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Abstract

In our recent paper [22], we gave an efficient interprocedu-
ral update analysis algorithm for strict functional languages

wit h flat arrays and sequential evaluation. In this paper,
we show that the same algorithm extends to a parallel func-

tional language with additional constructs for partitioning
and combining arrays. Even with parallel evaluation, the
complexity of the analysis remains polynomial. The analy-
sis has been implemented and the results show that several

numerical algorithms such as direct and iterative methods
for solving linear equations, LU, Cholesky, and QR factor-
ization, multigrid methods for solving partial differential

equations, and non-numeric algorithms such as sorting can

be implemented functionally with all updates made destruc-
tive. We describe a new array construct to specify a collec-

tion of updates on an array and show that problems like
histogram, inverse permutation, and polynomial multiplica-
tion have efficient parallel functional solutions. Monolithic
array operators can be considered as a special case of this

new construct.

1 Introduction

Although pure functional programming languages show great

promise for parallel programming, their success is limited by
two problems. One is the array update problem: modifica-

tion of an array at an index, also called incremental update

[17], in general requires a new copy of the entire array. If

all updates are made by copying, the complexity of an algo-
rithm degrades in proportion to the size of the array being

updated. This inefficiency is being addressed by three av-
enues of research: one approach requires the programmer

to write programs in a restricted style that ensures that all
updates can be perfomed by side effect; another approach,

closely related to the first, requires the programmer to as-
sert that it is safe to uDdate an arrav bv side eRect. leav-. .
ing it to the compiler to verify that assertion if necessary
[16, 19, 30]; the optimization approach leaves it to the com-
piler to detect updates that can be implemented by side
effect [4, 3, 6, 7, S, 9, 12, 13, 15, 18, 22, 21, 23, 25, 24].

The second problem is: how to express parallel updates
on an array? Can parallel updates on distinct indices be per-

formed destructively? Can parallel updates on non-distinct
indices be performed destructively?

Specifying a collection of updates using the incremental
update operator results in a sequential solution. Monolithic

arrays [1, 17] were devised to express parallelism at the ex-
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pense of creation of a new array. Consider the operation of

multiplying a row of a matrix by a scalar. With monolithic
arrays, a new copy of the entire matrix is required. With our

update analysis, the incremental updates yield a sequential
solution with no space overhead. Ideally, we would like to

update the matrix in parallel without copying the matrix.
In this paper, we show that incremental updates can be

used to specify parallel updates. We also present an exten-
sion of our recent algorithm [22], which we believe to be the
first practical algorithm for interprocedural update analy-
sis in first-order functional languages with flat arrays and
parallel evahration.

To handle parallel updates on indices that are not known

to be distinct, we devise a new incremental update operator
called an accumulating update and show that problems like

histogram, polynomial multiplication and inverse permuta-
tion [1, 17, 28] can be expressed naturally and implemented

efficiently using update analysis.

2 A Parallel Functional Language

The incremental update operator does not lend itself well

for expressing parallel updates on a single array. Consider
updating an array a at indices i and j with values 3 and
4. If these two updates are performed in parallel, we get
two new arrays each containing only one update. These up

dates must be non-destructive because the first argument of
each update operator is live when the update is performed.

Moreover, it is not clear how to incorporate both updates in
a single array subsequently. The only way to express these

two updates is to choose a sequential order of updates, for

example upd (upd ( a, i, 3 ) , j ,4). This criticism of incremen-

tal update operator has already been made in [1]. In this
paper we show that by defining new operations on arrays,
one can express parallel updates using the incremental up-
date operator and update analysis can determine whether
these updates can be made destructively.

Our language is a first-order functional language with
flat multi-dimensional arrays. We introduce a let expres-
sion let [tl = el, . . . . tn = en] in e end. The scope of a

let binding t, = e, is the entire let expression except itself
or any region shadowed by a nested let binding. We also

assume that all t,’s are distinct. Bindings with cyclic depen-
dencies are not permitted. The let bindings and the body

of the let expression can be evaluated in parallel subject to
dependency constraints.
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2.1 Partition and Combine operations

A multi-dimensional array a : [11 : h,..., /d : h] has dimen-
sion d and for an index [ii, ..., id] to be vaIid, it must be
thecase that ll~;l<bl, . . ..ld~id<bd.

Intuitively, partitioning an array means dividing an array
into two subarrays with disjoint index spaces whose union is

the index space of the original array. Combining, the inverse
operation, is the concatenation of two arrays. A more precise

description follows.

2.1.1 Semantics

The operator partition takes an array a : [l] : bl,..., [d :

bd], a dimension k such that 1 < k < d, and a partitioning
index i such that lh < i < bh, and returns two new arrays

a, :[i~ :b~,..., ~~:i, ~d:bd]andazndaz :[~1 :b~,..., i:
bk ,,. . ,ld : bd]. The value of al or az at index [ii,.. . ,id] is
the corresponding value of the array a. By this definition,
indices of al and az are disjoint.

The combine operator is the inverse of part it ion It
;k~[;lwo arrays al : [11 : bl, . . . . ~~ : i~,. . . . id : bd] and

:~1, ..., hh : uk, . . . . hd : Ud] that are compatible

for combining, and a dimension k such that 1 ~ k s d, and

returns a new array

a:[il:bl, ..., /k:(ik+ (hk–?tk Al)),..., id:bd]

. The two arrays are compatible for combination if the size
of al in dimension t, which is b, -1, +1, is same as u, —h, + 1

forl~i$k~d.
The value of a at index [i],..., id] is al [il,..., id] if

[il,... , id] lies in the range of al. Otherwise, it is

a2[h + (il -b~),.. .,(hd+(ib d))])]

2.2 An Example

Consider the problem of adding two vectors. In an imper-
ative language, vector addition can be performed by a sim-

ple do or for loop in O(n) time. In a functional langua~e
without update analysis, the corresponding loop takes O(n )

time.
The part it ion and combine operators can be used to

write more efficient functional programs. The following pro-
gram runs in O(n log n) time without update analysis, in
O(n) time with update analysis, and in O(log n) time with
update anal ysis and parallel execution.

\* II is integer division. *\

\* dim(a, i) = no. of elements in dimension i. *\
\v help_ vector-add(a,b, i) adds vectors *\

\* a and b from index i ormards. *\

vector-add (a,b) = help-vector-add(a,b,O);

help_vector_add (a,b,i) =
if dim(a,l) = 1

then upd(a,i,a[i]+b[i])
else let midpoint = i + dim(v,l)//2;

a-l, a-2 = partition (a. midpoint, 1);

rv-1 = help-vector-add(a-l,b,i) ;
rv-2 = help_vector_add(a-2,b,midpoint)

in

combine(rv-1 ,rv_2,1)
end

endif;

Ifthesize ofais larger than 1, then a is partitioned into
two vectors a.i and a.2. The problem is solved recursively
on each vector and the solutions are combined using the
combine operator.

2.3 Implementation Choices

There aretwochoices of implementation for the partition

and combine operators. In a copying implementation, the
two partitions arecreated bycopying data from the original

array. In a sharing implementation, the new arrays share
data with the original array. This can be achieved by cre-

ating new array headers with the new ranges for the two
partitions while sharing the data with the original array.

The overhead of creating a header is O(d), proportional to
the dimension of the array which is usually a small number.

The combine operator can also be implemented bycopy-
ing. However, if arrays that are combined are adjacent par-
titions implemented by sharing, then combine can also be
implemented by sharing. In such a case, it is required to

create a new header for the resulting array. The combine
operator cannot always be implemented by sharing even if

partitionis implemented by sharing. The reason is that
one may be combining arrays that are not physically adja-

cent to one another.
Suppose we have established that all partition and

combine operators in a program can be implemented by
sharing. Can we also avoid creation of array headers thus

making partition an identity operator and combine asyn-
chronizing operator? The array headers are used for bounds
checking and operations like determining the size of the ar-
ray. If bounds checking is not performed and the program-
mer does not use any operation that needs the array header,
a situation similar to programming in a language like C,

then partition and combine become operators that return

their first argument. The partition operation can even be

performed at compile time.

3 Update Analysis

This section is very similar to our previous paper [22]. One

of the key insights that led to our simple algorithm was
that anonymous aggregates (new aggregates) need not be
tracked. We defined four analyses called propagationana/y-
sis, aliasing analysis, selects-updates analysis, and reference
count analysis. We have to define the flow equations for
partitionand combine operators for these analyses. Weas-

sume copying semantics for these operators. Since we have

extended the source language with let expressions, we have
to extend the analysis for them.

Since partition and combine create new aggregates,
they do not propagate any of their arguments. Includlng
the let expression in the source language allows the user to
name an expression and use the name elsewhere one or more
times, causing sharing. Consider a let binding t, = e,. If
e, returns an anonymous aggregate, it can be shared in the
rest of the let expression through the name t,.Therefore,
an anonymous aggregate can always be identified with the

name of the temporary variable to which it is bound. When
an anonymous aggregate is returned aa a result of the func-
tion, any local name that was associated with the result can
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be discarded because thescopeof the local name is limited

to the let expression in which it is introduced.

Inour previous analysis, weusedthe emptyset to denote
an anonymous aggregate as well aa a non-aggregate value.

In this paper, we introduce a new value b to represent a
non-aggregate value. The emptyset denotes an anonymous

aggregate. The reason for this change is that it reduces the
complexity of the algorithm.

Aliasing analysis is exactly the same as described in sec-
tion 4 of [22]. The selects-upcfate~ analysis is also the same

except that part it ion and combine neither select nor UP
date any of their arguments.

The dependence graph of a let expression is updated by
adding an edge between node t,and t, if t,is not a pre-

decessor of t,and t,updates any array that is selected by
t~. After adding these edges, the dependence graph remains

a directed acyclic graph. In our previous paper, we added
edges without checking for the existence of a path between

the two nodes, which could result in a graph with cycles.
The dependence graph is used to compute the set of syntac-

tically live variables at any binding. Our current decision
is to sacrifice parallelism in favor of destructive updating,
whenever there is a conflict between the two.

3.1 Computing Live Variables

Given a dependence graph where each node represents an
expression (and the corresponding temporary variable), we
have to determine the variables that are live at each node. A

variable s is live at t,if z is neither t,nor its successor and
there exists another node t,# t,that is not yet evaluated
and uses x. The reason we don’t need to consider t,or its
successors is that these variables are not defined before the

evaluation oft i.Since we are considering parallel evaluation,
we conservatively assume that all the nodes that are not

predecessors oft, are yet to be evaluated.
To compute live variables, we need to know the inter-

mediate form of our language. The source and intermediate
forms are described in figures 2.a and 2.b. The partition

operator in the source language returns two values, the left
and right partitions. We will associate a unique label with

each part it ion operator. In the intermediate form, we split

a partition operator into two left.part and right+mrt

operators which inherit the label from the corresponding

part it ion operator.

Since part it ion is a single operator at the source level,

the variables used in left-part operator with label 1 need
not be considered se live at the node right-part with the
same label. In general, variables in nodes with the same
label as that of tineed not be considered in determining the
live variables at t,.Therefore the set of live variables at t:
is given as

LiUf3(t1)= U{(C I Z E Vars(tj),

tj $?p~eds(tt),

~ s (s-s(h) u {t,}),

/abe/(ti) # label(tj)}

Consider the intermediate form for the helper function
in vector addition example.

help-vector-add (a, b, i) =

let t-l = dim(a,l) ;

t-2 = (t-l = 1);
t-3 = if t-l then

let t-4 = a[i];
t-5 = b[i] ;

t-6 = t-4 + t-5;

t-7 = upd(a, i,t-6)
in

t-7
end

else

let t_8 = t_l//2;
mid = i + t_8;

a-1 = left-part (a, mid,l)
a_2 = right _part(a, mid, l)

rv_l = help-vector_ add(a.l
rv-2 = help_vector-add(a-2
t_10 = combine(rv_l,rv-2,1

in
t-lo

end
in

t_3

end

b,i);
b ,mid) ;

The live variables at a-l anda.2are{b,i,a-2} and
{b,i,a-l} respectively. Thedomains and functions for prop

agation analysis are given in figures 3a, 3.b, 3.c, and 3.d.
Details of the rest of the analyses have been omitted as they

are very similar tothe onesin [22].

3.2 Complexity

We show that the complexity of the analysis remains polyno-
mial as in our earlier algorithm. The parameters are m (the
number of internal nodes in the parse tree of a program, k
(the maximum function arity), n (the number of functions),
andp (the maximum number ofoperators that return anony-

mous aggregates). Theparameter pincludes thepartitioq
combine, and upd operators and all the function calls that

return new aggregates.
Since temporary variables are discarded when consider-

ing the value propagated by any function, the number of
fixpoint iterations needed for all the analyses are the same

asin [22]. Recall that propagation analysis requires O(nk)
iterations. The maximum number of values that can be

propagated by an expression is k+p+l; 1 represents the

non-aggregate value, although it will be a type-error to re-
turn anaggregate aswellas non-aggregate value. Analyzing
a function call, the most expensive operation, requires at
most k unions of sets of size at most k+p+l. The overall
complexity of propagation analysis becomes O(mnk2(k+p)).

Recall that theworst case complexity of propagation analy-
sis in [22] is O(rnn k3 ). If we had not distinguished between

non-aggregate values and anonymous aggregates, then the
maximum size of a set would have been O(m) instead of

O(k + P).

Similarly it can be shown that the worst case complexity

of a~iasing analysis is 0(r-nnk4 (k + p), although in practice
it takes only a few iterations. Selects-updates analysis and
re~erence count analysis take 0(mnk2 (k + P)) time. For

reference count analysis, we assume that the live variables
are already computed as discussed in previous subsection.
In the above estimates, we haven’t included the complexity
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of adding edges to the dependence graph and computing the
live variables both of which can be shown to be of polynomial

complexity.
The main intent of the complexity estimate is to show

that the analysis runs in polynomial time, even with parallel
evaluation. For typical cases, these worst case estimates do
not reflect the actual running times. Our previous analysis,
for example, runs in near linear time on typical programs.

3.3 Optimizing Combines

Suppose after the update analysis we discover that a

partition operator can be converted into a non-copying

part it ion!, as is the case if its first argument is not live.
The question is: can we always convert a combine to a non-

copying combine? The answer is no. Consider the function

f (x, y) = combine (x, y,l)

Since we don’t know anything about the storage layout of
x and y, conrbine cannot be known to be non-copying at

compile time.
We can perform a simple analysis to detect if combine

can be non-copying. We use an analysis similar to propa-
gation analysis that determines addresses propagated by an

expression. The flat domain of addresses is defined as

Add = ((V+ {T}) X P*):

P = Part x {1, r}

Part = {Occurrences of Partition Operators)

T represents an unknown address. An address (v,s) is

the address of an array obtained by applying a sequence
of s left-part or right-part operations on the array with
address v. We define how the labelled primitive operators
propagate these addresses:

)@pd!] z = X

K~upd] z = T

K[aleft+art] z = T

K[%ight+art] z = T

K[aleft-part !] z = if (z = T)

then (T, a.i)

else (fst(z), snd(z)<a.l)

K[%ight.part !] z = ii (z = T)

then (T, a.r)

eke (fst(z), snd(z).a.r)

K[combine] z y = if(z=Tory=T)

then T

else ii (fd(z)= fst(y),

(snd(x) = s.b.1),

(Hid(y) = 9.b.r)

then (fst(z), s)

else T.

All operators are bottom strict. The functions fst and
snd are projection functions. All operators except combine
that return new aggregates return T as the address. We also

assume that arithmetic operators return T. The operators
wit h a ! are non-copying. If the two arguments to combine

are addresses of the left and right partitions created by a
single partition operator whose label is b then the result is
obtained by removing the last two elements in the sequence
of the first argument to combine. In all other cases, the
result is T. The inter procedural analysis for address prop
agation can be defined using the function K. If a function

ret urns an address (v,s) where s is non-empty, it is replaced
by T. In other words, information about the partition of

an array created inside a function and returned as its result
is forgotten outside the function as shown by the example

below.

fx=

let tl, t2 = partition(x, i,l)
in

tl
end

Variable t 1 gets the value (z, 1.J) where 1 is the label of
part it ion), Since the result is of the form (z, s) where s
is not the empty sequence, it is immediately changed to T.

The address propagation function for f is f z = T.

Now consider the helper function for vector addition de-
scribed in section 2. After update analysis, the function is

help-vector-add (A ,b, i) x

if dim(A, l) = 1 then upd! (A, i, A[i]+B[i])

else
let midpoint = i + dim(a. 1)//2;

a-l = left-part ! (a, midpoint, 1) ;
a_2 = right-part! (a,midpoint, i) ;
rv.1 = help_ vector_ add a_l b i;
rv-2 = help_ vector_ add a_2 b midpoint

in
combine (rv-1, rv-2, 1)

end
endif;

For the purposes of address propagation, the flow equa-
tion is

uadd(a, B, i) = a U

K[combine] uadd((fst(a), snd(a).1.1), 1?, i)

vadd((fst(a), snd(a).1.~), B, T))

The equation can be solved by fixpoint computation as

vadd”(a, B, i) = 1

rmddl(a, B, i) = a

vadd2(a, B, i) = a U

K[combine] (f.d(a), snd(a).1.1)

(jst(a), snd(a).1.r)

= a

If any of the arguments to a combine operator is T or
of the form (z, s]) and (y, ,92) and either z # y or SI and

sz are not of the form s.b.l and s.b. r respectively then we
cannot make that combine non-copying. The fixpoint can
be computed in linear time (at most 2n iterations where n
is the number of functions).



Interaction with update analysis

Given that acombine operator could bemade non-copying,

we can make it actually non-copying, provided the two ar-

guments to combine are not live. We need this condition
because our update analysis assumes that combine always
returns a new array that is not live elsewhere.

Even if a combine is not known to be non-copying at
compile time, it ia not always the case that it requires copy-

ing. A simple test at run-time can check if the two argu-
ments are actually contiguous and then avoid copying. The

reaI advantage of a statically non-copying combine opera-
tion is that in the absence of bounds checking and operators

that access the array header, both partition and combine
operations can be converted into identity operations, thus
a,voiding the overheads of header creation.

4 Experimental Results

We have designed and implemented a compiler that takes a

source program of our language and generates a Scheme or C

program. The main phases of the compiler are alpha renam-

ing, cycle detection among let bhdings, flattening of let
exr)ressions and conversion to the intermediate form, com-

mon sub expression elimination, and updat e analysis. The
compiler is implemented in Standard ML.

Our example programs are mostly taken from numerical
computations [11, 10]. These examples can be classified as

direct methods for solving linear equations, iterative meth-
ods, and miscellaneous. Direct methods include gaussian
elimination with and without partial pivoting, and various

matrix factorization such as LU, QR, and Cholesky. Exam-
ples of iterative methods are point jacobi, red-black method,
successive over-relaxation, conjugate gradient method and

the multigrid method for solving partial differential equa-
tions numerically.

The miscellaneous examples include basic operations such
as vector addition, matrix multiplication, prefix comput a-
tion, and quicksort.

Table 1 shows the effectiveness of our algorithm. In these

examples, all updates are made destructive. The program

size is characterized by m: the number of nodes in the parse
tree. n: the number of functions in the rxo~ram. and k:

the ‘maximum function arity. The last col~m~ of t’he table
shows the analysis time on a SPARCstation IPC. It does not

include the time for the other phases of the compiler.

S On Programming Style and Predictability

We have demonstrated that our update analysis algorithm
is effective and efficient. We now address the question of
whether programmers will be able to understand the update
optimization well enough to write efficient code.

This is an important question because update analysis
is a powerful optimization that can easily change the com-

plexity of an algorithm by orders of magnitude. Program-
mers need to know whether the code they write is efficient.
It would be disastrous for programmers to write functional

programs that they mistakenly believe will be made efficient

by update analysis.
For this reason we believe that functional languages should

be equipped with two kinds of update operator: a copying

update and a destructive update. These operators would

both have the purely functional semantics of the copying up

date operator, but their pragmatic would differ: The com-
piler would refuse to accept any program that contains a de-
structive update that our update analysis algorithm cannot

prove to be equivalent to a copying update. The efficiency of
an update operation would then be clear to programmers: A

destructive update executes in constant time, but a copying
update must be assumed to be inefficient until proved oth-

erwise (by changing it to a destructive update and passing
it through the compiler).

Programmers would find this very frustrating if the com-
piler were unable to accept destructive updates that the pro-

grammer knows are safe, but our update analysis is so effec-
tive that this would hardly ever happen.

Programmers would also be frustrated if they were un-
able to understand why the compiler rejects a destructive
update. We know, however, that programmers will be able
to understand the outcome of update optimization because

they are able to understand a similar but more difficult
issue—not perfectly, but well enough: the problem of drop
ping all pointers to a data structure so it can be garbage

collect ed. The garbage collection problem is dynamic, and it

involves dropping all pointers, whereas the update problem
is static and involves dropping all but one pointer; otherwise

these two probl~ms are the same.
Programme& do struggle with the garbage collection prob-

lem, and not always successfully, but they do well enough.
The penalty for failing to drop all pointers to a structure

is that the program is less efficient than it should be, and
may catastrophically run out of space when it shouldn’t.

The penalty for failing to drop all but one pointer to an up-
date structure is that the update operator will have to be
changed to a copying update operator, and the program will
be less efficient than it should be. At least the programmer
will know the program is inefficient, which is not always true

with the garbage collection problem.

Furthermore the compiler can ezplain why it thinks a de-
structive update is unsafe. If aliasing is the problem, then
the compiler can report the variables that it fears may be

aliased. If two expressions update the same array, the com-
piler will detect the problem while adding precedence edges

to the dependence graph. Again, the compiler can indicate
the expressions that interfere.

Our analysis is independent of the choice of order of eval-
uation, so long as there exists any order of evaluation for
which the compiler can prove that all destructive updates

are safe. Therefore the compiler would not be sensitive to

the order in which formal parameters are declared. (This is
a distinct improvement over previous algorithms [4, 18]. )

The partition and combine operators can be used ef-
ficiently by following a few simple rules. When an array

is partitioned, for example, it should not be live elsewhere.
Neither partition of an array should be returned as a result

of a function. Every function should have a matching num-
ber of part it ion and combine operators. The left and right

arrays that result from a part it ion operation should be the
left and right arguments to a subsequent combine operator
within the same function body, and the proof of this should
be obvious to the programmer (so it will also be obvious to

the compiler). If these simple rules are followed, then most
unnecessary y copying can be avoided.

Sometimes it is possible to reduce copying in one part of
a program by int reducing copying in another part. This is
very hard for the compiler to notice, but easy for the com-
piler to confirm once it is pointed out. We are led therefore
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Program

Lu

cholesky

QR
gauss

gauss (with pivoting)
j acobi

red-black
conjugate gradient
SOR
multigrid
matmul
prefix sum

quicksort
vadd

ram simulator

Size
(m,n,k)

m

(181:13,7)
(126,6,7)

([$,;O+;)

(68:6:8)
(84,9,6)
(78,6,9)

(163,9,6)
(54,2,7)
(26,2,3)

(42,5,4)
(14,1,3)

(59,1,6)

No. of upds

2
4
6
8

12
1
4
2

4
4
1
1

4
1

7

Destructive
upds

2
4

6
8

12
1
4
2
4
4
1
1

4

1
7

Figure 1: Performance of the Update Analysis Algorithm
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0.59
0.71

1.49
1.24
1.91
0.29
0.56
0.61

0.74
0.86

0.41
0.12
0.21
0.05
0.33

to propose an explicit copy operation that has the seman-
tics of the identity function but serves also as a declaration.

Explicit copy operations declare not only the programmer’s
awareness that copying will be required, but they also de-

clare the places in the program where the programmer be-
lieves copying should occur in order to obtain the most effi-

cient results.
Since the copying update operation that we took as the

starting point for our research is equivalent to a composi-

tion of the destructive update and copy operators, and the
copy operator is more versatile than the copying update op-

erator, we refine our proposaJ by suggesting that functional

languages should replace the copying incremental update op
erator by the combination of an explicit copy operator and
an explicitly destructive update operator—hot h of which, we
hasten to add, have a purely functional semantics provided
the compiler refuses to accept any destructive updates that
cannot be proved to be equivalent to the traditional copying
update.

It may fairly be said that we are advocating a more im-

perative approach to functional programming. We believe

this is consistent with other recent research into the problem
of state in functional languages. We suggest that recent re-

search may even be leading toward a rejuvenating redesign

of imperative languages from a functional perspective, which
would not be a bad thing at all.

For predictability and portability, compilers should be-
have uniformly. Update optimization could be implemented
just as uniformly across compilers aa tail-recursion optimiza-
tion and type-checking. Our update analysis is no more com-

plicated than type-checking in ML, and we believe program-
mers will find update analysis at least as easy to understand
as ML style type-checking.

6 Expressing Collection of Updates

In this section, we define a new operation on arrays to ex-
press a collection of updates. This operation has not yet

been incorporated in our language. The partition operation
is useful for expressing parallel updates when it is known at
compile time that the updates are on distinct indices of the
array. Our experience hax been that for several numerical

algorithms, the part it ion operator suffices for expressing

parallelism. However, there are cases when either the up-
dates are not known to be distinct at compile time or there
are multiple updates at the same index. The histogram and
polynomial multiplication problems require updating at the

same index. For the inverse permutation problem, the up-
dates are performed on distinct indices but this is not known

at compile time. How does one express such multiple up-

dates without losing deterministic behavior?
We define a new update operator called an accumulat-

ing update. Given a suitable operator o, the corresponding
accumulating update is written as

A{i e v}

It returns a new array like A except that at index i its
value is A[i] @Io. Analogously, one can also define another

operator
A{i =@ v}

for which the new array has a value v @A[i] at index i. Using

the accumulating update operator, now we can specify a

collection of updates on an array as

A{(e,nd=G) @= e I el < i < e2}

The index expression ei.d.. and e can have t as a free
variable. This expression describes a set of updates one for

each value of i from el to em. There can be more than one
generators. We need to require a certain property of the

update operator to ensure a deterministic result. Consider
two updates VI and V2 at index i. In order for the result to

be the same at the end of the updates, we require that

A{i @= q}{i @= VZ} = A{i @= vz}{i & VI}

In other words, (A[i] @ W) @ w = (A[i] @ v2) @ VI.

Thus we require that @ obey the following identity.

(a@ b)@c==(a@c)@b

Any operator that is associative and commutative satis-
fies the above property.

Since the order in which the updates are performed does
not matter as long as they are serialized, multiple updates
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can be implemented on a shared memory multiprocessor us-
ing an extra array of locks, The overall space complexity is

()(n) where n is the size of the array.

An optimization useful for implementing a collection of

updates is to avoid locks whenever it can be determined that
the updates are all disjoint. One simple case that occurs very
commonly is with updates of the form

We know by the nature of the generator that all values of
i are distinct. Therefore all updates are on disjoint indices

and no synchronization is required. In such a caae we can
even replace @= by = if we know that the initial array

contains the identity element of the operator. For example,

vector addition can be written as

,vadd(A, B) = A{<i> += B[i] I O<=i< dinr(A,l))

If A is not known to be live elsewhere, then it can be
updated destructively in parallel. Compare this program
with the program using partition and combine. Currently
we are investigating the issues involved in the compilation
of the collection of updates operator.

6.1 Examples

Given an arrayofn numbers ranging from Oto m–l, the
histogram problem is to compute the number of occurrences
of each element in the array. A one line solution using a

collection of updates is

hist(A, n,rn) = array (m, O){ fA[i]Y += 1 I Ot=i.<rr }

Polynomial multiplication can be expressed naturally by

a collection of updates with -t-as the accumulating operator.

ptrmlt(A, B,m,n) =

let a = array (m+n, O);
in

a{<i+j> += A[i]*B[j] I O<=it m,Oq=j@

end

The inverse permutation problem takes an array I that

holds a permutation of O to n-1 and returns an array A such
that AII[i]] = i. The difficulty is that it is not known at

compile time if I is a permutation. We define an operator *
and an identity element e such that z * e = e * z = z and
z*y=n otherwise. The inverse permutation problem can
then be written as

hw.perm(I,n) = array (n, e){{ I[i]> *= i I O<=izn}

A monolithic array is a array all of whose elements are

defined once [20]. A monolithic array construct takes ~and
n aa arguments and returns a new array whose value at t is
~(i). Itcanbe described byusing the collection of updates

Se

marray(f,n) = array(n,O){fi> = f i I Of=ifn 1

We do not need any accumulating operator, because from

the syntax we know that all the updates are on disjoint in-
dices. One can also write functions to compute scan primi-
tivessuch as prefix sum, array compaction, copying, enumer-

ate, and distribute-sums used indata-parallel computing[2].

7 Related Research

There hasn’t been much work on update anrdysis in paral-

lel functional languages. The only reported work is that of
Gopinath [13, 14] and SISAL [6,5]. SISAL does not handle

recursion. Gopinath’s analysis has a worst case exponential
complexity. Our analysis is simplified by the partition and

combke operations. P. Wadler has proposed monads as an

approach to destructive updating [29]. Monads sequential-
ize the execution to achieve destructive updating and there-
fore are not suitable for parallel execution. We have taken
an orthogonal approach: instead of sequentializing all up

dates, we divide the array into semantically different arrays

bythepartition operator allowing theupdatesto be done

in parallel. Guzman [15] and Swarup et al [27] also assume

sequential evaluation.
Monolithic arrays were proposed because of the difficulty

of expressing parallel updates [1, 17]. In this paper, we give a
generalization of the incremental update to express a collec-

tion of updates on an array. Monolithic arrays are a special
case of this operator. Wadler’s new monolithic array con-

struct [28] needs additional data structures for performing
combining operations, whereas in our approach combining
is done at the array itself. Another relevant work in the con-
text of specifying a collection of operations is the xapping

data structure of Connection Machine Lisp [26], which is
based on the SIMD model of computing. The programming

language Id [20], a non-strict language, provides accumula-
tors as an extension of arrays. An accumulator is allocated

as a new array with initial values and all accumulations are
performed atomically by an accumulating operator. The

accumulators of Id appear to have been derived from the

monolithic array operator, whereas we have generalized the
incremental update operator.

8 Conclusions

We have presented a strict functional language with incre-

mental updates, partitioning and combining operations, and
a collection of updates for expressing parallelism. We have

described an efficient update analysis algorithm and its per-
formance on typical numerical algorithms. Currently we are
working on the efficient compilation of our language for a

multiprocessor system.
We have considered the implications of our algorithm

for language design, and have explained why we believe pro-
grammers will be able to write efficient programs that rely
on update optimization.
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