure 2),
thus saving a shift instruction. In our experiments, however,
this did not improve efficiency (see Section 4).

Further improvements are possible. For example, in
Schism, binding-time information is compiled into special-

iz at ion actions, to remove interpretive overhead in the spe-

In particular, the correctness proof of Bondorf’s approach
cializer [9]. Completely static and completely dynamic ex-

pressions are fact ored out, and the specialize can concen-
applies here as well, trate on specialization proper, with a smaller continuation

traffic. As addressed in Section 3.1, the shift/reset method
2.5 Improvements applies there as well.

Beta redexes offer an opportunity for further binding-time
improvement. A beta redex is an on-site abdication of a 2.6 Issues for binding-time analysis

lambda abstraction. This situation appears- &equently af-
ter macro expansion, When a beta redex is residualized, its

context can still be relocated in the body of the correspond-
ing lambda abstractions, d la Sabry and Felleisen [30]. In
fact, in early 1990, Schism used continuations to carry out

this relocation, thereby already achieving the let optimiza-
tion (since in Schism, let is syntactic sugar for a beta redex,

d la Landin).
To extend the specialize to improve over residual beta

redexes, we only need to change the clause for higher-order

applications to detect a beta redex and then to apply the
same treatment aa for let expressions (see Figure 5). The
simplicity of this change illustrates the flexibihty of the

direct-style approach.
As another extension to the continuation-based special-

ize, consider the case of a let expression whose body yields
a dynamic value (a similar argument applies to a beta re-
dex). Sending the residual let-body to the continuation of

Consel and Khoo present binding-time analysis as an ab-
straction of partial evaluation [12]. Along that line, continu-

ation-baaed partial evaluation affects the binding-time anal-

ysis at least with respect to the two following points. We

mention them here only for the sake of completeness.
Since the continuation of a let expression is directly

transmitted to the body of the let expression instead of being
sent the result of the whole expression, it is overly conserva-

tive to ‘flub” the results of analyzing the let-header and the
let-body to compute the result of analyzing the whole ex-

pression. Instead, the result of analyzing the let expression
is simply the result of analyzing the let-body.

The same point applies for conditional expressions. If
the continuation of aconditional expression were duplicated
and directly transmitted to the conditional branches instead
of being sent the result of the whole expression, the result of

analyzing a conditional expression could reduce to “lubbing”
the results of analyzing the conditional branches.

234

3 Applications

3.1 Bootstrapping

Using cent rol operators and the CPS transformation enables

the following bootstrapping procedure: freely experiment

with control in the direct-style specialize, and automati-

cally generate the corresponding purely functional one (i. e.,

without shift and reset), This bootstrapping method is not

only conceptually interesting but it has practical interest as

well. The first author has used this method to bootstrap

the specialize in the new version of Schism [8]. The spe-

cialize occupies24 Kbof Scheme code indirect style and 27

Kb after CPS transformation (19 and 22 with no tabulation

characters and no pret t y-printing).

3.2 Self-applicable partial evaluation

The area of self-applicable partial evaluation is seeing a

new trend: writing “pecom” (a.k.a. “cogen” and “cocom”

[22, 23]) by hand. “Pecom” is a partial-evaluation compiler

that generates dedicated specializes. It is customarily gen-

erat ed by self- application.5 Recently, Hoist and Launchbury

have observed that writing pecom by hand makes it possible

to bypass the double-encoding problem for self-applicable

partial evaluation of typed programs [22]. Birkedal and

Welinder have developed such a partial-evaluation compiler,

SML-Mix, for Standard ML programs [2].

Writing SML-Mix by hand was hard enough. Yet it is in

direct style and the dedicated specializes it produces are in

direct style too. Without guidelines, a considerable amount

of expertise would be necessary (1) to make it continuation-

based and (2) to make it generate continuation-based dedi-

cated specializes. Yet control-based binding-time improve-

ments are crucially needed in this approach as well as in the

traditional one.

Fortunately, the pecom approach smoothly meshes with

our control-based binding-time improvement in direct style

as follows.

●

9

Insert shift and reset in pecom, as outlined in Section

2.3, and automatically CPS-transform the modified

pecom. This yields a purely functional continuation-

based pecom.

Modify pecom to insert shift and reset at selected

places (as outlined in Section 2.3) in the dedicated

specializes it generates, and automatically CPS-trans-

form the output of pecom. This yields purely func-

tional continuation-based dedicated specializes.

In other words, let pecom’ denote a continuation-based

pecom (with shift and reset) generating continuation-based

specializes (with shift and reset); and let ~.] denote the CPS

transformation, as in w in Section 2.2.2.

5Pecom is obtained by partially evaluating the partial evaluator
with respect to itself. Running pecom on a program p yields the
same result (but faster) as partially evaluating the partial evaluator
with respect to p, i. e., ityields a partial evaluator specialized with
respect to p. In turn, running thw dedicated partial evaluator on an
input s yields the same result (but faster) as partially evaluating p
with respect to s, !. e., it yields a version of p specialized with respect
to $ Finally, running this specialized version of p on the remaimng
input d yields the same result (but faster) as running the program p
on the complete input s and d, A concise presentation is available
elsewhere [11, Apdx.]. Self- apphcable partial evalua’mon M extensively
treated in Jones et a[.’s book [23]

● [Pecom’] yields a purely functional continuation-based
pecom (without shift and reset).

● [run [pecom’] p] yields a purely functional continu-

ation-based specialize dedicated to p (without shift

and reset).

Et VOi[d.

Efficiency, however, might dictate that pecom and the

compiled partial evaluators be run in direct style. (Then

the remaining “negative effects” Bondorf attributes to CPS

would disappear [3, Sec. 6.2].) Both experiments remain to

be done.

4 Measures

Analyzing the cost of our four partial evaluators PE~, PE.,

PE~, and PE~ raises two issues. We need to compare the

costs of the CPS and DS implementations, and the cost

of the continuation-based specializes over the cost of the

naive specializes. These comparisons are of course difficult

to make because they depend greatly on the source program.

We consider a simple pattern-matching program, spe-

ciahzed with respect to both small and large patterns. The

shape of a pattern determines the size of the continuation

and the size of the residual program, independently, Essen-

tially the source program contains both a regular call and

a tail call. Increasing the depth of a pattern provokes more

regular calls, making the continuation grow. Increasing the

number of variables in a pattern (its “length”) increases the

size of the resulting substitution and thus the size of the

residual program.

We consider two versions of the source program. In

both there is only one dynamic let expression. In the first,

prn-st at ic, its body yields a static value and thus offers an

opportunity for control-based binding-time improvements.
In the second, pm-dynamic, its body yields a dynamic value

and thus offers no opportunity for control-based binding-

time improvements.

The following tables compare the time and space costs of

specializing these two programs using pEd, PE~, PEC, and

PE~. We consider patterns of varying depth and length.

4.1 Comparing the CPS and DS specializes

Most compilers are written to perform well on what is per-

ceived to be a typical source program. In particular most

compilers, even those using a CPS intermediate representa-

tion, are targeted toward DS source programs. Scheme goes

as far as to leave the sequencing order unspecified to allow

the compiler writer further opportunities for optimization.

The direct-style speciahzer can take advantage of any such

optimizations. Furthermore, call/cc, which we use to im-

plement both shift and reset, has been highly optimized in

Chez Scheme.s

These observations are borne out by the experiments

above. In all but one case the CPS specialize uses more

space than its DS counterpart, and in some cases almost

twice as much. The time consumed by each CPS specialize

is about the same as that of its DS counterpart.

6The Chez Scheme compiler is a DS compiler with an efficient
implementation of first-class continuations [20] We plan to repeat
these measures using a CPS compiler.

235

pm-static

pEc/pEd PE~/PEj l?E;/PEd PE:/PEc

depth length time space time space time space time space

small small 1.18 1.58 1.04 1.48 1.18 1.13 1.04 1.06

small large 0.97 1.84 1.00 1.00 2.89 259.23 2.99 141.51

large small 0.87 1.95 1.11 1.97 0.04 0.92 0.04 0.93

large large 1.02 1.90 1.00 1.01 1.90 137.68 1.86 72.85

pm-dynamic

pEc/pEd PE~/PEj pE~/pE,j PE~/PEc

depth length time space time space time space time space

small small 1.17 1.58 1.58 1.63 1.04 1.04 1.41 1.08

small large 0.96 1.84 0.99 1.71 0.99 1.08 1.02 1.00

large small 0.88 1.95 0.95 1.76 0.84 1.11 0.90 1.00

large large 0.98 1.90 1.08 1.73 0.94 1.10 1.03 1.00

Figure 6: Relative costs of specializing two pattern-matching programs with respect to several patterns

4.2 Assessing the cost of the improvement

Continuation-based specialization introduces extra oppor-

tunities for specialization in pm-static because the body

of the single dynamic let expression yields a static value.

Tests on this value can be reduced statically. These tests

are residualized by the naive specialize, in contrast. Thus

this specialize performs much less static computation, and

thus constructs many fewer data structures.

The binding-time improvement does not introduce any

extra opportunities for specialization in pm-dynamic, where

the body of the dynamic let expression yields a dynamic

value. Thus the residual programs produced by the im-

proved and naive specializes are similar. The time and

space costs are, as would be hoped, quite similar as well.

In Section 2.5, we suggested that when the body of ady-

namic let expression returns a dynamic value, it is useless

to reorganize the continuations. In our experiments weob-

served that this “optimization” does not affect performance,

on this source program.

4.3 Further experiments

We have noted that when the body of a dynamic let ex-

pression has a dynamic value, continuation-based special-

ization does not produce a better specialized program. Du-

ally, when the continuation accessed by shift is always the

minimal safe prefix, continuation-based specialization does

not introduce more opportunities for binding-time improve-

ment either (i. e., itis always the identity function that is

propagated to the body of the let expression). This case

arises in iterative programs, e.g., CPS programs. Therefore

the runtime and runspace of the continuation-based special-

ize should be identical to that of the naive specialize. As

noted in Section 1.2, all four specializes should produce

the maximally specialized residual program as well. Con-

versely, when a tail-recursive program is specialized, the

control stack of pEd and the continuation of PEC do not

grow (see [10, Prop. I]). Therefore their runtime and their

runspace should not diverge. We are currently experiment-

ing to test this analysis.

As afina.1 experiment, we measured the time and space

costs of PE& when shift and reset are replaced by control

and prompt.7 Both costs are virtually unchanged.

4.4 Conclusion and side-issues

Independently of partial evaluation, the measures above

compare running DS code, possibly in the presence of first-

CISSS continuations, and running naive CP S code — where

by “naive’) we mean that no special provision is made for

the continuation [18]. PE~ yields a situation where large

parts of the same continuation are repeatedly captured and

restored.s The common parts are naturally shared in CPS,

but in DS, some initiative is needed to avoid duplicating en-

tire copies of the control stack in the heap to accommodate

first-class continuations, a serious concern for their efficient

implementation.

5 Related work

Independently of our work, Friedman and Ashley observed

that shift and reset could be used to develop a self-applicable

partial evaluator [19]. Felleisen also observed that Bondorf’s

key step corresponds to delimiting and abstracting control.

Like Similix and Schism, the ML partial evaluator of

Malmkjzer, Heintze, and Danvy also uses continuation-based

specialization [27].

Other continuation-based program transformations can

be expressed in direct style with shift and reset. One exam-

ple is the CPS transformation itself [13, 14]. Another is the

nqCPS transformation.g

The present work is also a part of our investigation of

the direct-style transformation in the presence of first-class

continuations [15].

7In F,gure 4, each continuation application is surrounded by a

reset Thus Fellelsen’s control (a.k.a. Y) and prompt operators [16]
can be used here as well, even though they go beyond CPS (x. e.,
in general, they do not have any CPS counterpart [14]) We used
Sitaram and Felleisen’s implementation [33]

8 At the 1988 Lisp conference, Clinger, Hartheimer, and Ost re-
ported that typically 8070 of captured continuations are shared in
MacScheme [6]

‘nqCPS stands for “not quite CPS” (Lee), and is also known as
A-normal forms (Sabry & Felleisen), monadic normal forms (Hatcliff
& Danvy), and, maybe more plainly, w (higher-order) three-address
code

236

(i Conclusion

Continuation-based partial evaluation improves over naive

partial evaluation, butit requires skill: skill to program with

continuations; and skill to figure out where to use continu-

ations to achieve control-based binding-time improvements.

With the shift/reset approach, one puts shift and reset at

selected places in a direct-style partial evaluator to get a

continuation-based one. CPS transformation automatically

yields a purely-functional version ofthis continuation-based

program transformer. This approach is simpler than hand-

writing large quantities of CPS code, and enables one to

experiment with control-based binding-time improvements

quickly and decisively.

The operations over continuations to achieve control-

based binding-time improvements are not haphazard — they

correspond to a precise pattern that can be expressed and

reasoned about in direct style, using the control operators

shift and reset. These operators are high-level program-

ming constructs. They are used only where necessary, thus

preventing low-level programming constructs to occur ev-

erywhere.

In summary, we do obtain Similix’s continuation-based

specialize in the end, automatically (Section 2). This ap-

proach suggests a strategy for constructing a continuation-

baaed partial-evaJuation compiler (Section 3.2), smoothly.

Our partiaJ evaluator illustrates a realistic use of the con-

tinuation operators shift and reset (Section 3.1). These

control operators enable a more efficient implementation of

continuation-based partial evaluation (Section 4).

Acknowledgements

Andrzej Filinski and Karoline Malmkjzer provided valuable

criticism and encouraging comments. Thanks are also due to

Charles Consel for support, and to the referees for perceptive

comments. The diagrams of Sections 1.2 and 2.4 were drawn

with Kristoffer Rose’s ~-pic package.

References

[1]

[2]

[3]

[4]

[5]

[6]

Lennart Beckman, Anders Haraldsson, Osten Oskars-

son, and Erik Sandewall. A partiaJ evaluator, and

its use as a programming tool. Artificial intelligence,

7(4):319–357, 1976.

Lars Birkedal and Morten Welinder. PartiaJ evaluation

of Standard ML. Master’ sthesis, DIKU, Computer Sci-

ence Department, University of Copenhagen, August

1993.

Anders Bondorf. Improving binding times without ex-

plicit CPS-conversion. In Clinger [4], pages 1-10,

William Clinger, editor. Proceedings of the1992 ACM

Conference on Lisp and Functional Programming, LISP

Pointers, Vol. V, No. 1, San Francisco, Cahfornia, June

1992. ACM Press.

Wilham Clinger and Jonathan Rees (editors). Revised4

report on the algorithmic language Scheme. LISP
Pointer.s, IV(3) :l-55, July-September 1991.

William Clinger, Anne H. Hartheimer, and Eric M.

Ost, Implementation strategies for continuations. In

Robert (Corky) Cartwright, editor, Proceedings of the

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

1988 ACM Conference on Lisp and Functional Pro-
gramming, pages 124-131, Snowbird, Utah, July 1988.

Charles Consel. Polyvariant binding-time analysis for

applicative languages. In Schmidt [32], pages 66–77.

Charles Consel. A tour of Schism: A partial evalua-

tion system for higher-order applicative languages. In

Schmidt [32], pages 145-154.

Charles Consel and Olivier Danvy. From interpreting to

compiling binding times. In Neil D. Jones, editor, Pro-

ceedings of the Third European Symposium on Program-

ming, number 432 in Lecture Notes in Computer Sci-

ence, pages 88–105, Copenhagen, Denmark, May 1990.

Charles Consel and Olivier Danvy. For a better sup-

port of static data flow. In John Hughes, editor, Pro-

ceedings of the Fifth ACM Conference on Functional
Programming and Computer Architecture, number 523

in Lecture Notes in Computer Science, pages 496-519,

Cambridge, Massachusetts, August 1991.

Charles Consel and Olivier Danvy. Tutorial notes on

partial evaluation. In Susan L. Graham, editor, Pro-

ceedings of the Twentieth Annual A Ckl Sgmposium on
Principles of Programming Languages, pages 493-501,

Charleston, South Carolina, January 1993. ACM Press.

Charles Consel and Siau-Cheng Khoo. Parameterized

partial evaluation. ACM Transactions on Programming

Languages and Systems, 15(3):463-493, 1993.

Olivier Danvy and Andrzej FilinskL Abstracting con-

trol. In Mitchell Wand, editor, Proceedings of the 1990

ACM Conference on Lisp and Functional Programming,
pages 151–160, Nice, France, June 1990. ACM Press.

Olivier Danvy and Andrzej FilinskL Representing con-

trol, a study of the CPS transformation. Mathematical

Structures in Computer Science, 2(4):361-391, Decem-

ber 1992.

Olivier Danvy and Julia L. Lawall. Back to direct style

II: First-class continuations. In Clinger [4], pages 299-

310.

Matthias Felleisen. The theory and practice of first-

class prompts. In Jeanne Ferrante and Peter Mager,

editors, Proceedings of the Fifteenth Annual A CM Sym-
posium on Principles of Programming Languages, pages

180-190, San Diego, California, January 1988.

Andrzej Filinski. Representing monads. In Hans-J.

Boehm, editor, Proceedings of the Twenty-First An-
nual ACM Symposium on Principles of Programming

Languages, pages 446-457, Portland, Oregon, January

1994. ACM Press.

Cormac Flanagan, Amr Sabry, Bruce F. Dubs, and

Matthias Felleisen. The essence of compiling with con-

tinuations. In David W. Wall, editor, Proceedings of the
ACM SIGPLA N’93 Conference on Programming Lan-
guages Design and Implementation, SIGPLAN Notices,

Vol. 28, No 6, pages 237–247, Albuquerque, New Mex-

ico, June 1993. ACM Press.

Daniel P. Friedman. PersonaJ communication, e-mail

199309061544 .aa14562@daimi. aau,dk, September 1993.

237

(define-syntax reset (syntax-rules () [(- ?e) (reset-thunk (lambda () ?e))l))

(define-syntax shift (syntax-rules () [(- ?k ?e) (call/et (l~bda (?k) ?e))]))

(define *meta-continuation* (lambda (v) (error “You forgot the top-level reset...’’)))

(define abort (lambda (v) (*meta-continuation* v)))

(define reset-thunk (lambda (t)

(let ([me *meta-continuation*l)

(call/cc (lambda (k)

(begin (set! *meta-continuation* (lambda (v)

(begin (set! *meta-continuation* mc)

(k V))))

(abort (t))))))))

(define call/et (lambda (f)

(call/cc (lambda (k)
(abort (f (lambda (v)

(reset (TV)))))))))

Figure 7: Shift and reset in Scheme

[20] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman.

Representing control in the presence of first-class con-

tinuations. In Bernard Lang, editor, Proceedings of the
ACM SIGPLAN’90 Conference on Programming Lan-
guagesDesign and Implementation, SIGPLAN Notices,

Vol. 25, No 6, pages 66-77, White Plains, New York,

June 1990. ACM Press.

[21] Carsten K. Holstand Carsten K. Gomard. Partial eval-

uation is fuller laziness. In Paul Hudak and Neil D.

Jones, editors, Proceedings oftheACMSIGPLAN Sym-

posium on Partial Evaluation and Semantics-Based

Program Manipulation, SIGPLAN Notices, Vol. 26,

No 9, pages 223-233, New Haven, Connecticut, June

1991. ACM Press.

[22] Carsten K. Hoist and John Launchbury. Handwrit-

ing cogen to avoid problems with static typing. In

Draft Proceedings, Fourth Annual Glasgow Workshop
on Functional Programming, Skye, Scotland, pages

210-218. Glas~ow University. 1991.

[23] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.

Partial Evaluation and Automatic Program Generation.

Prentice-Hall International, 1993.

[24] Neil D. Jones, Peter Sestoft, and Harald S@ndergaard.

MIX: A self-applicable partial evaluator for experi-

mentsin compiler generation. LISP and Symbolic Corn-
pupation, 2(l):9-50, 1989.

[25] Lionello A. Lombardi and Bertram Raphael. Lisp asthe

language foran incremental computer. In Edmund C.

Berkeley and Daniel G. Bobrow, editors, The Program-
ming Language Lwp: Its Operation and Applications,
pages 204-219, Cambridge, Massachusetts, 1964. The

MIT Press.

[26] Karoline Malmkjzer. Towards efficient partial evalua-

tion. In Schmidt [32], pages 33-43,

[27] Karoline Malmkjzer, Nevin Heintze, and Olivier Danvy.

ML partial evaluation using set-based analysis. Tech-

nical report CMU-CS-94-129, School of Computer Sci-

ence, Carnegie Mellon University, Pittsburgh, Pennsyl-

vania, February 1994.

[28] Chethan R. Murthy. Control operators, hierarchies, and

pseudo-classical type systems: A-translation at work.

In Olivier Danvy and Carolyn L. Talcott, editors, Pro-

ceedings of the ACM SIGPLAN Workshop on Contin-

uations, Technical report STAN-CS-92-1426, Stanford

University, pages 49-72, San Francisco, California, June

1992.

[29] Erik Ruf. Topics in Online Partial Evaluation. PhD

thesis, Stanford University, Stanford, California, Febru-

ary 1993. Technical report CSL-TR-93-563.

[30] Amr Sabry and Matthias Felleisen. Reasoning about

programs in continuation-passing style. In Clinger [4],

pages 288-298.

[31] David A. Schmidt. Detecting global variables indenota-

tional definitions. ACM Transactionson Programming
Languages and Systems, 7(2):299-310, April 1985.

[32] David A. Schmidt, editor. Proceedings of the Second
ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, Copenhagen,

Denmark, June 1993. ACM Press.

[33] Dorai Sitaram and Matthias Felleisen. Control delim-

iters and their hierarchies. Lisp and Symbolic Compu-

tation, 3(1):67-99, January 1990.

[34] Mitchell Wand and Daniel P. Friedman. The mystery

of the tower revealed: A non-reflective description of

the reflective tower. In William L. Scherlis and John H.

Williams, editors, Proceedings of the 1986 ACM Con-

ference on Lisp and Functional Programming, pages

298-307, Cambridge, Massachusetts, August 1986.

238

