
Collecting More Garbage

Pascal Fradet

INRWIRISA

Campus de Beaulieu, 35042 Rennes Cedex, France

fradet@irisa. fr

Abstract

We present a method, adapted to polymorphically typed func-

tional languages, to detect and collect more garbage than exist-

ing GCS. It can be applied to strict or lazy bigher order
languages and to several garbage collection schemes. Our GC

exploits the information on utility of arguments provided by

polymorphic types of functions. It is able to detect garbage that

is still referenced from the stack and may collect useless parts

of otherwise useful data structures. We show how to partially
collect shared data structures and to extend the type system to

infer more precise information. We also present how this tech-

nique can plug several common forms of space leaks.

1 Introduction

Functional programs tend to be inefficient in their use of store.

They usually allocate impressive amount of memory space and

spend a significant part of their time garbage collecting. Much

work has been done on reducing the overhead of garbage col-

lection. In particular, various sophisticated garbage collectors

(GCS) and algorithms have been proposed to this aim [8][29].

However, very little work has been done on extending the col-
lecting power of GCS. In general, they retain the complete

reachable structure.

We present a method to detect and collect more garbage
than existing GCS. This method is designed for strongly typed
languages and it can be seen as an extension of standard GCS
for these languages. Our GC is able to detect garbage that is
still referenced from the stack and may collect useless parts of

otherwise useful data structures. This technique places no

overhead on normal execution. It can be applied to strict or

lazy higher order languages and can be used to improve differ-
ent kinds of GCS (stop©, mark&sweep, ...). The key
property exploited here is parametricity [24] [28], a theorem

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

satisfied by Hindley/Milner polymorphic type system [2 1].

Parametricity can be applied to deduce information on the util-

ity of arguments from the polymorphic type of a function. For
example, the function length : List ~+lnt can be reduced re-

gardless of the actual elements of the list. This property is just

an instance of Wadler’s “free theorems” [28]. It holds for all

functions of this type and allows a garbage collector to collect

the elements of their list argument.

Although our goals are different, our technique shares

marry common points with tagless garbage collection which
we quickly review in section 2. In particular, type information

is attached to return addresses and closures, the stack is ex-

plored in a bottom-up fashion and the process involves unifica-

tion. However, if a tagless GC aims at completely reconstruct-

ing types, we try on the contrary to minimally instantiate poly-

morphic types. This point is crucial since only structures asso-
ciated with a type variable will be collected. We illustrate this

difference on an example in section 3.1. We then formalize the

collection process and prove its correctness using parametrici-
ty theorem (section 3.2). Function member seems to invalidate

our approach: it has type cx+List cx-+llool but does need the

elements of the list. This comes from polymoqhic comparison

operators which are treated in section 3.3.

We suggested that length can have the elements of its list

argument collected but what if this list were shared by a func-
tion needing the complete structure? This problem of partial
collection of shared structures is addressed in section 4.

Obviously, Hindley/Milner type checking has not been
designed as a utility analysis and it loses information useful for

our purposes in many cases. Section 5 introduces two simple

extensions of the standard typing allowing to infer more suit-

able (i.e. less instantiated) types. The inference algorithm re-

mains simple and close enough to the standard one.

Many functional programs suffer from space leaks and

traditional garbage collection is usually not a big help. Such

programs often run out of memory and fail to terminate. This
is one of the most interesting applications of our technique and
we present in section 6 how it can plug several common forrrs

of leaks. After discussing some implementation issues in sec-
tion 7, we conclude by a short review of related work.

LISP 94- 6/94 Orlando, Florida USA
0 1994 ACM 0-89791 -643-3/94[0006,. $3.50

24

To simplify the presentation, we often suppose an under-

lying copy garbage collection scheme. We also assume a stack

based implementation in which the GC is invoked only at the

beginning of a function and all the roots of the accessible
structure are in the stack. The same ideas would adopt to other
implementation choices.

2 Tagless Garbage Collection

Statically-typed languages do not need run time tags for nor-

mal execution. However their implementations do use tags to

support garbage collection and this inflicts a time and space

overhead on program execution. The basic idea of tagless gar-

bage collection is to keep the static type information associat-

ed with each variable and procedure parameter available at run

time. Usually this information is placed in the code (just before

the return address) as templates (interpretive method) or as GC
routines (compiled method). The GC uses the return address of

each activation record on the stack to access the associated in-
formation in the code and to determine the type of all the vari-

ables of that activation record. It is extended to higher-order

languages by associating type information with the function

part of closures. The advantage of removing tags is that it

saves space and that overhead is placed on garbage collection

rather than on normal execution. This method is easy to imple-

ment for Pascal-like languages where every variable has a
fixed type [6]. Tag-free garbage collection gets more compli-

cated with polymorphically typed languages [2] [1 1]. A poly-
morphic function is usually implemented by a single code and

the template associated with its activation record contains

polymorphic types. Relying only on this information the GC
would be unable to trace the structures associated with type

variables. However, types in an activation record depend on

the types of the arguments the function was applied to ; that is,

they depend on the types associated with the previous activa-

tion record. The solution is to unify the type of the function

called with the types of its arguments found in the previous ac-

tivation record. By traversing the stack from the oldest activa-

tion record (corresponding to the top level expression which is

not polymorphic) to the most recent, all type variables will be

bound using unification.

Example 1 Let us consider the following program and its
evaluation using call-by-value.

let rec append 1, 12= case 1, in

nil :12

cons x xs: cons x (append xs 12)

in length (append [[1];[2]] [[3];[4]])

append: List tx+List cx+List cx length : List ct+Int

If the garbage collector is invoked at the beginning of the first
call to cons the stack looks like

[[31;[4=+
[2]- I

I

‘ll-~p~~recum’return address co.msponding

return address corresponding
to the call

I - (append [[1];[2]] [[3];[4]])

Figure 1

The information associated with a return address includes the

types of local variables and the actual types of the arguments

of the callee (corresponding to the next activation record).

Here the first activation record does not have local variables

and the two parameters of the callee (append) are of type List

(List Int). The GC analyzes the first return address ; no local

variables have to be traced and the next return address is ana-

lyzed with the information that append has been called with

two arguments of type List (List Int). The second activation

record corresponds to a polymorphic function with two param-

eters of type List et ; ithas a local variable of type et and the
two parameters of the callee are of type List ct. Type variable a

is unified with List Int, the local variable is found to be of type

List Int and the two parameters of the callee of type List (List

Int). The GC traces and copies the local variable according to

its type (List Int) and continues the exploration of the stack. Cl

This method is described in [12]. There are cases involv-

ing higher-order polymorphic functions where types cannot be

completely reconstructed during garbage collection. A solu-

tion is to generate explicit tagging when necessary [1]. These

tags are taken as extra arguments by functions and will be
propagated at run time.

3 Collecting More Garbage

3.1 The basic method

Our collecting method is based on the same technique as tag-

less garbage collection. Type information is associated with re-

turn addresses and the GC explores the stack, from the oldest
activation record to the most recent one, performing unifica-

tion. However, our goal is to detect parts of the reachable ob-
jects which are umecessary for a correct execution. Hindley/
Milner type checking yields some kind of utility information: a

function of type List a+lnt does not need the elements of the
list for its execution*. Contrary to tagless garbage collection,
we do not attempt to completely reconstruct the types of acces-

* We assume for now a language with no polymorphic comparison
operators ; they are considered in section 3.3.

25

3.2 Formalizationsible objects ; we rather try to minimally instantiate polymor-
phic types.

A return address can be seen as a continuation of the
form ax,. . . .LXWLZ E. The xi’s represent the local variables of
the activation record and r the result of the function call come-

sponding to this return address. Thus an activation record can

be seen as a closure (hl. . . .Lx..LK E) X1.. .Xn and the type of

the function is used by the GC to trace the record.

Our basic method can be described as follows

● The information associated with each call (i.e. return ad-

dress) is just the type of the continuation. For example, in

length (append [[1];[2]] [[3]; [4]]) the continuation of the

call to append is Arlength r which has type List a+lnt.

c The GC explores the stack as a tagless GC but does not

unify the type of the callee with the types of the actual ar-

guments of the call, It unifies the type expected by the con-

tinuation with the result type of the next activation record.
When the GC has explored an activation record

(lxl...?xWLrLr E)
01+ ,.,+ml+ar+o) X1.X”

it analyzes the next activation record

(Lyl...kym~K E)T1+ +Tm+T’+T) Y1... Ym

by unifying the type ‘t of this record with the type crr ex-

pected by the previous record (i.e its continuation).

Example 2 Let us return to our previous example where the

GC was invoked during the first call to cons. At this point the

stack can be represented as follows

[[3];[4]]

@

[2]
b. l.rcons x r

[1] a + List a + List a

Lrlength r

List a --+ Int

Figure 2

The oldest activation record has type List a+Int and no local
variables, the GC analyzes the next return address which has
type a +List a+List a (the unification with the type expected
by Lzlength r leaves it unchanged). The argument ([1]) in this
activation record has type a and is collected. The GC analyzes
the last return address ; its type a +Lisf u +List a allows the

GC to reclaim the first argument ([2]) and the elements of the

second, All the sublists (fl], [21, [3],[41) have been collected
and the new heap contains only two cons cells and a nil. Cl

We represent a stack of activation records as applications of

closed functional expressions:

(hl. . ..kq+ E) X1...Xm ((kyl. . ..kywkrF) Y1... Yn (...

. . . ((1.q. . .. IzPG)Z1... ZP))..))

The functions (bl. . ..). (Lyl. . ..) represent return ad-
dresses and the last function (lzl. . ..) is the function which has

invoked the GC. The arguments Xl, YFZ~ contains the roots of

the accessible structure and belong (as the stack itself) to the

following set of expressions:

Objects S::= VI S~.S2 I nil lf.S1...Sn

where V represents basic values (integers, booleans, ...). E1.E2

and nil lists and ~ S1.. .Sn closures (f being a function (i.e.
code)). We consider only closures and lists but the approach

can be readily extended to deal with user-defined types. The

associated types are defined by

~pes ‘T::= ’V’l Z31T+Tl List Z” P ::= %1 List P

where V represents type variables and ‘B basic types (Int,

Bool,.. .). T represents printable values and we assume that

types of programs (i.e. stacks) belong to 2?We use the follow-
ing conventions:

The stack in Example 2 can be represented by the expression

of type Int

fIV-2 [11 (T-2 [21 [[31;[411))

with f,= Lr length r and f2 = Lx.lx cons x r

The intuition that polymorphic functions do not need the

complete structure of their arguments for proper execution is
formalized by Reynolds’ abstraction or parametricity theorem
[24]. Wadler has shown in [28] how to use parametricity to de-

rive theorems from types. Actually those theorems are just
what we need to justify our approach. For example, the fact

that a function ~ of type List a+Int can be reduced regardless

of the elements of the list is formalized by its associated “free”
theorem: Va: A+A’ f = f o (map a). In the theorems from

types, functions (here a) are associated with type variables and

the theorems hold (in the pure polymorphic l-calculus) what-

ever these functions are. However, for practical languages,
where a fixed point operator is added as primitive, the theo-

rems hold only for strict functions.

Here, we formalize the collection process by associating
with each type variable the strict function AA-. For example,

the theorem deduced from type List a+ Int implies that

f =fo (map (Ax.1))

so f can have the list elements of its argument reclaimed by the

GC.

26

The collecting process of a stack of monomorphic type z

can be described as gcn stack with

(gCl) gca(E) =1

(gc2) gczffx, . . .Xn) = f(gct, x,) ... (gc,n x“)

with ~jT,+...+ Tn+ T

(gc3) gcJv) =V

(gc4) gc~i,tz(E.F) = get E . gc~i~t ~F

(gCS) gCLi~~~(~~l) = nil

An important point to note is that in order to carry on
garbage collection (get) inside a closure the current type infor-

mation ‘c must be the type of the closure (rule (gc2)). In prac-
tice, as with activation records, this property is ensured by

unification. When a closure is encountered, gcz takes the type

information associated with the function of the closure, say

‘cl+...+ ~n+ q+,+... + ~P ; from the numbers of compo-

nents, say n, of the closure it deduces the result type,

Zn+l+...+ ZP which is unified with z. So, activation records,

higher-order functions and unevaluated arguments, which are

all represented by closures, involve preliminary unifications.

Example 3 Let us return to our previous example

stack = f1&2 [1] (fZ [2] [[3]; [4]]))

with fl = (Azlength r):List a+Int and fz z b. k~cons x r

gcln, stack =fl (gcti,, ~ (fz [11 (fz [2] [[3];[4]]))) (gc2)

~~:List a+Int

= f, (fZ (gca/1]) (gcList ct(f2 [2] [[3];[4]]))) (gc2)

\fi:ct+List a+List u

= f, V2 J- &z (WJ21) (mist CJ[31;[411))) (gc1),(gc2)

= fl &2 L ti2 L ((gd3]).(gcL,st a[t411))))) (gcl),(gc4)

= fl @z~ (Y2 J- [J-;-u)) (gcl),(gc4),(gc5)

If the stack was fl(f~ fq [(1,2); (3,4)])

with A= Uhl.map f 1: (~+i3)+List fi+List 8

and fi= Ax.(’fst x)+l : (Int,&)-+Int

then ci and 8 would be unified with Int and ~ would be unified
with (Int,&). Only the second component of pairs would be re-

claimed (i.e gc,., stack = f, r’fqfq [(I, JJ;(3,JJ])). c1

Activation records are basically treated the same way as
closures. However, with a strict semantics, there may be func-
tions which do not use the result of the next activation record,

that is functions of type z,+... +a+z As specified, the func-

tion get would collect all the activation records above. We do

not allow this and consider only garbage collection of heap ob-
jects. The following proposition states the correctness of the
collection.

Property 4 For all closed stack of type n stack = gc= stack

Proof. [sketch] For brevity sake, we do not redescribe the
parametricity property, how to read types as relations and to

derive theorems ; the reader is referred to [28]. In our case we

fix the functions (relations) corresponding to types variables to

be A.x.l. We first prove, by structural induction, that for any

closed stack object S and any type ~ for which gcz S is defined

then (S,gcTS) e T Tbeing the relation corresponding to r Fur-
thermore, it is easy to show that the relation corresponding to a

type n in P is the identity relation hence (S,gcX S)e I that is

S=gcx s Cl

3.3 Polymorphic comparison operators

In Example 3, if we replace the function krlength r by

kzifmember (hd r) (tl r) then 1 else O

of the same type List a++zt our collecting function get be-

comes incorrect. The polymorphism comes here from the

polymorphic equality operator in member which has type ‘da.

cx+a+Bool but does need the value of its arguments. Poly-

morphic comparison operators camot be defined in the pure

polymorphic L-calculus and parametricity does not hold with

such operators. In [28] Wadler gives polymorphic equality a

special type, V’a. a+a+Bool, and enforces that function a

associated with the type variable a respects equality (i.e. x=y
iff a x = a y). Our collecting fimction certainly does not respect

equality and theorems derived for expressions involving poly-
morphic equality are useless for our purposes. We have to as-

sume that polymorphic comparison operators need completely

their arguments and we give them type T+T+Booz. Special

type T belongs to P and means that the complete structure has

to be saved. In order to propagate this information, the unifica-

tion of any (non functional) type with T yields T. The type in-

ferred for Lz#member (hd r) (tl r) then I else O is now T---Mnt

and its list argument will be preserved by the GC.

4 Partial Collection of Shared Structures

We assume that all reachable objects can be traced by the GC.

For now, we also assume that programs cannot create circular

structures. We consider this point in section 4.3.

4.1 The problem

The collection is done according to the type information (after
the necessary unifications) associated with each pointer in the
stack or in closures. For example, a pointer with type informa-
tion a does not have to be traced and the elements of a struc-
ture with type information List ci can be reclaimed. A problem

arises when such structures are shared. For example, in Figure

3 when the first list L, with type List a is traced only its spine
is copied. The type List (List ~) enforces the GC to copy the

spine of the sublists of ~. When the shared cell is found, the
GC cannot rely on the standard assumption that all its descen-

dants have been copied and must traverse it again.

27

L2

Ll

List (List P)

List a

Figure 3

A simple solution would be to keep within each cell the

type information it was encountered with. The standard as-

sumption would become: if a copied cell has an associated
type more instantiated than the current one, the garbage collec-
tor does not have to trace its fields. Still, the same structure

may be traced many times. For example, a list of tuples

(i, ,...,iJ shared by n pointers with associated types List

(Int,txz,...,rxn), List(al,(,am...,am.l,Int) would still have to be tra-

versed n times.

4.2 The basic technique

This problem can be overcome using two complete scans of

the reachable structure. That is, useless substructures are not
copied but they are traversed anyway. Each structure will not

be copied more (nor less) than required by the type informa-
tion. For example, if the lists represented in Figure 3 are not

further shared, the first two sublists of L1 will be considered as

garbage and reclaimed, the remaining structure will be copied

according to type List (List ~). We just sketch the technique

here ; section 7 contains further details on both scans.

The first scan computes for each vertex its reference

counter. Each shared vertex is placed in a defer-list (i.e. a

shared cell will point to the defer-list) along with an initial type
(say U) and its reference counter. The second scan performs
the partial collection according to types. Each pointer in the
stack is followed: if a vertex is not shared then its fields are

traced ; otherwise (i.e the vertex points to the defer-list) its ref-

erence counter is decremented, the type in the defer-list is uni-

fied with the current one and the exploration continues with

another root. The type associated with each pointer represents
the utility of the structure for a particular activation record.
The unification of types for a shared cell eventually yields the

type representing the utility of this structure for the whole pro-
gram. When all the roots have been followed as much as possi-
ble we still have to trace the pointers in the defer-list.
Assuming no cycles, the defer-list must contain a vertex with a
reference counter equal to zero. We call it a resolved vertex :

all the pointers referencing it have been found and the maxi-
mally instantiated type has been computed. Its fields can then
be traced according to this type ; another resolved vertex is

taken from the defer-list and soon until the defer-list is empty.
So, a cell is copied only when all the structures pointing to it
have been traced (as a side effect, forwarding pointers is not

necessary).

Property 5 When the active (i.e. not pointed from the defer

list) reachable structure has been traced the defer list is either

empty (the collection is complete) or contains a resolved ver-

tex.

Letthe defer-list contain n vertices, which are the roots of the
remaining unexplored structure. A vertex IVl is not resolved iff

there is a pointer in the remaining structure pointing to it i.e.

there must a path from a vertex in the defer list to Nl. Since

there is no cycle it cannot be Nl, let us call it N2. Applying the

same reasoning on N2 it must be either resolved (and we are

done) or there must be a vertex leading to Nz and it must be

different from N, and N2. And soon until the last vertex N.: as-
suming no cycle, Nl,...,N1.l cannot lead to N,, and N, cannot

lead to itself so Nn must be resolved. c1

Let us take an example to illustrate why we cannot avoid

traversing substructures associated with type variables. In Fig-
ure 3, such a partial traversal, starting from the first root,

would only mark the spine of LI and, starting from the second

root, would stop at the shared cell. The following sublists will

not be explored and shared vertices may stay unannotated.

Imagine that another list say ~ shares the fourth sublist of LI

with type annotation List In~ itwill not be detected as shared.

During the second phase List a and List (List b) will be unified
in the defer-list, the fourth sublist of Ll will be copied with
type information List f) whereas its integers elements are need-

ed by ~. For the same reason the second scan must be com-

plete. The first scan may have marked structures shared by

pointers of type CX.In order to resolve such vertices, useless

substructures annotated with type variables are not copied but

are traversed anyway.

4.3 Extensions

Optimizations. We tried to keep the partial collection process
simple and did not mention several possible optimizations.

.

●

✎

Structures associated with a monotype can be copied as
soon as encountered and pointers forwarded a.susual. No

reference count has to be computed ; if such a structure is

shared we can rely on the standard assumption (all its fields

have been traced and copied).

The roots in the stack amotated by a type variable do not
have to be traced. They cannot be shared and can just be ig-

nored during the two scans.

Functional compilers sometimes integrate a sharing analy-
sis to perform safe destructive updates or to avoid updating
unshared closures. The collection process can benefit from

such an analysis. An unshared object can be copied accord-
ing to its type right away.

28

Cycles. Many implementations of pure functional languages
do not create circular structures and for those our method di-

rectly applies. Implementations based on graph reduction

sometimes implement recursion (combinator Y) using cycles.

This would require an extension of the partial collection pro-

cess. We have not investigated this issue thoroughly, however
two trivial solutions come to mind. The strong components of

a graph can be computed in linear time [26]. We can then use
our technique on the reduced graph (whose vertices are the

strong components). We also have a conservative option: we

apply our technique as usual ; if there are cycles we end up
with a defer-list with only unresolved vertices which are com-

pletely copied.

5 Detecting More Garbage

In many cases the standard polymorphic typing loses utility in-
formation. Here, we propose two extensions of the standard

typing allowing to infer more information on the utility of ar-

guments and so to collect even more garbage. We suppose that
programs are well-typed and we use type inference as a utility

analysis. The inference algorithm remains simple and close

enough to the standard one.

5.1 First extension

A first loss of information comes from the standard types of

constructors. For example, from the type of cons (cx+List
cx+List a), the GC deduces that cons needs the structure of its

second argument for a proper reduction. However the argu-
ments of a cons does not have to be traced by the GC if the re-

sult is useless. Also, both Lxs.cons 1 xs and Zx.cons x [1;2]

have a monomorphic type (List Int+List Int and Int+List Int)

whereas their argument could be (partially) collected if the en-

closing function needed only the spine of the result.

We avoid this loss of information by giving cons type

ct+~+~ along with the constraint set {List C@ @5} where

the relation “>>” reads “is more instantiated than”. In doing so,

we have to distinguish constructors used as patterns which

keep their standard types.

Let us consider the closure (Adxs.cons x XS) L, L2. The

type information associated with its function is [cx+~+~

;{List u>>6, ~>>~}]. During garbage collection type 8 is unified

with a type representing how much the value of the closure is

needed (see section 3) ; the utility of the arguments will be de-
termined by satisfying the constraints.

● If the result of the closure is not needed by the context (i.e.

6 has been unified with another type variable), the con-

straints are satisfied and the two arguments can be collect-
ed.

● If the context needs the spine of the result, say 5=List y, the
constraint set enforce ~ to be more instantiated than List y

(~>>List y). In order to satisfy the constraints, ~ and List%

(with ~>>y) will be unified. The function has then type

(x+List ~+List x and the first argument and the elements

of the second are collected.

● If the context needs the complete structure of the result,

say 3=List Int, in order to satisfy the constraint, r-xis unified
with Int and ~ with List Int. The closure function has then

type a+List Int+List Int and both arguments are com-
pletely saved by the GC.

Example 6 Let us consider the function

rec app 1112 = case 11in

nil : 12

cons x xs : if x=O then app xs 12

else cons x (app xs 12)

The type of this function is List Int+~+8 with { ~>>~}. If, dur-

ing garbage collection, the stack is

(Azlength r) ((kll.A.lpapp 1, l,) [0;1] [2;3])

then 6 and List tx are unified, ~ is unified with List y and the el-

ements of second list can be reclaimed. The standard typing of

app (List Int+List Int+List Int) would have enforced the GC

to retain completely both lists. Cl

Our constraints can be seen as a way to delay unification

until necessary. A type and a constraint set are inferred indi-

vidually for each function representing a return address. If the

function has type c using the classic type inference, the type ~
inferred now is such that cmz. Satisfying such inequalities is

closely related to the semiunification problem (i.e. finding a
substitution, called a serniunifier, S such that Sa>S~ for all ine-

qualities) [13]. Since we consider programs already typed by

the Hindley/Milner system, this problem, undecidable in gen-

eral, becomes tractable. The relation “>>” is defined only on

unifiable types, so our systems of inequations are unifiable and
therefore semiunifiable. Constraint sets are satisfied using the

following rules.

s u {70>7} + s S u {cma} + S

S u{List cmList T} + S u {cr>>~}

s u {cY+cr’))T+T’} + SU {GM ; CJ’M’}

Furthermore, variables on the lhs of constraints of the
form ct>>n,a>>z+~’ and a>>List ~ are unified with respectively

n, Ul+cq and List rx~ (al,q and cx~being fresh variables).

This is actually a simplified version of the algorithm de-

scribed in [13]. It has been proved that for semiunifiable ine-
quations this algorithm terminates and finds a most general

semiunifier. A simpler alternative is to unify the Ihs and rhs of
constraints of the form aw+t and a>>List ~ instead of intro-

ducing fresh variables. The resulting types would possibly be
more instantiated than needed but the complexity of unifica-
tion would remain linear. We considered only cons but similar

constraint sets can also be associated with each user-defined

constructor.

29

5.2 Second extension

Another imprecision comes from the data types themselves
which identify many different structures (e.g. singletons or

empty lists are not distinguished from general lists). For exam-

ple, the function returning the head of a list is defined as

hdl=caselin

cons x xs : x (*)

otherwise: fail

The inferred type for hd is List ct+ct and we have lost

the information that only the first element of its argument list

has to be saved by the GC. Instead of using predefine types,
we infer more precise recursive types. Trying to infer very pre-

cise types quickly leads to undecidable problems. Here, we are

only interested in inferring types as less instantiated as possi-

ble and we stay close from the standard algorithm. Recursive

data types are noted explicitly using the operator p. For exam-

ple, List u becomes (wt.nil+ cons et t). To unify recursive data

types we have to replace standard unification by unification of

rational trees [14] (both have the same complexity).

Let e an expression with the Hindley/Nlilner type tde-

fined by type t = Cl CT1l...CJP1+...+ Cn Oln . ..rJP., then the new

typing of e will be of the form pt.~l+...+Tn,~ibeing a type
variable or a constructor Ci vi 1 .VP1.We suppose that recur-

sive data structures can only be scrutinized by pattern match-

ing in case expressions and that patterns are simple one-level
pattems.The typing rule for a saturated case expression be-

comes

for all i, l<i<n,
pl

r ~ e:pt. Cl ‘C1l...TP1 +...+ Cn T1n...’Cpn r U{xj :~j)j=li 1- ei.’~

rp (case ein Clxll...xP1 :el . . . C..xln...xpn:e,):~

If one alternative corresponding to the user-defined type

is missing (e.g. hd 1 = case 1 in cons x xs: x) or an alternative
is a default variable not occurring in the rhs (as otherwise in
the definition above (*)) then it will be associated with a type

variable. The type inferred for hd is (wt. /i + cons a ~) + U.

When the GC encounters a closure (A.1.hd 1) L, the tail of the

list will be reclaimed (assuming it is not shared).

Example 7 rec f 1 = case 1in

nil :0

cons x xs : case xs in

nil :0

cons y ys : y + f ys

The type inferred forf is

(wt. nil + cons ci (nil + cons Int t))41nt

and elements occurring at odd places in the list may be re-
claimed. c1

This extension is related to [22] which aims at inferring

types without explicit type declarations. Their type inference
produces accurate types and we could make use of them. How-
ever it is also more general than we need: their type system ac-
cepts constructors to be overloaded and the sum of two

arbitrary types to be a type. This complicates their type infer-

ence which is defined only for first-order languages.

As with the first extension, if the function has type c us-

ing the classic type inference, the type ~ inferred is such that

OWT. It seems that these two extensions can easily be com-

bined. Relation “>>” can be extended on recursive data types

with the rules

Lsu {pt. 0, +...+ C7”+u T, +...+ T“} + .SU{CT,M, ; . . . ; 6.>>7.}

Su {co,,.. qpcT* . . . q} + SU{G,>>T, ; ; cr”>>Tn}

Still, it would be necessary to formalize the correspond-

ing type system and to prove the analogue of Property 4 (para-

metricity does not apply directly for such types systems). We

could have envisaged more sophisticated (e.g. semantics

based) analyses to detect the uselessness of data structures. We

claim that the two extensions proposed above are a good com-
promise between cost and precision.

6 Space leaks

Some functional programs use much more space than the pro-
grammer would expect. This phenomenon, called a space leak,

usually appears when pointers are kept on structures which

have become (partially) useless. A traditional GC preserves

those objects and seemingly innocent programs may run out of

heap space and fail to terminate [15] [23]. We present here
three common forms of space leaks easily fixed using our gar-

bage collection technique.

Recursive functions. In many implementations, a recursive

call involves pushing a new context on the stack, the old con-
text being kept for the continuation of the call. If the continua-

tion does not use all the arguments in the context this may

cause a space leak. For example, the code generated for

fxl= elsex+f(x-l)(tll)

should not keep the argument 1 in the stack during the recur-
sive call. Reorganizing the stack before function calls is costly.

Usually the solution is to overwrite with a special constant (a

hole) arguments when they become useless. Still, this ‘%lack-

holing” induces au overhead at run time.

In our framework, types of continuations give us enough

information about the utility of the different arguments and no

blackholing is necessary. In the preceding example, the contin-
uation Lx L1.Lrx+r has type Int+cx4nt+Int and the useless
part of 1 would be reclaimed if the GC was triggered during a
recursive call to J

30

Updatable Closures. A similar problem occurs in implemen-
tations of lazy languages. During the evaluation of a closure, a

pointer on the closure is kept in order to update it later by its
value. The same technique of blackholing is needed to avoid

space leaks [18]. Here, we make the update explicit using an

operator updt with type U+$+B; U being a special type asso-
ciated with the pointer needed for the update and ~ the type of

the result. Structures with types U are not traced but the GC re-

places them by a “blackhole” closure, This closure serves to

retain enough space for the update and to detect certain forms

of non-termination if it is accessed before the update [18]. In

order to deal with shared closures the unification of any type
with U yields U.

‘fhples. Another class of space leaks has been described by
Hughes [15]. In lazy functions returning tuples, the result, say

r, is often retained in expressions such as (@ r) or (wui r).

Hughes showed that some of these functions are inherently

leaky, no matter how they are expressed. One solution, pro-

posed by Wadler [27], is to modify the GC to perform the sim-

plification rules fst(x,y)=x and wuf(x,y)=y. In our approach,

space leaks treated by Wadler’s technique are naturally avoid-

ed. The type of@ (resp. W@ being (IX,~)+tx (resp.(cx,($+~),

our GC will reclaim its second (resp. first) argument.

Tables. When using structures like hash tables or memo tables

it is important to be able to delete accessible but useless entries
[10] [16]. This is usually done by introducing a notion of weak

pointers which are treated distinctively by the GC. Each table

entry is a weak pointer to a structure which will be copied iff it

is also referenced by a strong pointer. In our framework thk

might be done simply by fixing the type of such tables to beta-

ble[W]. Type W acts like a type variable except that it is not

pointers associated with W but the structure they point to
which are replaced by L. If such a structure is shared by a

(strong) pointer, the unification in the defer-list will enforce
the GC to retain it.

Note that we have fixed the different forms of space

leaks presented here without resorting to extensions of section

5. This method does not entail any overhead at run time and

other kinds of leaks (e.g. related to lists) can also be plugged.

7 Implementation issues

We are currently integrating this extension into our transfor-

mation based compiler [9]. This compiler transforms expres-

sions into functional terms which can be seen as a stack-based

machine code. It can compile strict or lazy languages; its stan-
dard GC is a simple stop© and pointers are distinguished
from values using a tag bit (as in the SML New Jersey compil-

er [3]). We saw in section 6 that some low level information
(like updates or stack layout during a recursive call) must be

taken into account in the type information. We choose to per-
form a new type inference on the functional machine code pro-

duced by our compiler. It could also be done at the same time

as the type checking of source expressions but this information
should be carried along all compilation steps. Type informa-
tion is placed in the code just before the address it is attached
to.

When the extended GC is triggered it first computes the

reference counts of shared nodes. This first scan is a depth first

traversal of the live data graph (using the to-space as an explic-

it stack). Shared cells point to the defer-list which contain their

reference count and an initial type. It is well known that typi-

cally few cells are shared so we may hope that the defer-list re-

mains reasonably small. Anyhow, we may fix its size and treat

overflows conservatively by copying completely the remain-
ing shared structures. This is one advantage of our approach:

when it becomes too costly or complicated we can still rely on
standard techniques (standard types or standard garbage col-

lection).

The second scan examines the stack in a bottom-up fash-

ion in order to perform unification and the copy in the to-

space. With first-order programs local variables can be traced

as soon as the type information associated with the activation

record is read and unified. The space needed by the unification

remains small since a type becomes useless when it has been

unified with the type of the next activation record. However
higher-order programs may involve many unifications before
tracing. For example, in the activation record

(Au.U2W (last 1) a) X [length;length;.. .;sum]

the local variable X can only be traced after unifying the type

of all the functions of the list. All the necessary unification

could be done during the first scan but (potentially large) mem-

ory space would be needed to store the substitution. We take a
pragmatic approach and limit the number of unifications by ac-

tivation record. This is sufficient to cope with most common

uses of higher-order functions but, for example, functions in
lists of functions will be assumed to need completely their ar-

guments. The tracing of structures according to type informa-
tion is a depth-first traversal using Shorr-Waite algorithm

which uses a link reversal technique to avoid the need for a

stack [25]. Pointers on useless structures are replaced by a spe-

cial constant (the 1 of section 3).

The GC process is not directly concerned by the bad
worst case complexity of ML-like type inference [20]. It only

uses unification which has a linear time complexity. However,

types can be of exponential length and, for those pathological
cases, the type annotations generated by the compiler should

be approximated (e.g using T as in section 3.3).

This approach can be used with several garbage collec-
tion schemes [8]: a mark&sweep GC does not mark structures

associated with type variables whereas a stop© GC does
not copy them. The method mixing reference counts with clas-

sical garbage collection (usually performed as a last resort) can
also benefit from it. In this case, the first scan can be avoided.

31

It is clear that our technique is more costly than tradition-

al garbage collection. In particular, it involves unification and

the complete structure is scanned twice. On the other hand, it

can make leaky or greedy programs terminate. Also, reclaim-
ing more space might prevent or simplify further collections.

The policy we advocate is to use a regular GC most of the
time ; our extension would be used, from time to time, when

heap occupancy exceeds a certain ratio or, at least, as a last re-
sort when the program runs out of memory. For example, in a

generational GC, a standard copy algorithm would take care of
the youngest generations and the extension would be used for

the occasional major collections.

Since our GC can fix different sorts of space leaks, it is

not difficult to exhibit programs for which this technique saves

arbitrarily large amounts of heap space. Still, it would be inter-

esting to estimate the savings on a wide range of programs. At
the moment, our implementation is still in progress and we

cannot provide a full set of benchmarks. However we have

completed a first incomplete prototype: it deals only with first
order strict functional programs and does not implements the
extension of section 5.1. Figure 4 gathers the results obtained

on a few programs (not written for this purpose): mirror is a

simple program on trees, queen is the usual 10 queens prob-

lem, $ft is a fast Fourier transform applied to multiplication of

polynomials and compress is a text compression program.

1 Minimum Heap Space Requirement (call-by-value)
I I

1 I I I I I

I mirror I queen I fft compress

Regular GC 468 Kb 564 Kb 5’7 lSb 1,280 Kb

Extended GC 352 Kb 404 Kb 42 Kb 792 Kb

Gain I 25 ?Io I 28 ~0 I 26 yO I 38 %

Figure 4 A few results

These preliminary results are encouraging ; of course we

have also encountered programs (e.g. qsort) where almost

nothing was gained. It is too early to have a precise idea of the
cost of this technique. One important optimization, that we

still have to implement, is to store the type information in com-

piled form (i.e. a routine performing the unification and the
tracing instead of a template representing the type). In most
cases our (unoptimized) prototype is “only” 3 to 4 times slow-
er than the standard stop© although in a very restricted
context (first-order & call-by-value). In any case, several sim-

plified versions (e.g. with no typing extensions or dealing only

with certain forms of space leaks) should be provided as well ;
they could be used depending on the price the user is willing to
pay.

8 Conclusion

We have proposed a method to collect more garbage for poly-

morphically typed languages. It is based on parametricity of

polymorphic functions and can be applied to strict or lazy
higher order functional languages. As tagless garbage collec-

tion, the technique needs to attach type information to closures

and return addresses. The overheads are placed on garbage
collection and on code space (to store type information) but
not on normal evaluation. The GC is able to detect garbage
that is still referenced from the stack and may collect useless

parts of otherwise useful data structures. The partial collection

of shared structures is not straightforward and we have de-

scribed a solution which retains the linear time complexity of

garbage collection. We have proposed two extensions of the

type system in order to detect more garbage and presented how

our GC could plug several forms of space leaks. More sophis-
ticated utility analysis could be designed ; as long as the infor-

mation produced can be coded into types our technique would

still apply. A peculiarity of this approach is to mix a static
analysis (typing) and a run time analysis. We benefit from run

time information by exploring the stack which describes a
more specific program and the heap which provides exact

sharing information.

We are not aware of any other general approach to col-

lect useless reachable structures. In [11], Goldberg mentions

that a tagless GC could use a live variable analysis to collect

dead variables of activation records. In our framework, this is

done by reclaiming roots associated with type variables. In

[27], Wadler suggests an extension specific to tuples and we

saw in section 6 how this is done in our approach. There also

exist garbage collectors, adapted to non-deterministic languag-

es, which detect and collect the useless binding values of use-
ful logic variables [5].

Compile-time garbage collection is a static analysis
which detects points in the program where part of the store can

be collected [17] [1 9]. This information can then be used to re-

allocate old store. It reduces store use and therefore reduces

garbage collection overhead. In the best cases those analyses
detect what a traditional GC would detect at run time. We see

this approach and ours as complementary.

The most common optimization allowed by Hindley/
Milner type system is to avoid run time checks. In [4], Baker

shows how to use ML-like type inference for sharing analysis.

We have shown in this paper that polymorphic types can also
be used to improve garbage collection. Searching for other ap-

plications of ML-like type inference is certainly worthwhile

since, contrary to many program analyses, this algorithm is

practical as everyday experience shows.

Acknowledgments. Thanks to Daniel Ix M&ayer for com-

menting an earlier version of this paper and to Olivier Ridoux
for enlightening discussions and useful suggestions.

32

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

S. Aditya and A. Care. Compiler-directed type

reconstruction for polymorphic languages. In

Proc. of the ACM Con$ on Func. Prog. and

Comp. Arch., pp. 74-82, 1993.

A.W. Appel. Runtimes tags aren’t necessary.

Lisp and Symb. Comp., 2, pp. 153-162, 1989.

A.W. Appel. A runtime system. Lisp and Sym-

bolic Computation, 3, pp. 343-380, 1990.

H.G. Baker. Unify and conquer (garbage, updat-

ing, aliasing, ...) in functional languages. In

Proc. of the ACM Confi on Lisp and Functional

Programming, pp. 218-226, 1990.

Y. Bekkers, O. Ridoux and L. Ungaro. Dynamic

memory management for sequential logic pro-

gramming languages. In Proc. of Work. on Mem-

ory Management, LNCS 637, pp. 82-102, 1992.

D.E. Bntton. Heap Storage Management for the

Programming Language Pascal. Master’s The-
sis, University of Arizona, 1975.

C.J. Cheney. A nonrecursive list compacting al-
gorithm. Communications of the ACM, 13(11),

pp. 677-678, 1970.

J. Cohen, Garbage collection of linked data

structures. Computing Surveys, Vol. 13, 3, 1981.

P. Fradet and D. Le M6tayer, Compilation of

functional languages by program transforma-

tion. ACM Trans. on Prog. Lang. and Sys.,

13(1), pp. 21-51, 1991.

D.P. Friedman and D.S. Wise. Garbage collect-
ing a heap which includes a scatter table. Inj

Proc. Letters, 5(6), pp. 161-164, 1976.

B. Goldberg. Tag-free garbage collection for

strongly typed programming languages. In Proc.

of the ACM SIGPLAN ’91 Symp. on Prog. Lung.

Design and Implementation, pp. 165-176, 1991.

B. Goldberg and M. Gloger. Polymorphic type

reconstruction for garbage collection without

tags. In Proc. of the ACM Conj on Lisp and

Func. Prog., pp. 53-65, 1992.

F. Henglein. Type inference with polymorphic

recursion. ACM Trans. on Prog. Lang. and Sys.,

15(2), pp. 253-289, 1993.

G. Huet. Resolution d’kquations duns les lan-

gages d’ordre 1, 2,... co.Th&se de doctorat d’6tat,
Universit6 de Paris VII, 1976.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J. Hughes. The design and implementation of

programming languages. D. Phil. Thesis, Ox-

ford University, 1983.

J. Hughes. Lazy memo-functions. In Proc. of the

ACM Confi on Func. Prog. and Comp. Arch.,

pp. 129-146, LNCS 201, 1985.

K. Inoue, H. Seki and H. Yagi. Analysis of func-

tional programs to detect run-time garbage cells.

ACM Trans. on Prog. Lang. and Sys., 10(4), pp.

555-578,1988.

R. Jones. Tail recursion without space leaks.

Journal of Func. Progz, 2 (1), pp. 73-79, Jan.

1992.

S.B. Jones and D. Le M6tayer. Compile-time
garbage collection by sharing analysis. In Proc.

of the ACM Con> on Func. Prog. and Comp.

Arch., pp.54-74, ACM Press, 1989.

H.G. Mairson. Deciding ML typability is com-
plete for deterministic exponential time. In Proc.

of the 1Th ACM Con~ on Print. of Prog. hm -

guages, pp. 382-401, 1990.

R. Milner. A theory of type polymorphism in

programming. J. Comput. Syst. Sci. 17, pp. 348-

375, 1978.

P. Mishra and U.S. Reddy. Declaration-free type

checking. In Proc. of the ACM Conf on Print.

of Prog. Languages, pp. 7-21, 1985.

S.L. Peyton Jones. The Implementation of Func-

tional Programming Lungaages. Prentice Hall,
New York, 1987.

J.C. Reynolds. Types, abstraction, and paramet-

ric polymorphism. In Proc. of Information Pro-

cessing 83, pp. 513-523, 1983.

H. Shorr and W.M. Waite. An efficient machine-

independent procedure for garbage collection in

various list structures. Communications of the

ACM, 10, pp. 501-506, 1967.

R. Tarjan. Depth-first search and linear graph al-

gorithms. Siam J. Comp., 1, pp. 146-160, 1972.

P. Wadler. Fixing some space leaks with a gar-
bage collector. Software Practice and Experi-

ence, 17(9), pp. 595-608, 1987.

P. Wadler. Theorems for free! In Proc. of the

ACM Conf on Func. Progr and Comp. Arch.,

pp. 347-359, 1989.

P.R. Wilson. Uniprocessor garbage collection
techniques. In Proc. of Work. on Memory Man-

agement, LNCS 637, pp. 1-42, 1992.

33

