
Type Reconstruction for Variable-Arity Procedures

Hsianlin Dzeng* Christopher T. Haynes*

Computer Science Department

Lindley Hall, Indiana University

Bloomington, IN 47405

{dzeng,chaynes} @es. indiana. edu

Abstract

An ML-style type system with variable-arity procedures

is defined that supports both optional arguments and

arbitrarily-long argument sequences. A language with

variable- arit y procedures is encoded in a core-ML variant

with infinitary tuples. We present an algebra of infinitary

tuples and solve its unification problem. The resulting type

discipline preserves principal typings and has a terminat-

ing type reconstruction algorithm. The expressive power of

infinitary tuples is illustrated.

1 Introduction

Most languages employing ML-style polymorphic type re-

construction do not support procedures with multiple ar-

guments. Instead, multiple arguments are passed in an

aggregate structure or via repeated application to a cur-

ried procedure. Extension of an ML-style type system to

support higher, but fixed, arit y procedures is st raightfor-

ward. A variable- arit y procedure accepts an indefinite num-

ber of arguments. Many languages provide variable-arity

primitive procedures, and some allow creation of variable-

arit y procedures. For example, Ada [1] allows the definition

of procedures with optional arguments, for which defaults

are provided, Scheme [2] lambda expressions may have a

‘kest” parameter to which a list of all remaining arguments

is bound, and Common Lisp [15] supports both optional

and rest arguments. This paper presents a flexible method

of supporting variable-arity procedures, with both optional

and rest arguments, in the cent ext of ML-st yle polymorphic

type reconstruction.

When both optional and rest arguments are supported,

the general form of a formal parameter declaration for a

procedure, p, is some number, say i, of required parameters,

followed by j optional parameters, each with an associated

default value, followed optionally by a rest parameter, where

i and j may be any natural number. Let VI, ..., v~ be the

values of arguments in an application to p. Then i < n is

required, and so is n < i + j in the absence of a rest parame-

“Work supported in part by the National Science Foundation under
grant numbers CCR-8702117 and CDA-9312614.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advanta~e, the ACM copyright notice and the
title of the publication and ks date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otheiwise, or to repLIblish, requires a fee
and/or specific permission.

ter. The required parameters are associated with w, Vij

as usual. The next k = min(j, n — i) argument values are

associated with the first k optional parameters, while any

remaining optional parameters assume default values. Fi-

nally, if a rest argument is provided, it is associated with

the (possibly empty) sequence of values vi+ j+l, . . .,%.

The default value of an optional parameter is given by

an associated expression. This expression may be evaluated

either when the associated procedure is evaluated or when

the procedure is invoked. This does not affect typing unless,

as is sometimes the case, the expression is evaluated in an

environment that contains preceding required and optional

arguments. Our mini-language does not reflect this latter

option since it introduces inessential complications in the

typing problem.

We adopt Dybvig and Hieb’s rest parameter mechanism,

in which rest variables may only be referenced following an

&rest keyword at the end of an application, indicating that

the values bound to the rest variable are to be passed as

additional arguments in the call. [3] For example, if the se-

quence of values V1, v~ is bound to the rest variable a,

then (Mo Ml . . . Mm &rest a) is equivalent to (Mo Ml . . .
M~zl... z~), where VI, . . . ,v~ are bound to xl, . . ., z-,

respectively. Efficiency was the original motivation for not

collecting the rest arguments of a call in a list (as in most

Lisp dialects). In a statically-typed setting this approach

can also be more general, allowing a sequence of rest argu-

ments to be heterogeneous (of differing type).

The domain of an arity-n procedure is typically typed as

a tuple of dimension n. For example, a procedure of the form

(lambda (z y) M) would have a type of the form ~= x r. +

TM and in a procedure call of the form (Mo Ml M2 Ms),

MO must have a procedural type whose domain is of the

form ‘TM, x TM, x 7M3. A procedure with optional or reSt

arguments is polymorphic in its arity. For example, the

domain type of a procedure (lambda (Z &optional (Y M))

N) could be either r= or r= x TM, and the domain of

(lambda (z &optional (y M) &rest a) N) (1)

may have an infinite number oft ypes of the form ~= ~ ~= x TM j
T= XTMXTI, TZXTMXTI XT2j

Variable-arity procedures may be typed by adapting

techniques for typing extensible records. Wand [16] intro-

duced row variables to express inclusion polymorphism on

records. R6my’s projective polymorphism [13] generalizes

classical record operations using infinitary records with de-

faults. Since tuple types may be encoded as record types

with numerically labeled fields, the domain type of (1) may

LISP 94- 6/94 Orlando, Florida as USA
@ 1994 ACM 0-89791 -843-3/94/0006..$3.50

239

be encoded using R6my’s technique as [1 : pTe r= ; ~ :
e . TM ; p]. Each field is marked present (pe) or absent

(abs), and c is a universally quantified type variable express-

ing either presence or absence, while p is a “row” expressing

the remaining fields of the record type that belong to the

rest parameter. For a call (Mo Ml A42) the domain type of

MO is unified with [i : pTe Thgl ; ~ : pTe . ?_M2 ; @g o v],
where the “base” row ~ o -y can be viewed as equivalent

to ~ : abs .73 ; ~ : abs T4 ; . ~. . The present marks are

accepted by required and optional parameters, while absent

marks are rejected by required parameters and accepted by

optional parameters. The row variable ~ expresses an infi-

nite sequence of unknown types, which is matched against

the types of default expressions associated with optional pa-

rameters. Dually, fixed-arity procedures have a base row el-

ement in their domain; for example, (lambda (z) M) has

type [i:pTe. Tz; &O~]--+ TM.

Next consider

(lambda (&rest a) ((M &rest a) (iV 5 &rest a))) (2)

A type of the form [i : TI ; ~ : m ; .] is assigned to

a, which matches the domain type of M. The type of a

must also be used to construct a tuple type of the form

[i:znt;~:~l;~: ~z ; . ..] to match the domain type of

~. Since incrementing of the labels associated with ~1, T2,

..! is not possible with existing record-based type systems,

we are prompted to introduce an infinitary tuple algebra.

“Infinit ary tuples” admit the usual operations on lists

(car, cdr, and cons), but may be heterogeneous. For exam-

ple in (z), if a has a type of the form [~1 ; rZ ; . . ,] then

the domain type of N must be matched against a type of

the form [znt ; ~1 ; rz ; . ~.]. Though infinitary tuples do

not have labels, the basic framework is still that of R6my’s

record typing. Our infinitary tuple types may be defined

through terms of an equational algebra related to R6my’s,

and the unification problem remains tractable. The com-

plexit y of infinit ary t uples appears justified by our desire to

simultaneously support optional arguments, homogeneous

rest sequences, and heterogeneous rest sequences. (Individ-

ually, each of the above could be encoded in an existing

record mechanism.)

To illustrate the power of the type system we propose,

consider the following programs (expressed in a Scheme-like

syntax).

(define trace

(lambda (fun &optional

(lambda (&rest aTgs)

(display mesg)

(fun &rest arys))))

(rmsg “hello “))

(define tmced-addl (trace addl “entering addl “))

(define tmced-cons (h-ace cons))

The procedure trace takes a procedure and an optional trac-

ing message as arguments and returns a “traced” version of

the original procedure argument. The type assigned sub-

sumes types of the form [([p] ~ ~)] --i ([p] -+ r) and

[([PI+ T) ; ‘fT~wl -+ ([PI + T), wherethe restw-
rameter ar-gs consumes a possibly heterogeneous sequence

of values denoted by the row p. Thus trace can be applied

to any procedure. (The syntax of types used in this intro-

duction is only intended to be suggestive. The full type

system we propose requirea a more powerful syntax.)

(define +

(lambda (&rest nurns)

(1~~(’~lsslist &rest nunw)))

((loop (lambda (1s)

(if (null? 19)

o

(bznq+ (Car i,) (~00~ (CdT 1S)))))))

(loop 1s)))))

The type of list in our system subsumes any type of the

form [~; . ..] + (~ list). That is, listcan take any number of

arguments as long as they are of the same type, and returna

a homogeneous list. The type of + can then be inferred to

express [mat; ~.]-+d.

(define or-map

(lambda (pTed 2s)
(if (null? 1s)

#f

(or (pred (car l.)) (orwzap pred (cdr 1s))))))

(define transpose

(lambda (. &rest 1s)

(l~~~~k~list a &rest 1s)))

((loop (lambda (1s)

(if (ormap null? 1s)

nil
(cons (map caT 2s)

(loop (map cdT 1s)))))))
(loop 1s)))))

The procedure transpose takes lists representing rows of a

matrix as arguments and returns a list of lists. For ex-

ample, (tr-arzspose ‘(I) ‘(2) ‘(3)) returna ((I 2 3)) , and

(transpose ‘(l 2) ‘(3 4)) returna ((1 3) (2 4)). The above

definition requires the matrix’s size to be at least 1 by 1

(one required parameter is specified). The type of tTans-

~ose inferred by our system subsumes any type of the form

[(~ lzst) ; (~ list) ; ., .] -+ ((~ hst) list). The domain is a

homogeneous sequence of lists.

In our type system the procedure map can be assigned a

type of the form [[p] ~ u ; (p list)] + (u ht). This type

is sufficiently generic to encompass all three applications in

the following silly procedure.

(define lotso~aps

(lambda (&rest nums)

(let ((1s (ht &rest m.wns)))

(map make-list
(map addl 1s)

(map + 1s 1s 1s)))))

The two occurrences of the row p impose a type constraint

between the domain of the first argument and the rest of the

arguments passed to map. Without infinitary tuple types, it

appears that three mapping procedures with distinct types
would be required.

In Section 2 we present the static semantics of a simple

language, ML””, with variable- arit y procedures. To solve

the type reconstruction problem for ML””, we introduce in

Section 3 an embedding of ML”a into a subset of Standard

ML [5] enriched with infinit ary tuples and an appropriate

equational algebra on its types, which we call MLD. The

unification problem for the type terms of MLn is solved via

240

ezpTea#ion ::= vaTiabie I pl’oceduTe-cait I let.ezpresaion \ ~-ezp7e.ssion

pToceduTe-ca[i ::= (ezpTessio?z {ezpTession}* [&rest Test-vaTiabie])

leLezpTe9sion ::= (k!t(VUTiab~e eZpTe.9iOn) eZpTeS9iOn)

A-ezpTeasion ::= (lambda ~oTmaisezpTession)

fOTmalS ::= ({vaTiabie}* [&optional {optionai.paTt} +][&rest Test.vaTiab~e])

optional_paTt ::= (vaTiable expTegsion)

Figure 1: Thesyntaxof ML”a

an algebra of infinitary tuples. Through type reconstruct.

tion in MLn , we obtain the principal typing theory and ex-

istence of a terminating type reconstruction algorithm for

ML”’. Section 4 presents several extensions of ML”= that

illustrate the expressive power ofour system. Section 5 out-

lines some directions for future work, including an extension

that appears to make the power of our type system accessible

through a conservative extension of ML’s pattern matching

for tuples. Section 6 concludes.

2 The Language ML”a

In this section we introduce the ML”= language, which sup-

ports ML-style polymorphic type reconstruction along with

optional and rest arguments.

The grammar in Figure 1 defines the syntax of ML”a ex-

pressions. The met a-variables M and N range over expres-

sions, z and y over variables, and a and b over rest variables.

Optional parameters have associated initial expressions that

provide default values when the corresponding argument is

not provided. Rest variables were discussed in the int reduc-

tion. For simplicity, a let expression has only one binding,

which is polymorphic in the manner of ML.

The following grammar defines the syntax of types in
MLva:

type variable a

mark variable e

row variable -fW, -rT

type r ::=crlp+r

row P ::=fP :: P I PPOPT
field q ::=p. r

mark p ::= e [abs I pTe

mark row pP ::=-LUIP::PPI!Z!E
type row p. ::= VT I ‘r :: pT

The domain of a procedural type is a ~ow, which is a se-

quence of fields. Each field cent sins a mark and a type. A

row can also be generated by composing a ma7k Tow and a

type TOW. Following Wand [16], we employ Tow vcaTiabie$ to
express indefinite sequences of terms, including both type

rows and mark rows. The idea of infinite base rows (e.g.

@ comes from R6my’s record terms [11, 14], but our rows

do not have labels and are not sorted. (This last require-

ment is crucial in typing rest variable references.) Equality

of types is defined by the following set, EO, of axioms:

The Eo-equality relation on types generated by ./3’0 is written

‘E. .
Let V(r) be the set of type variables (regardless of sorts)

occurring in ~. A type scheme is of the form VW . ~, where

W is a finite set ranging over all sorts of type variables in

V(7). We identify VO . ~ and r. A typing judgement is of

the form A + M : T, where A is a type environment

(an overloaded mapping from variables to type schemes and

from rest variables to rows). V naturally extends to rows

and type environments. Wewrite A,z:Tor A,a:p for

extension of A, T denotes the collection oft ype terms of all

sorts. u and r denote types, while Q and p denote rows. A

s ort-Tespec ting substit ution s from t he set of variables W t o

T, written s :: W ~ T, substitutes terms only for variables

of corresponding sort,

The typing relation FML.., abbreviated E when there

is no confusion, is the smallest relation satisfying the typ-

ing rules and rule prototypes in Figure 2. The (FUN) and

(APP) prototypes are interpreted as rules by choosing either

to include or omit the contents of option “[. . .]” brackets, and

choosing the left or right elements within choice “{. . . I . . . }“

braces, with each choice made uniformly throughout a pro-

totype.

3 Type Reconstruction

We introduce an extension of core ML, named MLn, incor-

porating a sorted regular equational theory on types pat-

terned after the work of R6my [12]. By translating expres-

sions of ML
?l

“a into expressions of MLn, we reduce the t y e

reconstruction problem for ML”a to that of typing ML .

The types of ML* can be derived from the raw terms of a

parametrized algebra of infinitary tuples, whose unification

problem we prove decidable and unitary.

In a procedure call of n arguments, we create an infini-

tary tuple whose first n fields are marked “present” and

filled with the actual arguments. The rest of the tuple will

be marked “absent” and filled with a default value. A pro-

cedure’s domain type must likewise be an infinitary tuple.

Elements of the tuple are projected based on the formal pa-

rameter specification.

3.1 The Intermediate Language MLn

The MLn language extends a subset of Standard ML with

the following additions: a new sort of type term, named

Tow, a new type constructor, II(_), which takes a row as

argument, and a set of constants operating on tnj%itary

tuples, which behave as heterogeneous lists of unbounded

length. To encode variable-arity procedures we require three

241

A1-ikl:u U =30 T

AkM:T
(EQUAL)

At-a:e e ‘EO p

At-a:p
(Row-EQUAL)

A,a:p!--a:p (Row-VAR)

At-M:r A,x:VW. rkN:u WnV(A) = 0

A+(let(z M) N):u
(LET)

{Aka:pl}
A+ N1:T1 . . . AkNn:Tn

AFM : (pre. n :: . . . ::p~e.r~ ::{p l~op~})-+T

A t- (MNI . .. Nn{&resta l}) : ~
(APP)

[A EML [aI . . . At-Mm :Um]
A,zI:TI,zn. Tn, yI: m,. ... ynz :am]{, a:p[}!riV:T

A + (lambda (ZI . . . z~ [&optional (v1 MI) . . . (Y~ M~)] {&rest a I }) N)
(FUN)

: (pre.~~ :: .. ::pTe. rn[:: ,ul.ul :: .. :: ,um. urn]:: {p I &opT})+r

Figure 2: The static semantics of ML”a

concrete data types that may be expressed in Standard ML

as:

datatype abs = Abs

and pxe = Pre

and ‘a opt = None I One of ‘a

The values Abs and We serve as marks specifying the ab-

sence or presence of an argument in a tuple field. The values

stored in the fields of a tuple are of type ~a opt, where the

constructor None is used as the value of an absent field, and

One tags a value in a present field.

The types we consider are generated by the following

grammar:

type r ::= a\ T+7-[T*T

I ‘r opt I abs] pre I ~(p)

row P::= 71~; P\p*plp opt labs——

CY(and sometimes ~) denotes a type variable. The -i and *
operators construct function and pair types as in ML. The

ML t ypes are augmented by inj%zitary tuple types, II(p). The

type constructor II(.) takes a row argument denoting an in-

finite sequence of types. ~ (and sometimes 6) denotes a row

variable, (- ; -) constructs a new row by adding a type to an

&St,ingIOw,(_I .) constructs a row of pairs from two rows,

opt constructs a row of opt types from another row, and Q,&

denotes a row composed entirely of abs types. Equality of

types is defined by the following set, El, of axioms:

~ ‘~ abe b;=

(a; v)opt%aopt;’y opt—

(~;7)3(B;f)=(~*P);(71~)

The El-equality relation on the type terms generated by El
is written =E,. The typing rules for MLn are those in ML

extended with the rule:

A1-~LnM:g U =El T

AF~Ln M:T
(EQUAL)

We assume the following constants on tuples:

nil : II(ahs * v opt)
—-—

csr:II(a;7)+a

Cdr : II(a ; ~) + rI(7)

cons : a + n(-y) -+ II(a ; -y)

The value nil is an infinitary tuple whose elements are all

the value (Abs, None). The procedure car retrieves the first

element of an infinit ar y t uple, C* returns an infinit ar y t uple

obtained by removing the first element of a given infinitary

tuple, and cons constructs a new infinitary tuple from a

given value and infinit ary tuple. Aside from nil, there are

no infmitary tuples whose elements are all of the same value

(such as those returned by R6my’s elevation operator [13]).

3.2 Transformation Rules

We now give rules for translation of expressions of ML”a

into expressions of MLn. The following synt attic sugar is

used:

M/~ ~!f c er(cc@ M) ...) n>l

~—1 times

M\fi ‘~f cti(. . . it!f). . . n>o

n times

< M,... ;N>d~f cons M(... N)... n~O
v

n times ~ times

M/?i returns the n-th element of the tuple M. M\K re-
turns a tuple containing all but the first n elements of M.

<M) . . . ; N > constructs a tuple by adjoining the objects

M ,.. . to the tuple N.

The transformation function T :: ML”a * MLn

is defined by the rules and rule prototypes of Figure 3.

The option “[. . .]” and choice “{. . . I . . .}” prototype op-

erators are interpreted as in Figure 2. Variable references

242

1. T[z] ~ z

2. T[(let (z M) N)] ==+ let val z = 7~.Ml in T~K] end

3. T[(lkf N1 . . . N. {&rest a I })] ~

T[i’vf] < (pre, One (Z_[lfl])) ,... ,(pre, One(~Nn])) ; {a I nil} >

4. T[(lambda (ZI . . . Zn [&optional (Y1 Ml) . . . (Y~ 1.4~)] {&rest a] }) N)] -

fn r => let val (zl,.. ., z~) = (GETR(r/i),.. . ,GETR(r/E))

[and (yl,...,y~) = (GETO(r/~)(fn () => T[lfl]),...,

GETO(r/n + m) (fn () => T[M~]))]

in { let val a = r\n + m i.n T[~] end

\ if true then r\n + m else nil; T[ff] }

end

Figure 3: Transformation of ML”= expressions to MLn expressions

are unchanged by the transformation. The translation of let

expressions is straightforward. A procedure call in MLVa

is translated into an MLn application with one argument,

which is a tuple with encoded fields. Each field is repre.

sented by a pair consisting of a present or absent mark and

a tagged value. The number of Pre’s in the encoded t uple in-

dicates the minimal number of arguments passed in the pro-

cedure call. If a rest variable is involved in the procedure

call, the tuple will be generated by appending the actual

arguments (now encoded fields) to the tuple value bound

to the rest variable. Otherwise, nil will be used instead

as the base tuple. As described earlier, nil is equivalent

to < (Abs ,None), (Abs ,None), . ..>. and its type may be

viewed as II(abs * al opt ; abs * az opt ; . . .). The

auxiliary functions GETR and GETO used in the code gener-

ated by translation of lambda expressions may be defined in

Standard ML as follows:

val GETR : pre * ~a opt -> ‘a

= fn (left, right) =>

case left of x

as Pre => case right of y

as One(v) => v

val GETO : ‘a * ~b opt -> (unit

= fn (_, right) =>

fn e => case right of x

as One(v) => v

I None => eo;

Both GETR and GETO take a field of an

-> ‘b) -> ‘b

encoded infinitarv —.
tuple. GETR checks for the present mark and then projects

the stored value. It is used for extracting the required ar-

guments. GETO does not refer to the present/absent mark

of the field, so fields passed to GETO may represent optional

arguments. If the field is present, the stored value will be

projected and returned. Otherwise, GETO uses its second

argument, which is a delayed expression that evaluates to

a default value. Those fields that do not correspond to re-

quired or optional parameters are bound to the rest variable,

if one is provided. Otherwise, the if construct forces unifi-

cation of the type ofr\n+m with the type of nil.

To show the translation from ML”a to ML= preserves

the typings of ML ‘a in terms of typings of MLn, we first

I

define aninjection function, h, from types in ML”a to types

in MLn by the following rules:

h(p + ‘r) =

h(p :: p) =
h(p :: PP) =
h(r :: P.) =

h(pp o p.) =

h(p . r) =

h(~~) =

h(t) =

rf(h(p)) -+ h(T)

h(~) ; h(p)

h(~) ; h(p~)
h(~) opt ; h(p~)

h(p~) I h(pr)
h(p) * h(~) opt

‘y. opt

t otherwise

The function h is overloaded on fields, marks, and various

rows, and we assume its natural extensions to type schemes

and type environments.

Let B be the MLn type environment supplying the type

schemes of Abs, Pre, None, One, nil, crm, cdr, and cons.

We write A, A’ for the composition of type environments A

and A’. The type-consistency of the translation from ML”a

to MLn may now be expressed:

Lemma 3.1 (Soundness) For every M, A in ML”a and

r in MLn , if B, h(A) ~~~n Z[M] : T, then there ezists a

type u in ML “a .wch that h(u) = T and A l-MLva M : u.

Lemma 3.2 (Completeness) For every M, A, u in

ML””, if A ~~~wa M : u, then B, h(A) +~~n Z_[M] : h(u).

Both proofs are by structural induction on the derivation

tree of a typing judgement and follow directly from the

transformation rules, the l-~~va and l-~~n relations, and

the definition of h. Additional details of these proofs and

others in this paper will be reported elsewhere [4].

3.3 lnfinitary Tuple Algebra

The terms of types in MLn can be derived from the raw

terms of an equational algebra, which we call the “algebra

of infinitary tuples,” We prove the unification problem for

the terms of this algebra is decidable and unitary unifying.

This result provides the basis for the type reconstruction

algorithm of MLn and, by extension, ML”=.

243

F’w((al ; 71), ~~., (an ; -yn)) 2 f~qcw,....an) ; fRO~(’yl,. . ..-y’n) (f 4P;)

fR”~(8(a,),...,8(&n)) ~ qp’’(al,..., an)) (f aD8)

a ; b’(a) ~ 8((X) (;ab8)

where f E C and m(f) = n

Figure 4: The set, E, of axioms for the infinitary tuple algebra

The algebra is parametrized by a set, C = Un>O C~, of

symbols, where an element ~ E Cn has arity w(~) ~ n. Let

K be the set com~osed of the sorts Tvue and Row, and Z

be the signature ~omposed of the follo-~ing symbo~s of the

indicated sorts:

II(-) :: Row + Type

(-; -j “ TYPe@ ROW + ROW
:: Type ~ Row

fL ,: ,m(~) ~ , f~C,L~K

The 8 symbol is an addition to the row constructors given

in MLn earlier that may be viewed as a row of shared types

analogous to those used by R6my [13, 14]. It is required in

our algebra because unification would not be unitary with-

out its presence. An example on this is given later. Let V

be a denumerable set of variables with infinitely many vari-

ables of every sort in K. The set of terms of the infinitary

tuple algebra generated by X and V is denoted T’(X, V), or

simply T.

Let E be the set of axioms in Figure 4. All axioms are

collapse-free; that is, none are of the form z ~ twhere z is a

variable that occurs in t (but z # t). They are also regular,

since the terms on either side of each axiomatic equation

contain the same set of variables. The E-equality relation

on T generated by E is written =E.

Definition The algebra of injinitary tuples is the equational

theory T(E, V)/E (a quotient of terms by E-equality).

A set of axioms is syntachc if any two equal terms can

be proved equal by applying axioms at most once at the

top occurrence. [9, 10] See Appendix A for a more formal

definition.

Theorem 3.1 E is syntactic.

The proof is tedious, involving twelve cases on the outermost

structures of both sides of an equivalence. See Appendix A

for more detail.

The resulting equational theory, =D, is thus syntactic.

From Kirchner’s theory of unification for syntactic equa-

tional theories [8], we deduce that unification can be ex-

pressed for our equational theory via rewrite rules in which

unification of terms with conflicting top symbols is resolved

via the following rules:

Since the rows in our algebra are all of one sort (unlike

R6my’s algebra of record terms), some of the axioms are

subtenn-collapsi?ag (there are axioms of the form t~ t’in E

such that t is a subterm of t’).Hence =E is not strict (there

are terms in T that are E-equal to a subterm of themselves).

Though this behavior complicates the process of obtaining

a terminating unification algorithm, we have the following

property of non-strictness in our algebra:

Lemma 3.3 If p =D Q and p is a (proper) subteT?n of Q,

then theTe eZZ~t9 a teTm T 91Lch that p =E ~(~).

The proof is based on the forms of the axioms in E and

Corollary A, 1 in Appendix A.

For strict equational theories, cycles are handled by the

so-called “occurs-check” rule. Since our theory is not strict,

we instead use the following rules, which are justified by

Theorem 3.1 and Lemma 3.3 (a cycle uaTiab~e is one that

participates in a cycle [8]):

fRO’”(Pi, . . . ,pn)~.-y~e

-y is a cycle variable in fR”w(pl, P-)

(7-;p)~-f~e ~ is a cycle variable in (T ; p)

tl(r)=p=-y=e

t~zle

z is a cycle variable in t

t is not of the form (~ ; p) or fR’’W(pl, pn)

Failure

As mentioned earlier, the addition of the 8 symbol (and its

associated axioms) is crucial for unification in our algebra.

For example, with only the (f ~ D ;) axiom in Figure 4, the

solution to a unification problem such as (a ; ~) ~ y would

not be unitary.

The basis for obtaining a terminating, syntactically

sound and complete type reconstruction algorithm for the

type systems of MLn and ML”a may now be stated.

Theorem 3.2 Unification in the algebra of inj%aitcwy tupies

is decidable and unitary (every solvable unification problem

has a principal unifier).

The unification algorithm is based on the above rewrite

rules. The algorithm is unitary since no rule int reduces a

disjunction. Termination is proved by showing a decrease

of the number of symbols f Row and (.; -), lexicographically

ordered by increasing rank (corresponding to the depth of

their nesting).

3.4 Principal Typing Theory and Type Reconstruction Al-

gorithm

We show that the type system of MLn has the principal

typing property and a terminating type reconstruction al-

gorithm, and demonstrate that ML”a inherits these results.

Inst imtiat e the algebra of infinit ary tuples given in the

last section by letting CO = {pre, abs}, Cl = {opt}, Cz =

{~. ~ .), (- * -)}, and C~ = 0 for n ~ 3. Let the resulting

signature, Z’, be restricted to cent am only the following

symbols, given with their sorts (II(-), (-; -) and 8 are not

listed):

Row
ab.s :: Row

opt Row :: Row +- ROW

(- * -)R”W :: Row@ Row~Row

Letprenpe, abs%p’, optfip’, (_ * _)~P’, and(_~_)~P’

be synonymous with pre, abs, opt, *, and +; and let

abs
Row Row, opt ,and(. * -)RO’” b e synonymous with abs,

opt, and *. The resulting equational theory T(X’, V)/li’is— —

named the algebra of MLn types.

Corollary 3.1 Unification in the algebra of ML= types is
decidable and unitary.

Theorem 3.3 (R4my [12]) Eztension of the ML type systrn
by allowing a sorted regular equational theory on types pre-

serves principal typings if unification in the theory is decid-
able and unitary.

Since the equational theory GE is regular and its unifica-

tion is decidable and unitary, by applying Theorem 3.3, we

obtain:

Corollary 3.2 There exists a terminating, syntactically
sound and complete type reconstruction algorithm for ML=

that deduces principal types.

Hence the ML”” type system has the desired property:

Theorem 3.4 There exists a terminating, syntactically

sound and complete type reconstruction algorithm for ML”a

that deduces principal types.

The proof follows directly from Corollary 3.2 and Lem-

mas 3.1 and 3.2.

4 Extensions

In this section we consider several extensions of MLva that

illustrate the power of its variable-arity typing framework.

First we extend the type terms of ML”= to accommodate

ML base types and type constructors, such as irat and list

type r ::=...[bl~c
type row p~ ::= . . . l!!lPEl~(~)

where b and ~ denote base types and base rows, and c and c

denote unary type constructors and row constructors. The

set, EO, of type equality axioms must then be extended to

include the following:

It is easy to check that Theorem 3.4 still holds with the

addition of these rules to the equational theory =EO.

Some examples of variable-arity procedures that may be

typed in ML”a follow:

+:(~o~)~int

list : (~ o ~(a)) -i (a list)

map : (pre . ((~ o 6) + a) :: (-y o (I5 ~))) + (a id)

The primitive + takes any number of arguments as long

as they are all of type int. The row variable, ~, is univer-

sally quantified and may be instantiated to any mark row

of the form pTe :: . . . :: pre :: U&, expressing the number

of arguments in a given call. The primitive lW t crest es a

homogeneous list by putting a shared type restriction on its

arguments. The call (list &rest a) may be used to package

an unspecified number of rest arguments bound to a into a

list and forces a to be homogeneous.

Though + and list may be typed with much simpler

variable-arity type systems, map illustrates the power of

ML”a. It takes at least one argument, which must be a

procedure. The remaining arguments must be homogeneous

lists of certain types that are compatible with the domain

type of the procedure. The two occurrences of row variable

6 guarantee this congruence. The number of list arguments

must also be compatible with the arity of the procedure,

which is assured by the two occurrences of row variable -y.

For inst ante, consider

(map addl (list 12 3)) (3)

(map + (list 1 2) (list 3 4)) (4)

(map make-list (list I 2) (list “a” “b”)) (5)

The primitive addl takes one required integer argument

only. In typing (3) the type of map is instantiated by substi-

tuting (p~e :: ~) for ~1 (znt :: 6’) for 6, and intfor a. In (4)

245

the type of+ is instantiated as (pTe :: p?e :: ah) o ~ ~ int

and the type of map is instantiated as

(p~e . ((p~e :: p~e :: ~) o~-+ int) ::

(p~e :: pre :: *) o (int list))
-i (2nt list)

by substituting (pre :: pTe :: ~) for ~, w for 6, and znt

for a. The primitive make-list, for which the type scheme

(pre mt :: pre a :: ~ o ~) ~ (CY list) is assigned, takes

an integer argument n and a second argument v and re-

turns a list of v’s with length n. In typing (5) the type

of make-kst is instantiated by substituting string for a and

6’ for T, while the type of map is instantiated by substi-

tuting (pre :: pre :: ab) for ~, (int :: stTing :: 6’) for 6, and

(9tring list)for a.

The ML”a optional.part declaration may be extended to

include a group of optional variables along with an optional

boolean-valued variable indicating the presence or absence

of actual arguments for the group:

optional-part ::= ([vaTiable] {(variable expression)}+)

The ML”= type system has the power to assure that all

arguments corresponding to the same group of optional pa-

rameters are either present or absent in a given call. The

(FUN) rule is easily modified to give the same field mark

p to all optional parameters in the same group, instead of

distinct marks. For example, if

(lambda (&optional ((c O) (y O))) (+ z g))

is bound to f, the calls (~) and (f 1 2) are both well-typed,

but (~ 1) is not.

Let expressions may be extended to allow polymor-

phic binding of rest variables. We extend the ML”=

let-ezpTes9ion syntax to allow binding of a sequence of val-

ues to a rest variable:

let-ezpTes9ion ::= (let binding expression)

binding ::= (uaTiable expression)

\ (Test_vaT’iabie
{ezp~ession}” [&reSt rest_va?’iub~e])

Semantically, (let (a Ml . . . Mn &rest b) M) is equiv-

alent to ((lambda (&rest a) M) Ml . . . M~ &rest b).

The second ?’e8t-vaTiabie in a binding allows extension of a

sequence of values provided by another rest variable. The

type environment is extended by mapping rest variables to

row schemes and it is straightforward to extend the (Row-

VAR) and (LET) rules of the ML”a type system. Let-bound

rest variables then may be referenced polymorphically. For

example,

(let (a 1 2)

(+ [~ H Mm &rest a)

. . . Nm &rest a)))

could then be well-typed, while its semantically equivalent

counterpart is ill-typed.

Another possible extension is to explicitly specify absent

information while passing a sequence of arguments in a pro-

cedure call:

procedure-ca~~ ::= (ezp?’ession

{argument}’ [&reSt rest_variab~e])

argument ::= ezpTes9ion I ?

The transformation function, T, encodes any argument of

the form ? into (Abs, None). For example, let

(lambda (&optional (z 1) (g 2) (.z 3)) (+ ~ g z))

be bound to g. The call (g 1 ? –1) would then return 2.

Extension of ML”a to support keyword parameters

with default values presents no difficulty. Garrigue and

Ait-Kaci [7] use a very different record calculus to support

keyword parameters. Their procedures are implicitly cur-

ried, which dramatically alters the type inference problem.

5 Future Work

The complexity of ML’s syntax makes the details messy, but

it appears that based on this work a conservative extension

of ML to support “enhanced tuples” is possible. This would

make all the power of the type system proposed in this paper

accessible in ML. The tuple construction syntax would be

[&rest a]) andextended with a form such as (el ,.. ., en ,

tuple pattern syntax such as

(PI,. . .,pn[, &optional p’l=el,. . .,p’m=em][, &rest a])

would be supported. The static (and dynamic) semantics of

this extension could, it seems, be expressed with a straight-

forward translation into MLn similar to that of Figure 3.

Since lambda-bound variables are not generic in ML”=

(as in ML), arity-polymorphism may be limited. For exam-

ple,

((lambda ($) (+ (f 1) (i 2 3)))+)

is ill-typed, since f is not allowed to take both one and two

arguments, though the semantically equivalent let expres-

sion is well-typed. Subt yping may solve this problem: if we

introduce an unknown mark that is a super-type of both

pTe and abs, written pTe ~ unknown and abs ~ unknown,

then the lambda-bound variable f above could be typed

(c ~mt :: unknown. mt :: ~ o b) d int with the set of type

constraints pTe ~ e and ~ ~ ~.

In such a subtyping system, we could also define list(and

+ similarly) using standard primitives as follows:

(define lwt
(lambda (&optional (pre? (u nil)) &rest vals)

(if pr-e?

$jM v (list &rest vals))

The procedure list would then be typed (unknowno O(a)) ~
(a hst), which is as general as the type given in Section 4.

With mark subtyping we would also be able to type the

primitive apply, which takes a procedure and a list as argu-

ments and returns the result of passing the values in the list

argument to the procedure argument:

apply : (p~e . (unknown o 8(cY) a ~) ::

pre . (a 2i9t) ::

&o-f)

+P

The procedure passed as the first argument to apply would

be required to accept any number of arguments, all of the

same type. We might then define + as follows:

(define +
(lambda (&rest nums)

(let ((1s (list &rest nums)))
(if (null? 19)

o
(binary+ (caT h) (app~g + (cdT k)))))))

246

Another approach might be to treat abs as a field rather

than a field mark and employ the subtype relation abs +

unknown. ~ (i.e. types in absent fields are forgotten). Th=

would solve the above problems and also enhance the poly-

morphism of lambda-bound rest variables. Whether such

type systems have desirable properties, such as principal

types and decidable type reconstruction, remains to be in-

vestigate ed.

The procedure map introduced in Section 4 may be pro-

vided as a primitive with the indicated type. Though our

type system allows map to be defined using standard primi-

tive procedures, it appears that it is not possible to do so in

a manner that yields a type as general as that given in Sec-

tion 4. It remains to be investigated whether an extension

of our technique, or any other, can support the inference of

the desired type for the map procedure from its definition

in terms of more primitive procedures.

R.4my conjectures that his projection and elevation oper-

ators may be extended to nested records [13]. An analogous

extension of our system to support polymorphism of nested

infinitary tuples may be possible. Infinitary tuples proba-

bly have applications in contexts other than variable-arit y

procedures in which such an extension may prove especially

desirable. Possible areas include type systems for multiple

returned values and scaling operators applied to trees, ar-

rays, and other compound structures.

6 Conclusion

We have defined an extension of core ML that supports

variable-arity procedures along with a flexible polymorphic

type reconstruction system. The extension preserves prin-

cipal typings and has a terminating type reconstruction al-

gorithm that is sound and complete. A number of examples

have illustrated the expressive power of this type system.

Our work employs elements of the record typing systems of

Wand and R6my, as well as the theory of equational unifi-

cation. The typing mechanism presented in this paper has

been implemented in Infer [6], a statically-typed dialect of

Scheme. Though limited support for variable-arity proce-

dures maybe obtained with substantially-simpler type sys-

tems, we believe our algebra ofinfinitary tuplesis justified

by its expressive power.

References

[1]

[2]

[3]

[4]

[5]

Military Standard Ada Programming Language. No.

ANSI/MIL-STD-1815 A, American National Standards

Institute, New York, N. Y., 1983.

W. Clinger and J. Rees (Ed.). Revised4 Report on the

Algorithmic Language Scheme. Lisp Pointers, 4(3):1-

55, 1991.

R. K. Dybvig and R. Hieb. A New Approach to Proce-

dures with Variable Arity. Lisp and Symbolic Computcz-

tion: An International Journal, 3(3):229–244, Septem-

ber 1990.

H. Dzeng and C. T. Haynes. Typing Variable-Arit y Pro-

cedures with Infinit ary Tuples. Technical Report, Com-

puter Science Department, Indiana University, 1994. To

appear.

R. Harper, R. Milner, and M. Tofte. The Definition of
Standard ML. MIT Press, 1990.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

C. T. Haynes. Infer: A Statically-typed Dialect of

Scheme (preliminary). Technical Report 367, Computer

Science Department, Indiana University, revised 1994.

J. Garrigue and H. Ait-Kaci. The Typed Polymorphic

Label-Selective J-Calculus. In Conference Record of

POPL ’94: 21st A CM SIGPLA N-SIGA CT Symposium

on Principles of Programming Languages, pages 35–47,

January 1994.

J.-P. Jouannaud and C. Kirchner. Solving Equations

in Abstract Algebras: A Rule-Based Survey of Unifica-

tion. In J.-L. Lassez and G. Plotkin, editors, Computa-

tional Logic, pages 257–321. MIT Press, 1991.

C. Kirchner. Computing Unification Algorithms. In

proceedings of the First Symposium on Logic in 6’om-
puter Science, pages 206-216, 1986.

C. Kirchner and F. Klay. Syntactic Theories and Unifi-

cation. In Proceedings o.f the Fifth Symposium on Logic

in Computer Science, pages 270–277, 1990.

D. R6my. Type Inference for Records in a Natural

Extension of ML. Technical Report 1431, INRIA-

Rocquencourt, BP 105, 78153 Le Chesnay Cedex,

France, May 1991.

D. R6my. Extension of ML Type System with a

Sorted Equational Theory on Types. Technical Report

1766, INRIA-Rocquencourt, BP 105, 78153 Le Chesnay

Cedex, France, October 1992.

D. R6my. Projective ML. In Proceedings of the Nine-
teenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 66–74, January 1992.

D. R6my. Syntactic Theories and the Algebra of Record

Terms. Technical Report 1869, INRIA-Rocquencourt,

BP 105, 78153 Le Chesnay Cedex, France, March 1993.

G. L. Steele Jr. Common Lisp: The Language. Digital

Press, 1984.

M. Wand. Complete Type Inference for Simple Objects.

In Proceedings of the Second Symposium on Logic in

Computer Science, pages 37-44, 1987.

A Appendix: Syntactic Theory

Consider the infinitary tuple algebra T(Z, V)/E of Sec-

tion 3.3. First let E be extended with the trivial axiom

z ~ z. We write t * s for the relation such that s can

be obtained by replacing a subterm of i! with the result of

applying an axiom in E. Note that - is symmetric. The

equational theory of E is the transitive closure of the above

relation, written -“ (thus =r3 is equivalent to W*). We

write ~ for the sub-relation of i+ such that the substitu-

tion of an axiom is only applied to the outermost term, while

~ is the sub-relation of w where the substitution is only

applied to a subterm at depth n or greater. Juxtaposition
of relations denotes their composition, and X G Y indicates

that X is a sub-relation of Y.

Definition E is syntactic if and only if

** g (a)*L (=)”

247

Lemma A.1 (R6my [14]) E is syntactic if and only if

& (&)*& g (&)*& (=)”

We obtain a rewrite system, R, over T from the equations

of Figure 4 by rewriting from right to left in the first two

equations and left to right in the t bird equation, naming

these rewrite rules (; Df), (8P ~), and (; D8), respectively. R
defines a relation ~ on terms of T, which is a sub-relation

of w and is anti-symmetric. We say t contracts to s if t -i s

and t reduces to s if t-+*s.A term t is in normal form if it

does not contract to any term.

Definition The size of a term tin T, written El(t),is defined

by the following rules:

@(x) = 1 VZEV
@(II(p)) = 1+ e(p)

e(f-(T1 ,.. .,n))=l+n+q T o)+)+...+ qrn)
qfROw(P,, . ..)%z))=l+wl)+. ..+%t)
G(T ; p) = 1 + e(r)+ @(P)
0(8(7’)) = 1 + E)(T)

“Induction on T“ will mean induction on the size of T. The

basis case considers terms of size 1, which includes all vari-

ables and terms constructed by nullary-arity function sym-

bols.

Theorem A.1 (Strong Normalization) There are no
inj%wte reduction sequences in R.

Proof It is easy to prove that for every tand s in T if t -+ s

then ~(i) > El(s). The proof then follows by induction on

T.
❑

Theorem A.2 (Confluence) If t ~“ s and t -i” u, then
there exists a term v such that s ~“ v and u +* v.

Proof By induction on T.
❑

From these theorems we have:

Corollary A. I FOT every t, s in T, if t =E s, then there

exists a unzque term u in normal form such that t -“ u and

g -+’ u.

In other words, terms that are E-equal reduce to the same

normal form.

An equational theory is always a congruence; that is, if

t;= Es~fori =l). ... n,then~@l,tn)=B ~(sl9~)~).

Our next lemma states that the converse also holds for our

theory. That is, for every t and s in T, if t and s have

the same top function symbol and t DE s, then their corre-

sponding components are E-equal to each other.

Lemma A.2 ~f f(tl, . . ,tm) =D f(sl, Sin), thent; =E s;

fori=l,..., n.

Proof By induction on T.—.
Basis: Trivial.

Induction Step: Assume t =E s where tand s have the same

top function symbol, then by Corollary A.1 there exists a

term u such that t +“ u and s -’ w

Case 1: t= f~”w(pl,..., p~) A s= f~”w(e,,...,~~)

=+- u= f~”~(u,,..., un) (by R)

-pi+*uiAQi+*ui Vi E[l, n]

~ pi z13 Q; vi~[l, n]

Case 2: t= 8(T) A s = ~(u)

(Subcase 1) u = tl(v)

=+r-+*v Acr~*v (by R)

=+?_=EU

(Subcase 2) u = ~ ~“~(ul,..., un)

=+ ~=f~pe(~,,...,~~) A a= f~p’(u,,..., un)

A~i+*~’i A ~i+’u’i Vi~[I, n]

A t+“ fR0w(8(T’,))....~(T’n))

==+ ;(:’;:;R;J’yw”~” ~f$”))

(by R)

(by Case 1)

- ~’i ‘1? U’i ‘di ~ [l, n] ‘ (by Hypothesis)

* Ti =E T’i GE ~’i GE ~i V ; G [1, ~]
=+r.Eu (by Congruence)

case 3:t=(~; p) As=(cr ;@)

Involves three subcases similar to the previous cases.
❑

We are now prepared to prove our main result (presented

earlier as Theorem 3.1).

Theorem A.3 E is syntactic.

Proof The proof, based on Lemma A. 1 and Lemma A.2,

is divided into twelve cases for all possible pairs of terms

of the relation ~ (~)”~ . For each such pair of terms

r and u, it is proved that if ~ ~ (~)” ~ a then
o I, Co

T (~) H (-) C. Symbols written under H indicate
the associated axiom of Figure 4.

Assume ~ ~ (~)’~ o.

.

Case 1: (~<~;
& ~l,m, &

,abf)

If ‘r= ~R”W((7,; p,),..., (~m; pn)),

then u = ~ROW((al; ,oI), (an; .Q~)) and

==5

===+

==+

==+

Case 2:

7- +3 (py.rl,., ,, ’m) ; p’w(pl,.,.,pn))

(~)” (ffhme(en,..., un); fR’’w(e,,..., en))
Au

fR”’’’(p,, . . .,pn)%* fR”’’’(Q,, en), en)
A Ti ++” ffi Vi6[l, n]

(by Lemma A.2)

Pi**ei Vic[l, n]

r (M)* fJ

T (=)”~ (~)” @

(.:f(● ~..i)=) ~

If ‘r = (f~pe(~,,...,~~) ; f~ow(p,, . . .,pn)),

then u = (~~pe(ul, . . . ,CTn) ; ~ROW(el, en)) and

248

‘r +5 f:wl;d ...,(~n;fk))
(23) fROw((fm;@l)}..., (an; Qn))

* ‘J- (23)” u
*

=+- T (23)*8+(s) u

7- +5 qpqrl,..., %))

(23)” qf~p’(q,..., c%))

Au

+ ‘Ti**Ui Vi C[17n]

~ .j- (fi)” fmpe(u~, an); fRO’’’((Ul),), 8(U*))

+$ fRow((c71; 13(UI)), (an; ~(un)))

p+” ~

Cases 6–12 are similar.
❑

249

