
A Practical Soft Type System for Scheme

Andrew K. Wright” Robert Cartwrighti

Department of Computer Science

Rice University

Houston, TX 77251-1892

{wright ,cartwright}@cs. rice.edu

Abstract

Soft typing is a generalization of static type checking that

accommodates both dynamic typing and static typing in one

framework. A soft type checker infers types for identifiers

and inserts explicit run-time checks to transform untypable

programs to typable form. SON Scheme is a practical soft

type system for R4RS Scheme. The type checker uses a

representation for types that is expressive, easy to interpret,

and supports efficient type inference. Soft Scheme supports

all of R4RS Scheme, including uncurried procedures of fixed

and variable arit y, assignment, and continuations.

1 Introduction

Dynamically typed languages like Scheme [6] permit pro-

gram operations to be defined over any computable subset

of the data domain. To ensure safe execution,l primitive op-

erations confirm that their arguments belong to appropriate

subsets called types. The types enforced by primitive opera-

tions induce types for defined operations. Scheme program-

mers typically have strong intuitive ideas about the types of

program operations, but dynamically typed languages offer

no tools to discover, verify, or express such types.

Static type systems like the Hindley-Milner type disci-

pline [11, 16] provide a framework to discover and express

types. Static type checking detects certain errors prior to

execution and enables compilers to omit many run-time type

checks. Unfortunately, static type systems inhibit the free-

dom of expression enjoyed with dynamic typing. To ensure

safety, programs that do not meet the stringent requirements

of the type checker are ineligible for execution. In rejecting

untypable programs, the type checker also rejects meaning-

ful programs that it cannot prove are safe. Equivalent ty-

pable programs are often longer and more complicated.

Soft typing [5, 7] is a generalization of static type check-

ing that accommodates both dynamic typing and static typ-

ing in one framework. Like a static type checker, a soft type

checker infers syntactic types for identifiers and expressions.

*The first author was supported by a National Defense Science
and En~, neerIrIg Graduate Felbwsh, p,

tThe ~econd author WW, supported by NSF grant CCR-9122518

and Texas Advanced Technology Program grant 003604-014,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
andlor specific permission.

But rather than reject programs containing untypable frag-

ments, a soft type checker inserts explicit run-time checks

to transform untypable programs to typable form. From the

perspective of dynamic typing, soft typing recovers type in-

formation and globally optimizes run-time checking at prim-

itive operations. From the perspective of static typing, soft

typing allows programmers to develop prototypes using a

purely semantic understanding of types as meaningful sets of

values. Prototypes can then be transformed to more robust,

maintainable, and efficient programs by rewriting them to

accommodate better syntactic type assignment.

We have developed a practical soft type system for R4RS

Scheme [6], a modern dialect of Lisp. Soft Scheme is based

on an extension of the Hindley-Milner polymorphic type dis-

cipline that incorporates recursive types and a limited form

of union type. Sojl Scheme requires no programmer sup-

plied type annotations and presents types in a natural type

language that is easy for programmers to interpret. Type

analysis is sufficiently accurate to provide useful diagnostic

aid to programmers: our system has detected several elusive

errors in its own source code. The tvDe checker tvDicallv.
eliminates 90% of the run-time checks that are necessary for

safe execution without soft typing. We have observed soft

typed programs to run up to 3.3 times faster than ordinary

dynamically typed programs.

The type system underlying Soft Scheme is a refinement

and extension of a soft type system designed by Cartwright

and Fagan for an idealized functional language [5, 7]. Their

system extends Hindley-Milner typing with limited union

types, recursive types, and a modicum of subtyping as sub-

set on union types. Soft Scheme includes several major ex-

tensions to their technical results. First, we use a differ-

ent representation for types that integrates polymorphism

smoothly with union types and is more computationally ef-

ficient. Our representation also supports the incremental

definition of new type constructors. Second, an improved

check insertion algorithm inserts fewer run-time checks and

yields more precise types. Third, our type system addresses

the “grubby” features of a real programming language that

Cartwright and Fagan’s study ignored. In particular, we

treat uncurried procedures of fixed and variable arity, as-

signment, continuations, and top-level definitions. Finally,

our system augments Scheme with pattern matching and

type definition extensions that facilitate more precise type

assignment.

1 Safe Implementations of a programming language guarantee to

terminate execution with an error message when a prlmltlve IS applled

to arguments outside Its domain

LISP 94- 6/94 Orlando, Florida USA
0 1994 ACM 0-89791 -643-3/9410006...$3.50

250

1.1 Outline

The next section illustrates Soft Scheme with an example,

describes the type language, and shows the reduction in run-

time checking for some bench marks. Section 3 formally

defines a soft type system for a functional core language.

Section 4 extends this simple soft type system to R4RS

,Scheme, describes our pattern matching and type definition

extensions, and discusses several problems. Sections 5 and

6 discuss related and future work.

2 Soft Scheme

Soft Scheme performs global type checking for Scheme pro-

grams. When applied to a program, the type checker writes

a version of the program with run-time checks to an output

file and displays only a summary of the inserted run-time

checks. Type information may then be inspected interac-

tively according to the programmer’s interest.

The following program defines and uses a function that

flattens a tree to a proper list:2

(define flatten

(lambda (1)

(cond [(null? 1) ‘()]

[(pair? 1) (append (flatten (car l))
(flatten (cdr I)))]

[else (list l)])))
(define a ‘(l (2) 3))

(define b (flatten a))

Soft type checking this program yields the summary:

TOTAL CHECKS O

This program requires no rnn-time checks as it is completely

typable. The types of its top-level definitions follow:

flatten : (ret ([Y1 (+ nil (cons Y1 Yl) Xl)])

(Y1 -> (list (+ (not cons) (not nil) Xl))))
a : (cons num (cons (cons num nil) (cons num nil)))

b : (list num)

The type of a reflects the shape of the value ‘(1 (2) 3), which

abbreviates the value (cons 1 (cons (cons 2 ‘()) (cons 3 ‘()))),

Pairs, constructed by cons, have type (cons . .). The empty

list ‘() has type nil. The type for b indicates that b is

a proper list of numbers. The type (list num) abbrevi-

ates (ret ([Y (+ nil (cons num Y))]) Y), which denotes the

least fixed point of the recursion equation:

Y = nil U (cons nun! Y).

Finally, flatten’s type (Yl –> (list . . .)) indicates that flatten

is a procedure of one argument returning a list. The ar-

gument type is defined by YI = nil U (cons Y1 YI) u Xl
where Xl is a type variable standing for any type. Hence,

flatten accepts the empty list, pairs, or any other kind of

value, i. e., flatten accepts any value. A result returned by
flatten is a proper list of elements of type XI, which do not

include pairs or the empty list,

Now suppose we add the following lines to our program:

‘A proper list k a spine of pairs that ends on the right with the

special constant ‘() called ‘[empty l]st”

(define c (car b))

(define d (map addl a))
(define e (map subl (flatten ‘(this (that)))))

Type checking the extended program yields the summary:

c 1 (1 prim)

d 1 (1 prim)
e 1 (1 prim) (1 ERROR)
TOTAL CHECKS 3 (1 ERROR)

This extended program requires three run-time checks at

primitive operations, one in each of the definitions of c, d,

and e. The program output by Soft Scheme shows the loca-

tions of the run-time checks:

(define c (CHECK-car b))
(define d (map CHECK-addl a))
(define e (map ERROR-subl (flatten ‘(this (that)))))

An unnecessary check at car is inserted because b’s type

(list num) = (ret ([Y (+ nil (cons num Y))]) Y) includes

nii which is not a valid input to car. CHECK-addl indi-

cates that addl may fail when applied to some element of a,

as indeed it will. Finally, ERROR-subl indicates that the oc-
currence of subl in this program never succeeds—if it is ever

reached, it will fail. No other run-time checks are required

to ensure safe execution of this program. In particular, no

run-time checks are required in the body of flatten nor in

the bodies of the library routines map and append.

2.1 Presentation Types

Our type checker infers types in an encoded representation

that reduces a limited form of subtyping to polymorphism.

Since these encoded types are difficult to read, Soft Scheme

decodes them into more natural presentation types for pro-

grammers. Our presentation types can precisely describe a

rich collection of subsets of the data domain, yet they are

simple for programmers to interpret. Presentation types in-

clude prime types (P), tidg union types (U), and recursive

types (T).

Conventional Hindley-Milner type systems form types

from constants (e.g. num, nil) and constructors (e.g. cons,

–>) that represent disjoint subsets of the data domain. We

call these prime types (P):

P::= num[ndl . . .] (con. U, U2) I (U, . . . Un -> UO)

The prime type (UI . . . Un –> Uo) describes procedures that

accept n arguments of types U1 . . . Un and return one result

of type UO. We call the constants and constructors forming

prime types tags, since they correspond to the type tags ma-

nipulated by typical implementations of dynamically typed

languages.

Our presentation types include a limited form of union

type. Z’Zdy union types (U) are formed from zero or more

prime types and may also include a single type variable (X):

u ::= (+ PI... Pn[N,... Nm x]) [P I x

Tidy union types denote the union of the subsets of the

data domain that their components denote. Type vari-

ables introduce polymorphic types. When a union type

251

includes a type variable, the type variable’s range implic-

itly excludes any types constructed from the tags P] . . . Pn

and Nl . . . N~ of the union type. For example, in the type

(+ nil (cons num nil) Xl) variable Xl denotes any type ex-

cept nil or (cons U] Uz) for any U1, Uz. A type variable may

be preceded by a set of place holders (N):

N ::= (not nwn) I (not nil) I . . . I (not cons) I (not –>)

Place holders further constrain the range of a type variable

without broadening the enclosing union type. For instance,

flatten’s result type (list (+ (not cons) (not nil) Xl)) uses

place holders to indicate that the result list does not include

pairs or ‘(). Finally, a union type consisting of only a single

prime type is equivalent to that prime type, i,e., (+ P) = P.
Similarly, a union type consisting of only a type variable is

equivalent to that type variable, i.e., (+ X) ~ X.

Tidy union types must satisfy two context sensitive prop-

erties. First, each tag may be used at most once within a

union. This requirement excludes phrases like:

(+ (cons true false) (cons false true))

from our set of types since cons is repeated. Second, the

same set of tags must precede each occurrence of a particu-

lar type variable to ensure that the variable has a consistent

range. For example, when Xl appears with tags cons and

nil in the input type (+ nil (cons Y1 Yl) Xl) of flatten,

it also appears with tags cons and nii in the output type

(list (+ (not cons) (not nil) Xl)). These properties are in-

variant required for our type inference algorithm.

The presentation types (T) that are assigned to program

identifiers and expressions include recursive types:

T ::= (ret ([X, U,] . . . [X~ U~]) Uo) I U

A recursive type denotes the type UO where:

x. = u.

For example, the type (ret ([YI (+ nil (cons Xl Yl))]) Yl)
denotes proper lists containing elements of type Xl. This

type occurs so frequently that we abbreviate it (list Xl)

(that is, iist is a type macro). By convention, we name type

variables bound by recursive types Yn.

Following are the types for a few well-known Scheme

functions:

map : ((Xl -> X2) (list Xl) -> (list X2))

member : (Xl (list X2) –> (+ false (cons X2 (list X2))))

read : (ret ([Y1 (+ num nil... (cons Y1 Yl))])

(–> (+ eoj num nil . . . (cons Y1 Yl))))

Iastpair : (ret ([YI (+ (cons Xl Yl) X2)])

((cons Xl Yl) -> (cons Xl (+ (not cons) X2))))

The higher-order function map takes a function f of type

(Xl –> X2) and a list x of type (list Xl), and applies f to

every element of x. It returns a list of the results. Function

member takes a key k and a list x, and searches x for an

occurrence of k. It returns the first sublist starting with

element k if one exists; otherwise, it returns false. Procedure

read takes no arguments and parses an “s-expression” from

an input device. It returns an end-of-file object of type eof if

no input is available. Finally, Iastpair returns the last pair of

a non-empty list. Appendix A contains additional examples.

2.2 Performance

Soft Scheme inserts run-time type checks only at uses of

primitive operations that it cannot prove safe. Figure I

summarizes run-time checking for the Scheme versions of

the Gabriel Common Lisp bench marks.3 The percentages

o%

,o~er ~%
Browse
Cpstak

Ctak

E
~

Dderiv

Denv
Destmct

Div

Fft

Puzzle

Tak
Takl

Tata
Traverse

o% 50 100%

Boyer
Browse

Cpstak
Ctak

Dderiv m
Deriv

Destruct

Div ~

Fft
Puzzle

Tak
Takl
Takr

Traverse

Figure 1: Reduction in Run-Time Checking

indicate how frequently our system inserts run-time checks

compared to conventional dynamic typing. The static fre-

quency indicates the incidence of run-time checks inserted

in the source code. The dynamic frequency indicates how

often the inserted checks are executed. Note that Cpstuk,

Tak, and Takr are statically typable in our system and hence

require no run-time checks at all.

Figure 2 indicates the fraction of total execution time

each bench mark spends performing run-time checks un-

der both soft typing and dynamic typing. The timings

for dynamic typing were obtained by running the bench

marks under Chez Scheme’s optimize-level 2 which performs

maximum optimization while retaining safety. Since Chez

Scheme uses local analysis to eliminate some run-time checks,

these programs would spend an even greater fraction of ex-

ecution time performing run-time checks with a naive com-
piler. The timings for soft typing were obtained by running

the output from Soft Scheme under Chez’s optimize-level 3
which ruthlessly discards run-time checks other than those

inserted by Soft Scheme.4 All measurements were obtained

under Chez Scheme 4.lt on an unloaded SparcStation 1.

30 btained from the Scheme Repository at cs.indiana.edu.

40ptimize-level 3 still retains argument count checks and some

checks in primitives like assoc and member.

252

o% 50 1009’0

I 1 1

Cpstak

ask

P

w
Dderiv

Deriv

Destruct

Div

Fft r

Puzzle

Tak

Talrl ~

Takr

Traverse

Figure 2: Cost of Run-Time Checking

Soft Scheme significantly decreases run-time checking for

all of the bench marks, even though these programs were not

written with soft typing in mind. Whether this reduction

leads to a significant performance improvement depends on

how often the code containing the eliminated checks is ex-

ecuted. Programs like Browse and Traverse, for example,

do not expose enough type information to enable the type

checker to remove critical run-time checks. But Puzzle il-
lustrates the dramatic benefit (speedup by a factor of 3.3)

that can be obtained when run-time type checks are removed

from inner loops. As we discuss later, we have developed sev-

eral extensions to Scheme that facilitate more precise type

inference. By using these extensions, we can develop pro-

grams that avoid run-time checks where performance is criti-

cal. Simple program transformations can further reduce and

often completely eliminate the remaining run-time checks.

3 Formal Framework

As the first step in a formal description of our soft type sys-

tem, we define an idealized, dynamically typed, call-by-value

language embodying the essence of Scheme. Core Scheme

has expressions (e) and values (v) of the following forms:

v ::= c \ z I (lambda (z) e)

where x c Id are identifiers and c c Const are constants.
Const includes basic constants (numbers, #t, #f, and ‘()),

unchecked primitive operations (addl, car, cons, etc), and
checked primitive operations (CHECK-addl, CHECK-car, etc).

The keywords ap and CHECK-ap introduce unchecked
and checked applications, which we explain below. Programs

are closed expressions.

Core Scheme includes both unchecked and checked ver-

sions of every primitive operation. Invalid applications of

unchecked primitives, like (ap addl #t) or (ap car ‘()), are
meaningless. In an implementation, they can produce arbi-

trary results ranging from “core dump” to erroneous but

apparently valid answers. Checked primitives are obser-

vationally equivalent to their corresponding unchecked ver-

sions, except that invalid applications of checked primitives

terminate execution with an error message. For example,

(ap CHECK-addl #t) yields an error message. Similarly, ap

and CHECK-ap introduce unchecked and checked applica-

tions that are undefined (resp. yield an error message) when

their first subexpression is not a procedure. Appendix B

contains a formal operational semantics for Core Scheme.

Safe implementations of dynamically typed languages

like Core Scheme interpret all occurrences of primitive op-

erations as checked operations. Since the run-time checks

embedded in checked primitives add overhead to program

execution, many implementations allow the programmer to

disable run-time type checking-substituting unchecked op-

erations for checked ones. In this mode, valid programs

execute faster and give the same answers as they do under

conventional “checked” execution. but the lanmage is no

longer type safe. Invalid programs can produ~e a~bitrary

results ranging from “core dump” to erroneous but appar-

ently valid answers.

3.1 Designing a Soft Type System

Designing a soft type system for Core Scheme is a chal-

lenging technical problem. Values in dynamically typed

programs belong to many different types, and dynamically

typed programs routinely exploit this fact. To accommodate

such overlapping types, a soft type system for Core Scheme

should include union types and use the following inference

rule for applications:

Here Ts ~ T1 indicates that the argument’s type must be a

subset (or subtype) of the function’s input union type.

However, conventional Hindley-Milner type systems pre-

sume that all monotypes are disjoint. In a Hindley-Milner

type system, Ts c T1 holds if and only if Ts = T]. The stan-

dard type inference algorithm relies on this fact by using or-

dinary unification to solve type constraints. Hence the stan-

dard algorithm cannot directly accommodate union types.

We could base a polymorphic union type system on our pre-

sentation types and attempt to find an alternative method of

inferring types. Aiken et al. [2] have pursued this approach,

but its computational complexity is worse than Hindley-

Milner typing. We elected instead to modify Hindley-Milner

typing to accommodate union types and subtyping without

compromising its computational complexity.

To combine union types and subtyping with Hindley-

Milner polymorphism, we adapt an encoding R6my devel-

oped for record subtyping [19, 20]. Our encoding permits

many union types to be expressed as terms in a free alge-

bra, as with conventional Hindley-Milner types. Flag vari-

ables enable polymorphism to encode subtyping as subset on

union types. Types are inferred by a minor variant of the

standard Hindley-Milner algorithm. Soft Scheme translates

the inferred types into the presentation types shown above

when displaying types to the programmer. Soft Scheme

thereby provides the izlusion of a polymorphic union type

system based on presentation types. The illusion is imper-

fect: occasionally the types generated by Soft Scheme do

not match what our informal reasoning leads us to expect.

Such a mismatch would be a serious liability for a static type

253

system, as programs would be rejected by the type checker

without a clear explanation. In a soft type system, this

problem is not nearly as serious. Soft typed programs may

contain apparently unmotivated run-time checks, but they

can still be executed.

The next two subsections define a collection of static

types and a static type inference system based on a varia-

tion of R6my’s encoding. The fourth subsection adapts this

static type system to a soft type system for Core Scheme.

The last subsection indicates how to translate the inferred

types into presentation types.

3.2 Static Types

To construct a static type system for Core Scheme, repar-

tition the data domain into disjoint subsets called prime

types. The partitioning is determined by the domain equa-

tion defining the data domain D for Core Scheme:5

D = ‘Dnum @ ‘Dtrue @DfaISe @ ‘DnzI @ (D @D) @ [’D ~sc ‘D]~

Each domain constant on the right hand side of the equa-

tion identifies a prime type. Similarly, each application of a

domain constructor to domains identifies a prime type.

Our static types reflect the partitioning of the data do-

main. Informally, every static type (a, r) is a disjoint union

of zero or more prime types (~f F) followed by either a single

type variable (a) or the empty type (~):

LT, T ::= +til u . . . u K95. u (a \ !3)

f::=+l-1~

where K c Tag = {num, true, fake, nil, cons, ~}. As with

presentation types, a type variable’s range implicitly ex-

cludes types built from the tags ~1 . . . tc~. Each prime type

has a flag ~ (written above the tag) that indicates whether

the prime type is part of the union type. A flag + indicates

the prime type is present, - indicates that it is absent, and

a flag variable (y) indicates the prime type may be present

or absent depending on how the flag variable is instantiated.

Figure 3 presents some examples of types. We use infix no-

tation and write (m ~f az)u. . . rather than (--f ~Imz)u. . .
for procedure types. In general, a static type with free flag

variables designates a finite set of possible types correspond-

ing to the instances of the free flag variables.

To be well-formed, types must be tidy: each tag may be

used at most once within a union, and type variables must

have a consistent range. Tidiness permits us to find and

represent the pairwise unification between two sets of types

by performing a single unification step. The following class

of grammars defines the

~o To ::= ~0
\@”l

~x ,i- ‘::=crxldxl

f::=+ l-lp

~, Q e Type Var

5@ denotes the coalesced

tidy types:

(Kfaf . . a:)@ u T{K} I pa@. #

(Kfaf . . . a:)x u Tx”{’$} (K @x)

p E Flag Var x ● 2T”9

tamed sum of two Scott domains. @ de-.- ,.
notes strict CartesIan product, +.. IS the strict continuous function

space constructor, and []L IS the Ilftlng construction on domains ‘D

also Includes two elements not shown here a check element that M

the result of failed run-time checks, and a wrong element that IS the

meaning of]nvalld applications IIke (ap car ‘()) Every type Includes

check No type Includes wrong,

Type Var and Flag Vm- are disjoint sets of type variables and

flag variables. Types represent regular trees with the tags K

constructing internal nodes. In a constructed type:

(Kfaf .f.r:)x u TXU{K}

the constructor ~ has arity n + 2: flag f, types al . . an,

and type r are its arguments. The parentheses and union

symbol U are merely syntax to enhance readability. The

labels X attached to types enforce tidiness by specifying sets

of tags that are unavailable for use in the type. For example,

the phrase:

(mm+)” u (nzwn-){~~~} u

is not a tidy type because the term (nurn-) {num } violates

the restriction K @ X in the formation of types. The types

assigned to program identifiers and expressions have label

0. We usually omit labels when writing types. Similarly,

an implementation of type inference need not manipulate

labels.

Recursive types pa. ~ (which must have label 0) repre-

sent infinite regular trees [3]. The type pa. ~ binds a in

-r; the usual renaming rules apply to the bound variable a,

and we have pa. ~ = ~[a w pa. ~]. Recursive types must be

formally contractile, t. e., phrases like pa. a are not types.

The type pa. nil + U (cons+ r a) U @, which denotes proper

lists of r, is a common recursive type.

Since our union types denote set-theoretic unions of val-

ues, we impose a quotient on types to identify those types

that denote the same sets of values. This quotient identifies

Z) tYPeS that differ OnlY in the order of union components)
and ii) types that denote different representations of the

empty type:

fl +
KIUlUK~?2UT=

f2 -K2 U2 U K{ldI U T

K-2 u@=@

It is easy to verify that this quotient preserves tidiness.

To accommodate polymorphism and subtyping, we intro-

duce type schemes. A type scheme Vcl@’. T is a type with vari-

ables {d@} bound in ~. We omit V when there are no bound

variables, hence types are a subset of type schemes. Type

schemes describe sets of types by substitution for bound

variables. A substitution S is a finite label-respecting6 map

from type variables to types and from flag variables to flags.

ST (resp. S~) means the simultaneous replacement of every

free variable in the type r (resp. flag f) by its image under

S. A type # is an instance of type scheme V&@. T under

substitution S:

T’ +S v~@’. T

if Dom(S) = {d@} and ST = r’. For example,

((rzurn+ U @) ~+ (num+ U p)) U @

is an instance of Vaq. (a ~W a) U @under the substitution

{a w (num+ U 9), p%+}.
In our framework, we use polymorphism for both generic

types and to express subsets of tidy union types. The type
scheme VWlp2. num~l u nil’2 U @may be instantiated to

6Mapplng type variables to types with the same label, which pre-

serves tidiness

2s4

num+ U @ means “numbers;”

num+ U nil- U @ means “numbers;”

num ‘Un21+U# means “numbers or ‘();”
nzbm- U nit- U @ means “empty;”

num+ U nil- U u means “numbers or a but not ‘() ;“

(cl’ ++ (true+ U \alse+ U ~)) U @ means “procedures from a to boolean.”

Figure 3: Examples of Types

any type that denotes a subset of num + U nil+ U 6. There
are four such types:

num+ U nil+ U @ num- U nil+ U @

num+ U nil- U @ num- U nil- U ~.

The informal meaning of these types is explained in Fig-

ure 3. By using polymorphic flag variables for the inputs of
primitive operations and procedures, we can simulate sub-

typing at applications while still using unification to equate
the procedure’s input type and the argument’s type. A pro-

+cedure with type scheme VpIpZ. (numvl U nil’2 U@) + . . .
can be applied to values of types:

nurn+ U nil+ U @,

num+ U nil- U @ = nurn+ U @,

num- U nil+ U @ = nil+ U #, and

nurn- U nil- U # = @

by instantiating the flag variables PI and 9Z in different

combinations of + and -.
Similarly, polymorphic type variables express supersets

of types. Basic constants and outputs of primitives may have

any type that is a superset of their natural type. For exam-

ple, numbers have type scheme VcY. num+ U a which may

be instantiated to any type that is a superset of num+ U @:

nurn+ U @

num+ U true +U$3

num+ U true+ U false+ U @

This ensures that expressions like (if P 1 ‘()) that mix dif-

ferent types of constants are typable. This expression has

type num+ U nil+ U e.
The function TypeOf maps the constants of Core Scheme

to type schemes describing their behavior. The encoding of
the unions within a type varies according to whether the

uuion occurs in a negative (input) or positive (output) po-
sition. A position is positive if it occurs within the first

argument of an even number of ~ constructors, and neg-

ative if it occurs within an odd number. With recursive

types, a position can be both positive and negative; we as-
sume that primitives do not have such types. For unchecked
primitives, negative unions are encoded using variables for
vahd inputs and - and @for invalid inputs. Positive unions

use + for “present” outputs and variables for “absent” fields.
For example, the constants O, addl, and number? have type

schemes:

o : Vff. num+ U a

addl : Valcrzp. ((nurnw U @) 4+ (num+ U crI)) U Crz

number? : VcZI@Z~3. (al ++ (true+ U fake+ U @z)) U as

The type schemes of checked primitives are similar to those

of unchecked primitives, except they never use - or @since
checked primitives accept all inputs. For example, primitive
CHECK-addl has type scheme:

VCl!lcYZcY3$0.((nurnw U ct3) ++ (nurn + u a])) u @z.

3.3 Static Type Inference

Figure 4 defines a static type inference system that assigns

types to Core Scheme expressions. Type environments (A)

are finite maps from identifiers to type schemes. A[z H r]
denotes the functional extension or update of A at z to r.

FV(T) returns the free type and flag variables of a type
r. FV extends pointwise to type environments. The typ-

ing A i- e : T states that expression e has type T in type
environment A.

Provided the types assigned by TypeOf agree with the
semantics of Core Scheme, we can prove that this static type

system is sound. Appendix B defines a reduction relation
~ for which every program either: (i) yields an answer

v, (ii) diverges, (iii) yields the error message check, or (Iv)
gets stuck (reaches a non-value normal form, like (ap addl

#t)). Type soundness ensures that typable programs yield
answers of the expected type and do not get stuck.

Theorem 3.1 (Type Soundness) If 01- e : r then either

e diverges, or ew check, or e=v and 01- v : T.

Proof. We use Wright and Felleisen’s technique based on

subject reduction [25]. I

3.4 Soft Type Checking

The preceding static type system can be used to statically

type check Core Scheme programs. The type system will
reject programs that contain incorrect uses of unchecked

primitives, ensuring safe execution. But the type system
will also reject some meaningful programs whose safety it

cannot prove. To persuade the type checker to accept an
untypable program, a programmer can manually convert it

to t ypable form by judiciously replacing some unchecked op-
erations with checked ones.’ A soft type checker automates

this process.
Figure 5 defines a soft type inference system for Core

Scheme programs. This system both assigns types and com-
putes a transformed expression in which some unchecked

7~he same ~roce~~ cannot be used with statically typed languages

Ilke ML because the Hindley-M1lner type discipline provides insuffi-

cient monotypes One must also add explicit definitions of union and
recurs, ve types, inject, on. ,nto these types, and pro~ectlons out of

them. The extra injections and projections increase the conceptual

complexity of programs and Introduce addlt]onal run-time overhead.

255

(const)
7- <s Type O~(c)

A1-c:r
(var) *

(ap)
At-el:(~2--+f~l)U@ At-e2:r2

A F (ap el ez) : rl
(CHECK-ap) A + ‘>’~~C~~&~a~el ,,~:~~~’ “2

(lam)
A[z~rl]l-e:r2

(if)
At-el:rl At_e2:r2 A!-e3:~2

A t- (lambda (z) e) : (rl -++ 72) U r3 AE (ifel ez es) : rz

(let)
At-el:~l A[z w C/ose(~l, A)] t- e2 :72

A F (let ([z cl]) ez) :72

Close(r, A) = V&@. r-

where {&@} ~ FV(r) – FV(A)

Figure 4: Static Type Inference

primitives and applications are replaced by checked ones. A
soft typing A + e + e’ : T states that in type environment

A, expression e transforms to e’ and e’ has type r.
The function Soft Type Of assigns type schemes to con-

st ants. For checked primitives and basic constants, Sofl-

Type Of assigns the same type schemes as Type Of. For
unchecked primitives, Soft Tgpe Of assigns type schemes that

include special absent variables (U). Absent variables record
uses of unchecked primitives that may not be safe. Wherever
the function Type Of places a - flag or @ type in the input

type of a primitive, Soft Type Of places a corresponding ab-
sent flag variable F c AbsFlag Var or absent type variable

ii < Abs Tgpe Var. For example, Soft Type Of(addl) is:

vcYla2&3~. ((rms~ u &3) ++ (nuns
+

u Crl)) u Crz.

Absent variables induce classes of absentfhgs (f) and absent

types (7). Absent flags (resp. types) contain only absent
variables:

.f ~ {.f I ~V(.f) C AbsFlagVur}
7 c {r I FV(r) C (AbsFkg Var U AbsT’ype Var)}.

Substitutions are required to map absent flag variables to
absent flags and absent type variables to absent types.

If an absent variable is instantiated to a non-empty type
in the type assignment process, then the corresponding prim-

itive application must be checked. For example, the expres-
sion (ap add 1 #t) instantiates the absent variable &a in the

type of addl as (at least) true+ U @ Since true+ U @contains
the element true] this application of addl must be checked.

In contrast, the expression (ap addl O) instantiates &3 as

@, so no run-time check is necessary. The predicate empty
used by rules const-empty and ap-empty in Figure 5 de-

termines whether every member of a set of types and flags is
empty. For a single type or flag, ernptg is defined as follows:

empty(+) = fake

empty (-, #, cr, ii, p, ~) = true

ernpty(Kf5 u 7-) = empty(f) and empty(~)
empty (pa. r) = empty(r).

Since a let-bound procedure must include run-time checks
for all its uses, absent uaraables are not generalized by Soft-

Close. A simple example demonstrates why this restriction
is necessary. The expression:

(let (~nc addl]) (ap inc #t))

requires a run-time check at addl. In typing this expression,

addl is assigned type ((numq’ U &’) ++ .) where & and

y’ are fresh variables. Suppose SoflClose naively general-
ized absent variables. Generalizing the type of addl would

yield type scheme V& ’’p”. ((numw” U ii”) ++ . . .) for inc.
In typing the application (ap inc #t), &“ would be instan-

tiated as true+ u ~. However, instantiating G“ would not

affect & in the type of addl, so no run-time check would
be inserted. Section 4.3 describes a better method of insert-

ing checks which performs some extra bookkeeping so that
absent variables may be generalized.

Appendix C presents several theorems that establish the
correctness of this soft type system.

3.5 Displaying Presentation Types

The types assigned by the soft type inference system are dif-
ficult to read. To present more intelhgible types to the pro-

grammer, we define a translation to the presentation types
defined in Section 2.1. This translation eliminates type vari-
ables used to encode subtyping and flags.

We define certain type and flag variables as use/e.ss with

respect to a soft typing deduction for the complete program.
The definition assumes that all bound variables in the typing

differ and are distinct from free variables.

Definition 3.2 (Useless Variable) With respect to .sofl
typing 0 * e + e’ : T, type or flag variable v zs useless i}:

1. v w never generalized; or

2. v is an absent varaable; or

3, v is generalized tn Vv. r’ (that appears in some type
environment in some wbdeductaon of 0 & e =+- e{ : r)
and v does not OGGur negatively in T’.

To eliminate variables used to encode subtyping, we replace
all useless flag variables with - and ail useless type vari-

ables wit h @. To eliminate flags, we replace the remaining
flag variables with +. As no flag variables remain, display-

ing presentation types is now a simple matter of translating
syntax. Components with flag + translate to ordinary prime

types. Components with flag - translate to place holders
(not tc), or are dropped entirely if the union ends in @.

256

SoftClose(r, A)
where {&@}

= Vcijii. r

~ FV(-r) – (FV(A) U Abs Type Vcsr U Ab.sFlag Vur)

Figure 5: Soft Type Inference

To illustrate the translation, consider the followirw type~..
scheme which approximate es that inferred for f Iatten:

‘d~~l~2~3~4.

(ret ([y, niN” U (con.s92 yIyI) U a]

[y2 nil+ U (cor23+(niP’3 U (consW’ g~y~) U cY)q2) U &2])

y~ ++ yz u iis)

Variables 62, iis, P3, V4 are useless: &Z and tis because they

are absent variables, and 493 and PA because they do not
occur negatively in the above type. Replacing the useless

variables with @ and - as appropriate, and replacing the
remaining flag variables p], pz with + yields:

V(Y.

(ret ([y I nil+ U (cons+ ylyl) U w]

[y2 nil+ U (con.+(nil- U (CO72.9-gIyI) U a)y2) U 9])

y, ++ gz “ @)

Changing syntax, we have:

‘da.
(ret ([y, (+ nil (cons y, yl) a)]

[Y2 (+ nil (cons (+ (not nil) (not cons) a) Y2))])

(Y1 -~ Y’))

A presentation type resulting from this translation may
not completely capture all of the information present in the

internal representation. When the internal type has a flag
variable that appears in both positive and negative posi-

tions, the input-output dependence encoded by this flag

variable is lost. For example, in type scheme:

Vpl pz. (trueP’ U falsev’ U @) ++ (truev’ U falseq’ U @) U @

flag variable PI (resp. 92) indicates that this function re-

turns true (resp. false) only if it is passed true (resp. false).

This dependence is lost in translating to the presentation

type ((+ true false) –> (+ true false)). This is a source of
imperfection in our illusion of a polymorphic union type sys-

tem based on presentation types (discussed in Section 3.1).
This imperfection does not seem to matter for practical pro-

gramming.

4 Practical Implementation

A practical soft type system must address the features of a
real programming language. This section extends our simple

soft type system to R4RS Scheme, and presents two exten-
sions to Scheme that enable more precise type inference. We

also discuss several problems.

4.1 Typing Scheme

Scheme procedures may have a fixed arity or accept an un-

limited number of arguments. Certain primitives also accept
trailing optional arguments. We encode procedure types
with the binary constructor –>* whose first argument is

an argument Zist. Argument lists are encoded by the binary

constructor arg and the constant noarg. Hence the type

(Xl X2X3 –> X4) merely abbreviates:

((arg Xl (arg X.2 (arg X3 noarg))) ->* X4).

The types of procedures of unlimited arity use recursive
types; for example:

+ : (ret ([Y1 (+ noarg (arg nurn Yl))]) (YI -> nurn)).

257

A consequence of this encoding is that run-time checks caused

by applying procedures to the wrong number of arguments
are distinguished from other run-time checks. In practice,
we find that such argument count checks usually indicate

program errors.
Assignment and the continuation operator ca II/cc are

important features of Scheme. There are several solutions
to typing assignment and continuations in a polymorphic

framework. Our prototype uses the simplest method which
restricts polymorphism to let-expressions where the bound

expression is a syntactic value [24]. For Scheme, all expres-
sions are values except those that contain an application of a

non-primitive procedure or an “impure” primitive (like cons
or call/cc).

In our prototype, call/cc has the type:

(((xl –> X2) –> xl) -> xl).

A use of call/cc may require a run-time check for either of

two reasons: (z) the value to which ca II/cc is applied (of type
((Xl –> X!) –> Xl)) is not a procedure of one argument;
or (ii) the continuation obtained (of type (Xl –> X2)) is
not treated as a procedure of one argument. While the first
case could be handled as usual by inserting CHECK-call/cc,

the second case cannot. To address the second case, we
replace each occurrence of call/cc in the program with the

expression:

(lambda (v)

(call/cc (lambda (k) (v (lambda (x) (k x))))))

This transformation, a composition of three q-expansions,

introduces an explicit lambda-expression for the continua-

tion. The expression (lambda (x) (k x)) will be checked if
the continuation may be mistreated.

A Scheme program is a sequence of definitions that may
refer forwards or backwards to other definitions. Treating
an entire program as a single letrec-expression is not sat-

isfactory because the Hindley-Milner type system assigns

polymorphic types to identifiers only within the body of a
let- or letrec-expression, not within the bindings. To ob-

tain polymorphism for definitions, we topologically sort the

program’s definitions into strongly connected components.

The components form a tree that may be organized as nested
letrec-expressions and typed in the usual manner.

Scheme’s letrec-expression is the only significant obsta-
cle to typing R4RS Scheme. In a letrec-expression:

(letrec ([z, el] . . . [zm en]) e)

the bindings e] . . . en may be arbitrary expressions. They

are evaluated in some unspecified order. An expression like

(letrec ([x (not x)]) x) that refers to the value of some z,
before e, has been evaluated is invalid. But R4RS Scheme

implementations are not required to detect such invalid ex-
pressions. A conforming implementation may instead return
an unspecified value. To ensure that the value returned by
any Ietrec-expression is an element of the expression’s type
(i.e. that the type system is sound), the Scheme implemen-
tation must detect invalid letrec-expressions.

4.2 Extensions to Scheme

Our prototype includes two natural extensions to Scheme
that enable more precise type assignment. Pattern matching

enables the type checker to “learn” from type tests. For
example, in the expression:

(let ([x (if P O (cons 1 ‘()))])

(if (pair? x) (car x) 2))

no check should be necessary at car. However, as our type
system assigns types to identifiers, the occurrence of x in
(car x) has the same type as every other occurrence of x.

This type includes narn, hence a run-time check is inserted.
In contrast, the equivalent code:s

(let ([x (if P O (cons 1 ‘()))])
(match x [(a . -) a] [_ 2]))

couples the type test to the decomposition of x. By ex-

tending the type system to directly type pattern matching
expressions, we avoid the unnecessary run-time check. TO

improve the treatment of ordinary Scheme programs that
do not use pattern matching, we translate simple forms of

type testing if-expressions, like that above, into equivalent

match-expressions.

Our second extension to Scheme is a type definition fa-

cility that allows the introduction of new type constructors.
The expression:

(define-structure (Foo a b c))

defines constructors, predicates, selectors, and mutators for
data of type (Foo .). Programs that use type definitions

are assigned more informative and more precise types than
those that encode data structures using lists or vectors. A

similar facility defines immutable data.

4.3 Problems

We have identified three problems with our system that re-

sult in imprecise typing.

Tidiness: Our tidy union types can express most common

Scheme types. However, no decidable type system can ex-

press all computable subsets of the data domain. Four of

the R4RS Scheme procedures do not have a tidy union type.

These are: map and for-each for an arbitrary number of ar-

guments; apply with more than two arguments; and append

when the last element is not a list. The types inferred for

these procedures are too coarse. Some uses of these pro-

cedures require run-time checks. Overall, we feel that our
type language provides a good balance between simplicity

and expressiveness.

Reverse Flow: Several typing rules require that the types of
two subexpressions be identical. For instance, if-expressions

require their then- and else-clauses to have the same type.

Applications of non-polymorphic procedures require the types
of arguments to match the types the function expects (see
rules ap and Cap in Figure 4). Consequently, type infor-

mation flows both with and counter to the direction of value
flow. Reverse flow can cause an inaccurate type to be in-
ferred even though a more accurate tidy union type exists.
For example, the following function:

(define f (lambda (x) (if P x #f)))

‘The expression (match e [patl el] [patn en]) compares the

value of e aga!nst patterns patl patn. Any Identifiers In the first

matching pattern pat, are bound to corresponding parts of the value

of e, and e, IS evaluated In the extended environment The pattern
(patl pat2) matches a pa,r whose components match patl and pat2

Pattern - matches anything.

258

is inferred type ((false+ U al) ~+ (false+ U al)) U cr2. The

constant #f forces false+ into the type of x, and there-

fore into the input type of f. Hence the subtyping pro-
vided by polymorphism fails at applications of f—all argu-

ments to f are forced to include false+ in their type. Were

((falseW U CYI) ++ (~a~se+ U CYI)) U rr2 inferred for f, sub-
typing would work at uses of f.

The method of inserting run-time checks described in
subsection 3.4 exacerbates the reverse flow problem. The in-

sertion of a run-time check can cascade, forcing the insertion
of many other unnecessary run-time checks. For example,

the following program requires no run-time checks:

(let ([f addl]) (lambda (x) (f x) (* 2 x)))

In this program, f has type scheme VVCr2~3. ((raurraw U d) ++

(nrm+ U rY2)) U m3. Suppose we add the application (f #t)

between (f x) and (* 2 x). Now the absent variable & that is

not generalized by the let-expression is replaced with true+u

&’, and a run-time check is inserted at addl. But the input

type of f is now nurnv U true+ U &’, hence reverse flow at

the application (f x) forces the type of x to include true+.

Therefore * receives an unnecessary run-time check.
Our prototype avoids cascading by using a better tech-

nique to insert run-time checks. Absent variables are gen-

eralized by let-expressions in the same manner as ordinary
variables. But whenever a generalized absent variable is

instantiated, the instance type is recorded. A primitive re-

quires a run-time check if any of the instance types of its

absent variables are non-empty. An instance type is non-
empty if it contains a +flag or if any of its instances are

non-empty. The extra bookkeeping required for this tech-
nique is minimal. The improvement in typing precision and
the attendant reduction in run-time checking can be signif-
icant.

We have also investigated several adaptations of struc-
tural subtyping [12, 17] to address the reverse flow problem.

Structural subtyping is more powerful than encoding sub-

typing with polymorphism as it permits subtyping at all

function applications. By permitting more subtyping, soft
type systems based on structural subtyping can infer more

precise types. However, our experience to date with such
systems has been disappointing. The inference algorithms
we have constructed for structural subtyping with union and
recursive types require exorbitant amounts of memory for

even small examples.

Assignment: Because assignment interferes with polymor-
phism, and therefore with subtyping, assignment can be a

major source of imprecision. Scheme includes both assignable
identifiers, set by set!, and assignable pairs, set by set-car!

and set-cd r!. Assignments to local identifiers seldom cause
trouble. However, assignments to global identifiers or to

pairs disable subtyping, and hence may cause the accumu-
lation of large, inaccurate types. Using immutable pairs
when possible adequately addresses the problem for set-car !
and set-cd r!, At present, we have no satisfactory solutions

for global identifier assignments.

5 Related Work

Our practical soft type system is based on a soft type sys-
tem designed by Cartwright and Fagan for an idealized func-
tional language [5, 7]. Cartwright and Fagan discovered how

to incorporate a limited form of union type in a Hindley -

Milner polymorphic type system. Their method is based

on an encoding technique R6my developed to reduce record

subtyping to polymorphism [] 9]. Their system represents

union types in a different manner from ours, but their types

can be viewed as the types of Section 3.2 with all type vari-

ables having label 0. This precludes type variables from

appearing in unions. A type like:

((fake+ U cr) ++ (~alse- U a)) U @

where a has label {fake} must instead be represented by

enumerating all other tags in place of a:

(false+ U n um$’l U U (consq” mI clz)) -++

(~alse- U numv’ U . . . U (consv” aI cr2))

In Carwright and Fagan’s system, procedures like flatten

from Section 2 have large types that do not have a natural

decoding into presentation types. Furthermore, their rep-
resentation does not support incremental definition of new

type constructors, and type inference is not particularly ef-
ficient because simple types can have large representations.

Aiken and Wimmers have recently developed a sophisti-
cated soft type system for the functional language FL [1, 2].

Their system supports a rich type language including union
types, recursive types, intersection types, conditional types,

and subtype constraints. While it seems clear that their
formal system assigns more precise types to some programs

than our system does, their implementation discards some
solutions for the sake of efficiency. Consequently, their im-

plementation can yield less precise types than ours for some

simple programs. Even with this concession to efficiency,
both their timing results and the complexity of their algo-
rithm indicate that it is slower than ours. And the inferred
types are probably too complicated to be easily interpreted

by programmers. Nevertheless, if their system can be ex-

tended to include imperative features (assignment and con-
trol) and acceptable performance can be achieved, we believe

that it could serve as a good basis for a stronger soft type

system for Scheme.

Several researchers have developed static type systems

that extend the Hindley-Milner type discipline by adding a

maximal type T as the type of otherwise untypable phrases [8,
10, 18, 22, 23]. This framework is too imprecise to form

the basis for a soft type system because it does not sup-
port union types or inferred recursive types. The frequency
with which T is assigned as the type of an expression limits
the utility of the inferred type information. Nevertheless,

Henglein has used a formulation of static typing enhanced
with T to eliminate many run-time checks from Scheme pro-
grams.

The designers of optimizing compilers for Scheme and

Lisp have developed type analyzers based on data flow anal-
ysis [4, 9, 13, 14, 15, 21]. The information gathered by these
systems is important for program optimization, but it is

much too coarse to serve as the basis for a soft type system.
None of the systems infer polymorphic types and most infer
types that are simple unions of type constants and construc-

tions,

6 Future Work

Our current implementation processes an entire program
at once, inferring type information and inserting run-time

259

checks throughout. As such, the system is not well suited
to large scale software development. We are investigating

module systems to enable separate type checking and com-
pilation of different parts of a program.

Announcement

Soft Scheme is available by anonymous FTPfromcs. rice.edu
in file public/wright/soft. tar. Z. Our pattern matching and

type definition extensions for Scheme, which may be used in-
dependently of Soft Scheme, are also available from CS,rice.ed u

in file public/wright/ match .tar. Z.

Acknowledgements

Kent Dybvig extended Chez Scheme overnight to permit
mixing checked and unchecked primitives within one proce-

dure. Without his assistance, we could not have obtained
realktic execution time measurements for soft typed pro-

grams.

Appendices

A Examples

Following are some simple functions and their inferred types.
None of these functions require run-time checks if they are
passed arguments within their intended domain.

(define map
(lambda (f 1)

; apply a function to every element of a list

(if(null? 1)

‘()
(cons (f (car l)) (map f (cdr l))))))

;; ((xl -> X2) (last xl) -> (list X2))

(define member ; search for a key in a list

(lrml:;c:(: 1)

[() M
[(y . rest) (if feclual? x Y)

(member x rest))])))
;; (xl (list x2) -> (+ false (cons X2 (last x2))))

(define Iastpair ; find the last pair of a non-empty list

(lambda (s)
(if(pair? (cdr s))

(Iastpair (cdr s))

+))
;; (r-cc ([YI (+ (cons Xi Yl) X2)])
;; ((cons xl Yl) -> (cons xl (+ (not cons) x2))))

(define subst” ; substitution for trees
(lambda (new old t)

(cond [(eq~ old t)new]

[(pair? t) (cons (subst* new old (car t))
(subst* new old (cdr t)))]

[else t])))
;; (r-e. ([Y1 (+ (cons Y1 Yl) Xl)])
;; (Yl X2 Y1 -> Yl))

(define append

(lambda I\
(cond [(null? 1) ()]

[(null? (cdr l)) (car l)]
[else (let loop ([m (car l)])

(if(null? m)
(apply append (cdr l))

(cons (car m) (loop (cdr

;; ((arglist (list Xl)) ->* (list Xl))
m)))))])))

(define taut? ; test for a tautology

(lambda (x)

(match x

[#t #t]
[#f #q
[_ (and (taut? (x #t)) (taut? (x #f)))])))

;; (ret ([Y1 (+ false true ((+ false true) -> Yl))])
;; (Yl -> (+ false true)))

;; from Aiken and Wimmers [2]

(define Y ; least fixed point combinator

(lambda (f)

(lambda (y)

(((lambda (x) (f (lambda (z) ((xX) z))))

(lambda (x) (f (lambda (z) ((xx) z)))))

Y))))
~d~w: ;: X.2) -> (xl -> x2)) -> (xl -> X2))

; find last element of a list
(Y (lambda (f)

(lambda (x)
(if [::~l~)(cdr x))

(f (cdr x)))))))

;; ((cons Z1 (list Zl)) -> Zl)

B Operational Semantics

Figure 6 specifies a reduction semantics for Core Scheme
(neglecting pairs, which are easy to add). Val is the set of

values. Prim c Const is the set of primitive operations. An-

swers are values or the special token check which is returned

by programs that apply checked operations to invalid argu-

ments. The reduction relation depends on a definition of
evaluation contexts, E. An evaluation context is an expres-

sion with one subexpression replaced by a hole, n. E[e] is
the expression obtained by placing e in the hole of E. Our

definition of evaluation contexts ensures that applications
evaluate from left to right,g as every non-value expression

can be uniquely decomposed into an evaluation context and
a redex.

Rule let reduces let-expressions by substitution. Rules
,& and check-/3, reduce ordinary and checked applications
of lambda-expressions. Rules 61, 152,check-iii, and check-&
use the partial function:

8: Przm x Closed Val — (ClosedVal U {check})

to interpret the application of primitives. Closed Vu/ is the
set of closed values. For all checked primitives CHECK-c,

we require that 6(CH ECK-C, v) be defined for all closed val-
ues v. For unchecked primitives, 8 may be undefined at

some arguments. For corresponding pairs of unchecked and

9 our ~heopems AO hold for a language that does Hot sPecifY the

evaluation order, like Scheme.

260

[;:/

(82)
(check-~,)

(check-til)

(check-&)

(if,)

(ifz)

(let)

E ..—..—

E[(ap (lambda (z) e) u)] x E[e[z w .]]

E[(ap c v)] R E[6(c, v)] if c c Prim and 8(c, v) c Vu/

E[(ap c v)] I---+ check if c c Prim and c$(c,v) = check

E[(CHECK-ap (lambda (z) e) v)] * E[e[z w v]]

E[(CHECK-ap c v)] * E[6(c, v)] if c c Prim and ii(c, v) E Val

E[(CHECK-ap c v)] t----+ check if c @ Prim or t$(c, o) = check

E[(if v el ez)] w E[el] ifv ##f

E[(if #f el e~)] * E[ez]

E[(let ([z v]) e)] +-+ E[e[z w v]]

O \ (ap E e) I (ap rJ E) I (CHECK-ap E e) I (CHECK-ap v E) I (if E .1 ez) I (let ([z E]) e)

Figure 6: Reduction Semantics for (lore Scheme

checked primitives (c, CHECK-c), we require that 6(c, v) and
6(CHECK-C, o) agree for all v, except that 6(c, v) may be un-

defined when 6(CHECK-C, v) yields check:

15(CHECK-C, V) =

{

6(c, v) if 6(c, v) is defined;

check if 6(c, v) is undefined.

When 8 returns check for the application of a primitive,
check immediately becomes the program’s answer via rule
82 or check-r$z. Rule check-62 also ensures that checked ap-

plications of basic constants, like (CHECK-ap 1 2), result

in answer check.

Let # be the reflexive and transitive closure of x.
With unchecked operations, evaluation can lead to a normal

form (relative to +) that is neither a value nor check.
Such normal forms arise when an unchecked primitive is

applied to an argument for which it is not defined, e.g., (ap
addl #t), or when the first subexpression of an unchecked

application is not a procedure, e.g., (ap 1 2). We saY such
an expression is stuck. Say that e diverges when there is

an infinite reduction sequence e * e’ w e“ * . . . All
closed expressions either (i) yield an answer that is a closed
value, (ii) diverge, (iii) yield check, or (iv) become stuck.

Lemma B.1 For closed expressions e, either e M v where
v is closed, e dwerges, e w check, or e # e’ where e’ is

stuck.

C Correctness

Three theorems establish the correctness of our soft type
system. The first states that all programs can be soft typed.

Theorem C.1 (Applicability) For ail programs e, there

ezist e’ and r such that 0 1+ e +- e’ : r.

Proof. The proof proceeds by induction over the struc-
ture of typing derivations, using a strengthened induction

hypothesis to accommodate terms with free identifiers. ~

The second theorem establishes that soft typed programs
do not become stuck.

Theorem C.2 (Soft Soundness) lj 0 1+ e + e’ : ~ then

either e’ diverges, or e’ m check, or e’ I-++ v’.

Proof. To establish this theorem, we first show that e’ has
a type in the static type system. Let r“ be the result of

replacing all absent flag variables with - and all absent type
variables with @in r . Define A“ similarly, and where a type
scheme binds an absent variable, eliminate the binding.

Lemma C.3 Ij A~e*e’:r therz A*l-e’: r*.

This lemma is proved by induction over the structure of the

deduction A + e ~ e’ : r. The theorem then follows by

Theorem 3.1 (Type Soundness). I

To prove that the soft typed program and the original

program are equivalent, recall that evaluation has four pos-
sible outcomes. A program may (i) yield an answer u, (ii)
diverge, (iii) yield check, or (iv) get stuck. Let e ~ e’ mean

that e’ may have more checked operations that e, but e and

e’ are otherwise the same. Specifically, ~ is the reflexive,
transitive, and compatible]o closure of the following rela-

tion:

Soft type checking preserves the meaning of programs, but

lifts the meaning of invalid programs that get stuck to check.

Theorem C.4 (Correspondence) If 0 * e * e’ : T

then:

e-v + e’tiv’ where v L v’;

e diverges M e’ diverges;

e - check or e gets stuck @ e’ w check.

Proof. We first show that a program that has fewer checked

operations performs the same evaluation steps, but may be-

come stuck sooner.

Lemma C.5 (Simulation) For el L ej:

1. .1 w e~ + e; x ej and e2 ~ ej;
el w check + ej w check;

el w stuck - e{ w check or e(is stuck.

o-. ej w ej * el w ez and e2 L e;;
e; +-+ check + el M check or e] is stuck.

Both parts of this lemma are proved by case analysis on the
structure of the expressions,

For the first part, from 0 !+ e + e’ : r we have e ~ e’
by induction and case analysis of the soft typing rules in

lo~he ~OmPatl~~eCIIXW.e Of a relation R is {(CICII, C[e21)) for all

(.1, ez) 6 R and all contexts C A context C is an expression with a
hole in place of one subexpressmn.

261

Figure 5. By induction with the first part of Simulation:

e-v * e’wv’andv~ v’;

e diverges + e’ diverges;
eti check + e’ +-+check;
e gets stuck * e’ H check or e’ gets stuck.

But by Soft Soundness e’ cannot get stuck.
For the second part, again e ~ e’. By induction with the

second part of Simulation:

e’ t-.-+ v’ =+ e~vandvc v’;
e’ diverges + e diverges; –
e’ w check + e w+ check or e gets stuck.

This completes the proof. ~

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

AIKEN, A., AND WIMMERS, E. L. Type inclusion con-
straints and type inference. Proceedings oj the Inter-
national Conference on Functional Programming Lan-

guages and Computer Architecture (1993), 31-41.

ALKEN, A., WIMMERS, E. L., ANE LAKSHMAN, T. K.
Soft typing with conditional types. Proceedings oj the

21st Annual Sympos~um on Principles oj Pr-ogramming
Languages (January 1994), 163-173.

AMADIO, R. M., AND CARDELLI, L. Subtyping re-

cursive types. Proceedings oj the 17th Annual Sympo-
sium on Principles oj Programming Languages (Jan-

uary 1990), 104–118.

BEER, R. D. Preliminary report on a practical type
inference system for Common Lisp. Lisp Pointers 1, 2
(1987), 5-11.

CARTWRIGHT, R., AND FAG AN, M. Soft typing.

Proceedings of the SIGPLA N ’91 Conference on Pro-
gramming Language Design and Implementation (June

1991), 278-292.

CLINGER, W., REES, J., ET AL. Revised4 report on the
algorithmic language Scheme. ACM Lisp Pointers IV

(July-September 1991).

FAG AN, M. Sojt Typing: An Approach to Type Checking
for Dynam~cally Typed Languages. PhD thesis, Rice
University, October 1990.

GOMARD, C. K. Partial type inference for un-
typed functional programs. Proceedings oj the 1990
ACM Conference on LISP and Functional Program-
ming (June 1990), 282–287.

HEINTZE, N. Set based analysis of ML programs.
Tech. Rep. CMU-CS-93-193, Carnegie Mellon Univer-
sity, July 1993.

HENGLEIN, F. Global tagging optimization by type
inference. Proceedings of the 1992 ACM Conference on

Lzsp and Functional Programming (June 1992), 205-
215.

HINDLEY, R. The principal type-scheme of an object
in combinatory logic. Transactions oj the American
A4athematica/ Society 146 (December 1969), 29-60.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

KAES, S. Type inference in the presence of overloading,
mbtyping and recursive types. Proceedings oj the 1992

ACM Conference on Ltsp and Funct~onal Programmmg
(June 199’2), 193-204.

KAPLAN, M. A., AND ULLMAN, J. D. A scheme for the
automatic inference of variable types. Journal oj the

Assocaatzon for Computing Machinery 27, 1 (January
1980), 128-145.

KIND, A., AND FRIEDRICH, H. A practical approach to
type inference in EuLisp. Lisp and Symbolzc Computa-

tion 6, 1/2 (August 1993), 159-175.

MA, K. L., AND KESSLER, R. R. TICL—a type infer-

ence system for Common Lisp. Software Practice and

Experience 20, 6 (June 1990), 593-623.

MILNER, R. A theory of type polymorphism in pro-

gramming. Journal oj Computer and System Scaences
17 (1978), 348-375.

MITCHELL, J. C. Type inference with simple subtypes.
Journal oj Functional Programming 1, 3 (July 1991),
245–286. Preliminary version in: Coercion and Type

Inference, Proc. Ilth Annual Symposzum on Principles
oj Programming Languages, 1984, pp. 175–185.

O’KEEFE, P. M., AND WAND, M. Type inference for

partial types is decidable. In Proceedings oj the Euro-

pean Symposium on Programming, LNCS 582 (1992),

Springer-Verlag, pp. 408-417.

REMY, D. Typechecking records and variants in a nat-

ural extension of ML. Proceedings of the 16th Annual
Symposium on Principles of Programm~ng Languages

(January 1989), 77-87.

REMY, D. Type inference for records in a natural ex-

tension of ML. Tech. Rep. 1431, INRIA, May 1991.

SHIVERS, O. Control-Flow Analysis oj Htgher-Order

Languages. PhD thesis, Carnegie Mellon University,
May 1991. Also: Tech. Rep. CMU-CS-91-145.

THATTE, S. R. Type inference with partial types. In

Automata, Languages and Programming: 15th Interna-
tional Colloquium, LNCS 317 (July 1988), Springer-

Verlag, pp. 615-629.

THATTE, S. R. Quasi-static typing. Proceedings oj the
17th Annual Symposium on Principles of Programming
Languages (January 1990), 367-381.

WRIGHT, A. K. Polymorphism for imperative lan-
guages without imperative types. Tech. Rep. 93-200,

Rice University, February 1993.

WRIGHT, A. K., Am FELLETSEN, M. A syntactic ap-
proach to type soundness. Tech. Rep. 91-160, Rice Uni-
versity, April 1991. To appear in: Information and
Computation, 1994.

262

