Towards Better Inlining Decisions Using Inlining Trials

Jeffrey Dean and Craig Chambers

Department of Computer Science and Engineering
University of Washington

Abstract

Inlining trials are a general mechanism for making better automatic
decisions about whether a routine is profitable to inline. Unlike
standard source-level inlining heuristics, an inlining trial captures the
effects of optimizations applied to the body of the inlined routine
when calculating the costs and benefits of inlining. The results of
inlining trials are stored in a persistent database to be reused when
making future inlining decisions at similar call sites. Type group
analysis can determine the amount of available static information
exploited during compilation, and the results of analyzing the
compilation of an inlined routine help decide when a future call site
would lead to substantially the same generated code as a given
inlining trial. We have implemented inlining trials and type group
analysis in an optimizing compiler for SELF, and by making wiser
inlining decisions we were able to cut compilation time and compiled
code space with virtually no loss of execution speed. We believe that
inlining trials and type group analysis could be applied effectively to
many high-level languages where procedural or functional
abstraction is used heavily.

1 Introduction

Inlining is an important implementation technique for reducing the
performance costs of language abstraction mechanisms. Inlining
(also known as procedure integration and unfolding) not only confers
the direct benefits of eliminating the procedure call and return
sequences but also facilitates optimizing the body of the called
routine in the context of the call site; sometimes these indirect post-
inlining benefits dwarf the direct benefits. Inlining has long been
applied to languages like C and Fortran, but it may be even more
beneficial in the context of higher-level languages. Functional
languages such as Scheme and ML [Rees & Clinger 86, Milner et al.
90], pure object-oriented languages such as Smalltalk and Eiffel
[Goldberg & Robson 83, Meyer 92], and reflective systems such as
CLOS and SchemeXerox [Bobrow et al. 88, Adams et al. 93]
encourage programmers to write general, reusable routines and solve
problems by composing existing functionality, leading to programs
with very high call frequencies. Compilers and partial evaluators,
such as Similix and Schism [Bondorf 91, Consel 90], can exploit
inlining to reduce the cost of these abstraction mechanisms and
thereby foster better programming styles.

Inlining is possible only when the compiler can determine statically
the single target routine invoked by a call; in functional and object-
oriented languages, this determination can require sophisticated
analysis [Shivers 88, Hall & Kennedy 92, Chambers & Ungar 90,
Palsberg & Schwartzbach 91]. But even if the call site is potentially
inlinable, inlining may not be profitable. Care must be taken not to
inline too much, or compilation time and compiled code could swell

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

LISP 94 - 6/94 Orlando, Florida USA
© 1994 ACM 0-89791-643-3/94/0006..$3.50

prohibitively. Inlining should only be applied where the benefits
obtained by inlining outweigh the costs.

In many systems, the profitability of inlining a particular routine is
hard-wired into the compiler. For example, the Smalltalk-80
compiler hard-wires the definition and optimized implementation of
several basic functions from its standard library, and the Haskell
standard prelude is fixed so that compilers can implement the
functions in the standard library more efficiently [Hudak et al. 90]. A
drawback of the hard-wiring approach is that built-in routines usually
ruin much faster than user-defined routines, discouraging
programmers from defining and using their own abstractions. Other
systems, including C++, Modula-3, T Scheme, SchemeXerox,
Common Lisp, Similix, and Schism {Stroustrup 91, Nelson 91, Slade
87, Adams et al. 93, Steele 90], allow programmers to indicate
explicitly which routines are profitable to inline. While granting
programmers fine control over the compilation process, this approach
requires programmers to have a fair understanding of the language’s
implementation issues (an assumption becoming less likely as
implementations become more sophisticated) and can be tedious if
inlining must be applied heavily to get good performance.
Additionally, most explicit declaration-based mechanisms do not
allow programmers to specify that inlining is profitable only in
certain contexts, or that inlining should only take place at particular
high-frequency calls of some routine.

Our research investigates techniques for automatically deciding
when inlining is profitable. Making good inlining decisions depends
crucially on accurately assessing the costs and benefits of inlining.
Previous automatic decision makers used simple techniques for
estimating costs based on an examination of the target routine’s
source code (or unoptimized intermediate code), and consequently
they failed to take into account the effect of post-inlining
optimization of the target routine. OQur work corrects this deficiency,
leading to more accurate cost and benefit estimates and therefore
better inlining decisions.

Our system assesses the costs and benefits of inlining by first
experimentally inlining the target routine, in the process measuring
the actual costs and benefits of that particular inline-expansion, and
then amortizing the cost of the experiment (called an inlining trial)
across future calls to that routine by storing the results of the trial in
a persistent database. Because the indirect costs and benefits of
inlining can depend greatly on the amount of the static information
available at the call site (e.g., the static value or class of an argument),
our system performs type group analysis to determine the amount of
available call-site-specific static information that was exploited
during optimization. Each database entry is guarded with type group
information, restricting reuse of the information derived from an
inlining trial to those call sites that would generate substantially the
same compiled code.

We implemented and measured this approach in the context of an
optimizing compiler for SELF [Ungar & Smith 87, Chambers &
Ungar 91], a pure object-oriented language similar to Smalltalk but
without any hard-wired operations or control structures. The SELF

273

compiler exploits dynamic compilation, interleaving compilation
with execution, to get fast turnaround times and to benefit from a
form of profile information. By replacing the original heuristics for
making automatic inlining decisions with an inlining trial-based
approach, we sought to reduce compilation time while retaining the
same level of run-time performance. Inlining trials were effective at
this task: for four medium and two large SELF programs, compile
time was reduced by an average of 20% with virtually no loss in run-
time performance. We believe that in systems with more
opportunities to inline than the optimizing SELF compiler we studied,
inlining trials and type group analysis could make an even bigger
improvement in the compile-time/run-time tradeoff.

The next section of the paper reviews previous techniques for making
inlining decisions automatically. Section 3 describes inlining trials,
with type group analysis detailed in section 4. In section 5 we present
experimental measurements of our implementation. Section 6
describes some other related work, and section 7 concludes.

2 Previous Work on Automatic Decision Making

Existing compilers typically make automatic inlining decisions using
an estimate of the cost of inlining based on an examination of the
routine’s unoptimized source code or intermediate representation.
For example, the original SELF compiler counts the number of
message sends in the candidate routine and inlines the routine if this
number is below some threshold [Chambers 92]. The GNU gcc C
compiler inlines a routine only if the number of instructions in its
RTL (register transfer language) representation is less than some
threshold [Stallman 90].

Source-level heuristics suffer from the problem that they do not
consider the effect of optimizations applied to the body of the called
routine after inlining, in particular those optimizations derived from
static information available at the call site. For example, a hash table
lookup routine may normally be considered too big to inline
profitably. But if the key to the hash table is a compile-time constant,
then some of the code of the lookup (such as computing the hash of
the key) could be optimized away after inlining, making the lookup
routine more attractive to inline. If the hash table itself is a compile-
time constant, then the entire lookup routine can be constant folded
away. Some partial evaluators can perform this sort of optimization
already, but compilers typically are not tuned to inline so
aggressively, Inlining trials allow the effects of post-inlining
optimizations to be considered when making inlining decisions, and
type group analysis allows call sites with differing amounts of
available static information to be treated separately.

Source-level heuristics can be overly sensitive to the superficial form
of the target routine. For example, the SELF compiler’s original
source-level heuristics had been tuned so that important routines such
as the one implementing a for-loop were inlined. Several years later,
the standard library was reorganized, and the definition of the for-
loop routine was changed in a superficial way to be easier to read. The
changed version appeared more complex to the compiler, however,
and the compiler (silently) ceased to inline for loops. Performance
on loop-intensive code mysteriously plummeted as a result. Such
experiences, as well as only modestly-successful attempts to improve
the source-level heuristics, provided the motivation for us to develop
inlining trials. By assessing costs and benefits of inlining on the
routine after optimization, inlining trials are much less sensitive to
superficial details of the source code and can adapt as the source code
evolves.

The Impact C compiler uses profile information to help guide the
inlining process [Chang et al. 92]. The profile information is used to
weight arcs in the program’s call graph, allowing the cost/benefit
estimates to be weighted by the expected execution frequency, and
leading to better inlining decisions. Our current implementation of

274

inlining trials does not incorporate profile data, instead relying on
static estimates of execution frequency, but profiling information
would be easy to incorporate into an inlining trial-based system.

3

To make better inlining decisions, the compiler needs more accurate
information on the actual costs and benefits of inlining a routine in the
context of a particular call site. Accurate information can be obtained
by tentatively inlining the routine, optimizing the inlined routine in
the context of the call site, and then examining the resulting code. If
the costs outweigh the benefits, the effects of inlining on the program
representation can be undone. Such a conditional inline expansion,
used to calculate the costs and benefits of inlining including the
effects of optimization, we call an inlining trial.

Inlining Trials

Clearly, performing an inlining trial is much more time-consuming
than estimating costs and benefits based on unoptimized source code.
To regain acceptable compile-time costs, we save the results of each
inlining trial in an inlining database that persists across compiles.
Future opportunities to inline the same routine at other call sites
consult the database instead of repeating the trial, thereby amortizing
the cost of the trial over all uses of the information in the database. If
aroutine is called from many call sites, the amortized compile time
cost of the trial can be small. Furthermore, if a few routines are
identified that turn out to be bad choices to inline, the savings reaped
by not inlining those routines can offset the cost of all the trials. Our
experience using this approach in the SELF compiler is that many
routines are invoked from multiple call sites; as reported in section 5,
overall compilation time for an application actually decreases when
using inlining trials.
The process involved in making an inlining decision is summarized
by the following pseudocode:

F: the estimated execution frequency of the call site

R: the target routine

T: static information available at the call site

TG: type group information describing call site-specific static

information exploited during inlining trial
¢, b: cost and benefit information for inlining trial
D: inlining database = R xTG > cx b

should-inline(R, T, F, D) =

if 3 (R, TG) € dom(D) such that T € TG then
-- use database entry if available
(c, b) « D(R, TG)

else if source-level-length(R) < threshold then
-- do inlining trial if simple source-level heuristic passes
(¢, b, TG) « perform-trial(R, T)
add (R, TG) = (c, b)) to D

else
-- don't bother with trial
(€, b) (=, 0)

end

return make-decision(c, b, F)

The remainder of this section discusses inlining trials in more detail.
Sections 3.1 and 3.2 describe how we estimate costs and benefits of
inlining during a trial, respectively, and section 3.3 discusses how to
make the final inlining decision given cost and benefit information.
Section 3.4 addresses what happens when inlining is invoked
recursively within a trial. Section 4 explains type group analysis, the
mechanism whereby our system describes the amount of call-site-
specific type information exploited when optimizing the inlined
routine.

3.1 Estimating Costs

The major costs of inlining are increased compiled code size and
increased compile times, Computing the space cost of inlining a
routine is easy to measure: after optimizing the routine in the context
of the call-site, the compiler sums the expected space needed to
generate machine code for each control flow graph node in the body
of the inlined routine; in our implementation this is an estimate since
register allocation and instruction scheduling have not yet been
performed. The compiled code space needed to generate a call is then
subtracted from the space taken by the inlined routine to determine

the total expected space cost for inlining.

Estimating the compile time required to inline a routine is more
difficult. Simply using a timer to measure compilation time suffers
from the low resolution of most hardware clocks. It also is difficult to
calibrate across different compilation platforms and across versions
of the compiler with differing levels of debugging instrumentation.
Fortunately, compilation time in our system seems to be roughly
proportional to compiled code space usage: we measured the
compilation of 1,972 SELF procedures and found a correlation
coefficient r = 0.93. Consequently, our implementation considers
only compiled code space usage in the cost/benefit tradeoff.

3.2 Estimating Benefits

The major benefit of inlining we consider is reduced execution time
through elimination of executed instructions. Time savings can be
viewed either as an absolute savings or as a relative savings. Our
implementation supports both views by computing two execution
time estimates: the amount of time taken by an execution of the
inlined routine and the number of instructions saved as a result of
inlining, after optimizations have been applied. Absolute and relative
estimated execution time savings can be calculated from these two
numbers.

Computing an estimate of time taken in an invocation of the inlined
routine requires estimating the time taken for each control flow graph
node, after optimization, weighting it by its expected execution
frequency, and summing. This calculation is mostly straightforward,
using standard compiler static estimates for execution frequency.
(Due to space constraints, some of the subtleties involved with this
calculation are relegated to a separate technical report [Dean &
Chambers 93].)

To determine the execution time saved as a result of inlining, the
compiler monitors each optimization performed on the body of the
inlined routine and estimates the number of dynamic machine
instructions skipped as a result of the optimization, weighted by
expected execution frequency. However, the compiler considers only
those optimizations enabled by static information that was available
at the call site; other optimizations would be performed whether or
not the routine was inlined. During an inlining trial, the compiler
maintains a data structure describing the subset of available static
information derived from the call site. Only optimizations based on
information in the subset affect the execution time saved as a result
of inlining. The savings attributed to these optimizations, plus the
direct savings of the eliminated call and return sequence, form the
estimated savings in execution time due to inlining.

3.3 Making Final Inlining Decisions

Once the cost and benefit information for a call site has been
obtained, either by performing an inlining trial or by locating an
applicable entry in the database, the compiler must make a decision.
This decision depends on the environment to determine the relative
value of compile time, compiled code space, and execution time.
Inlining trials provide better information upon which to base an

275

inlining decision, but some controlling mechanism still needs to
make a decision. For our implementation, we use a simple function
that considers compiled code space cost and relative execution time
savings and inlines the routine if the ratio of time savings to space
cost is above a particular threshold; dynamic profile data could be
include easily by weighting the expected execution time savings.

3.4 Nested Inlining

When optimizing an inlined routine, calls within the inlined routine
may themselves be candidates for inlining. Optimizing these
candidates can lead to recursive inlining trials. Such recursion poses
no problems, and in fact occurs often in our implementation. The
costs of inlining a routine include the costs associated with inlining
any of its calls, and the benefits of inlining a routine include any
benefits derived as part of inlining calls within the routine. The
compiler must track the flow of static information from the outer call
site through any contained calls, in order to correctly attribute the
savings derived from some optimization to the appropriate source of
static information.

4 Type Group Analysis

During an inlining trial, the compiler uses any information available
statically at the call site to optimize the body of the inlined routine.
Consequently, the costs and benefits of the trial reflect this call-site-
specific information. For example, if at some call site the compiler
knows the concrete type of an argument, accesses to the argument in
the body of the inlined routine are likely to get optimized
substantially, increasing the apparent benefits of inlining the routine.
However, a different call site that lacked static information about the
argument’s type would be attributed a lower inlining benefit. If the
results of an inlining trial for one of these two call sites were applied
to the other, inappropriate inlining decisions might be made.

To avoid these potential problems, an inlining trial database entry is
guarded with a description of the kind of static information that
should be present at the candidate call site for the results of the trial
to be reasonably predictive. During an inlining trial, the compiler
monitors uses of static information derived from the caller and
records the amount of static information that enabled (or disabled, in
the case of a lack of static information) each optimization. This
summary information is added to the inlining database entry storing
the results of the trial. When a future call site searches the inlining
database, the static information available at the call site must be
compatible with the summary of an entry for it to match.

In our system, concrete type information about the arguments to the
inlined call are the principal sources of optimization. Guarding an
inlining trial’s database entry with the actual concrete type
information available about the arguments would be too specific,
however: few call sites would have exactly the same static type
information as the inlining trial, and consequently there would be
little reuse of the results of inlining trials. Instead, the inlining entry
should be guarded with a description of the kinds of static type
information that lead to roughly the same degree of optimization. We
call these descriptions of static type information type groups. A type
group specifies a set of types, where all member types lead to
substantially the same optimizations being performed as part of
inlining. Types themselves in our system describe sets of values that
share common properties relevant to the optimizations performed by
the compiler. The main types represented in the SELF compiler are

the following (V is the set of all possible values, which is partitioned
into a set of classes {C}, ..., Cx}):

Set
Type name description Meaning

UnknownType |V Expressions of unknown concrete type

Class(C) C; Instances of a class; most general type
supporting inlining

Constant(ve V){{ v} Compile-time constant

Union(y, ..., 8y |V ...ut, |Combined types, from merge CFG
nodes

Difference(t;, ,){¢;, - 1, Certain types excluded, from failed
value- and type-tests

In the same way that types represent sets of values, type groups
represent sets of types. The following type groups are used in our
extension of the SELF compiler (T stands for the set of all types):

Type Group name Set description Meaning
Universal T Any type
SubtypeGroup(se T) |{teTltcs}) Any type which is at

least as precise as §

AClass {teTI Any type with class-

t ¢ C, C aclass type }|level information
AClosure {teTI Any closure type (a
tisaclosuretype } |special kind of class
info)

AConstant {teTiil =1} Any type describing
a compile-time
constant

IntersectGroup(ty, ..., tH4; N .. N1, Intersection of
several type groups

ExcludeGroup(se T) |{te Tl1zs) Any type notin a
certain type group

4.1 Using Type Group Information

Each argument of a database entry is guarded with a type group. For
a database entry to be applicable to the call site, the static type
information for each actual argument must be a member of the set
specified by the corresponding type group. If for example the type
group of some argument is the Universal type group, then any actual
argument type will match; this implies that the optimization of the
inlined routine does not depend on the static type information
available for that argument. If instead the type group was
IntersectGroup(SubtypeGroup(Fixnum), AConstant), then only
actual arguments whose static type information conveyed that the
argument was some fixnum constant would match. Such a precise
type group implies that the compilation of the inlined routine is able
to exploit the information that the argument is some fixnum constant,
say through constant folding within the inlined routine, that would
not be possible if less static information were available. As a final
example, if the type group were ExcludeGroup(AClass), then only
static types that were less specific than a concrete class type would
match. Type groups that exclude the more precise kinds of type
information ensure that inlining candidates do not match against
database entries for trials that were unable to perform optimizations
due to a lack of static information at the call site. In this specific
example, the lack of class-level type information during the trial
prevented some optimization, such as performing message lookup at
compile-time or eliminating a nun-time type check.

276

42 Computing Type Group Information

To compute type group information for each argument, the compiler
performs type group analysis. Type group analysis is unusual in that
it does not compute some abstraction of the values manipulated by
the program being compiled, but rather it monitors the compilation
process itself, computing how the compiler manipulates static type
information. From this standpoint, type group analysis is a kind of
meta-analysis.

Type group analysis is performed in parallel with regular concrete
type analysis during an inlining trial. At the beginning of a trial, each
argument to the inlined routine is associated with the Universal type
group, indicating that, so far, no static information about the
arguments has been used. Whenever an optimization is performed
based on static type information derived from an argument, the type
group associated with that argument is narrowed by intersecting it
with a type group that represents the kind of static information that
enabled the optimization. Similarly, whenever an optimization is
disabled because of a lack of precision in the static type of an
argument, the type group for that argument is intersected with an
ExcludeGroup type group that rules out types that could have
enabled the optimization. The following table indicates, for some of
the more common optimizations performed in the SELF compiler, the
type group intersected if the static information about the argument

enabled or disabled the optimization:

optimization if enabled if disabled
perform SubtypeGroup(the class)} ExcludeGroup(AClass)
message lookup
at compile-time
constant folding | AConstant ExcludeGroup(AConstant)
eliminate SubtypeGroup(the class)} ExcludeGroup(ACiass)
fixnum, float,
etc. type tests
eliminate true, |AConstant ExcludeGroup(AConstant
false value tests
inline-expand |AClosure ExcludeGroup(AClosure)
body of closure

The type groups calculated as part of type group analysis are intended
to represent the largest set of argument types that would lead to the
same optimizations being performed at a future call site. Further
details of type group analysis and its implementation in the SELF
compiler can be found in a separate technical report [Dean &
Chambers 93].

4.3 An Example

We will use the following inlining candidate to illustrate how type
analysis and type group analysis interact:
method growable_ sequence::fetch(index) {
if index < 0 or index > self.max_index then

error {*index out of bounds”)
endif

return self._elems[index + self.base_index]
}
. seq.fetch (i)

Assume that the compiler knows the concrete class type of the seq
variable statically and it has statically-bound the seq.fetch
message to the growable sequence: : fetch method above.
Consider the case the static type of the argument 1 is fixnum. The
compiler consults the inlining database for a matching entry; assume
this fails. Since the target method is not unreasonably large, the
compiler begins an inlining trial. Initially the type group associated
with the argument index is Universal; no optimizations yet exploit

any static information about index. The first operation within the
routine sends the < message to index. The compiler examines the
static type of index, discovers that index is a class type, and
statically-binds and inline-expands the fixnum::< method
(perhaps invoking a recursive inlining trial in the process). To reflect
using class-level type information about the index argument, the
compiler narrows the type group of index from Universal to
IntersectGroup(Universal, SubtypeGroup(fixnum)), or simply
SubtypeGroup(fixnum). The compiler also updates the benefit
information for the trial to reflect saving more than a dozen cycles by
eliminating the overhead of dynamic binding and the callfreturn
sequences for the < message.

The compiler analyzes the body of the inlined < method. The built-in
fixnum: :< method first tests that its argument type is also a
fixnum. It is, but since the argument to < is not being monitored as
part of the inlining trial for fetch, no type group information is
affected. After verifying that its arguments are fixnum’s, the compiler
attempts to constant-fold the comparison. This requires both
arguments to be integer constants, which does not succeed. The
compiler again narrows the type of index to indicate that its static
type was not specific enough to enable the optimization, intersecting
index's type group with ExcludeGroup(AConstant) o give
IntersectGroup(SubtypeGroup(fixnum),
ExcludeGroup(AConstant)). This type group matches all types that
are at least as specific as fixnum type but that are less specific than a
fixnum constant. Such include fixnum and
Union(Constant(3), Constant(4)) but excludes Constant(17),
UnknownType, and Union(fixnum, flonum). Note that the type
group of index excludes types that are constants, but clearly it does
not exclude integer values reaching that part of the program. Type
group information can exclude overly specific type information, but
the values described by the excluded types can still appear, as long as
some more general type including the value is included in the type
group.

The compiler visits each of the remaining operations in the inlined
routine, but no additional narrowing of the type group of index
occurs; additional time savings accrue, however, during optimization
of the > and + messages. The compiler then completes the trial by
creating a new database entry that records the compiled code size of
the inlined fet ch method, the expected cycle count of an execution
of the inlined method, and the expected number of cycles saved as a
result of inlining the fetch method. This entry is added to the
database, guarded by the type group calculated for the index
argument. Finally, the compiler makes a decision about whether the
fetch method should be inlined, undoing the effects of the trial if not.

Subsequent statically-bound invocations of the fetch method
examine this database entry. If their index argument type is at least
a fixnum but not a fixnum constant, then the results of the database
entry are consulted to determine whether inlining is warranted. If
index is known statically to be a particular fixnum constant, then a
new inlining trial is performed. During such a trial, the index < 0
expression can be constant-folded, resulting in additional savings in
execution time and compiled code space that might change the
decision about whether the call site is profitable to inline. Similarly,
if the static type of the argument is less specific than a fixnum, or is
some other class type, then a new inlining trial is performed to assess
the costs and benefits of a different kind of static type information
about index.

Without some mechanism like inlining trials and type groups, the
compiler could examine only the unoptimized source code for the
fetch method. In this and many similar cases, the kind of static
information about the arguments to the call can have a significant
effect on the nature of the final code; some calls will be profitable to
inline, while others will not be. Inlining trials provide the compiler

277

with more accurate information upon which to make decisions, and
type groups enable the compiler to distinguish among call sites with
different available static information.

5 Experimental Results

Our original motivation for developing the technology of inlining
trials was to improve the response time of the optimizing SELF
compiler. In the SELF system, compilation is interleaved with
program execution, and a slow compiler leads to slowly running
programs. Consequently, we attempted to construct an inlining
decision maker that would lead to a significant decrease in
compilation time without a major loss in execution speed; other
environments might choose different tradeoffs, such as improving
execution speed without a major loss of compilation speed.

To assess the effectiveness of inlining trials, we compared our new
inlining decision making system using inlining trials against the
source-level heuristics found in the existing SELF compiler,
measuring compilation time, execution time, and compiled code
space consumption. To make a more direct comparison, we set the
initial “reasonably short” threshold (identifying routines where
performing an inlining trial seems feasible) to exactly the same value
used by the source-level heuristics. Thus the only difference between
the two decision makers is that the new system might choose not to
inline something that the existin& system would inline. We examined
the following suite of programs:

Program s(;l::;; Description

parser 400| Parser for an old version of SELF

primMaker 1,300 | Program to generate wrapper functions from
an interface description file

pathCache 300| Traverses the SELF object graph and assigns
path names to objects

deltaBlue 600 Incremental constraint solving program

cocilinterp 10,700} Interpreter for the Cecil language

cocilCompiler | 12,500 Compiler for the Cecil language

We suspected that the existing heuristics, tuned initially on small
benchmarks, over-inlined for these larger programs. This over-
inlining led to slower compiles and more space-consuming compiled
code without much benefit in execution speed. We hoped that inlining
trials would make better decisions on what routines were profitable to
inline. Figure 1 on the following page reports the compilation time,
execution time, and code space usage of these six programs for our
new system, relative to the existing system.! (Appendix A includes
the raw data.) Shorter bars indicate better performance for the new
system. The chart shows compilation times both for starting with an
empty inlining database for each program (*“cold™) and for starting
with a filled inlining database (“warm”). The warm compiles were
measured by reusing the database generated during the “cold
compile” for the benchmark. In practice, since the database is
persistent and entries are shared across programs, the compilation

* We also examined a large number of small benchmarks, used during the
original development of the SELF compiler. The inlining trial-based
system achieved the same compile-time and run-time performance as the
existing system, as we hoped.

1 The values in the chart are calculated as the compilation time, execution
time, and compiled code space usage for the new system divided by that
for the existing system, converted to a percentage. Execution time denotes
just the time spent executing compiled code, not the time spent compiling
the code.

120%f Figure 1: Ratio of Inlining Trials to Old Heuristics

100%
80% %
g parser
8 / primMaker
k| 60% % pathCache
% deltaBlue
40% % cecilinterp
% £ cecilCompiler
20% é
7
7
0% —— T - —
Compile time Compile time Execute time Code Size
(cold) (warm)

300%

Execute w/ old heuristics

Compile w/ old heuristics
Execute w/ trials

Cold compile w/ trials
] Warm compile w/ trials

150%

L]

250%

200%

100%
150%

100%
50%

Ratio to default heuristics

50%

0%

0%

6 7 8 9 10 11 12
Threshold Threshold
Compilation Time Execution Time

11

..

9

1400
X 1275 total
1200} 144 added
" - parser
o 1000f primMaker
£ - pathCache
W 800f 642 added] deltaBlue
5 | cecilinterp
8 600} (21 cecilCompiler
g S 1 49 added
400k 3 P22 34 added
z [;19 o (/2 94 added
200} / 175 157 :
| / | 312 added
0

deltaBlue Z

parser
primMaker
pathCache
cecillnterp
] . RS
cecilCompiler £52
D
cumulative

278

performance is closer to the warm compile figures than to the cold
compile figures.

On average (using geometric mean), compilation time decreases by
20%, execution time increases by an average of 1%, and code space
usage decreases by 6%. On an absolute scale, the compilation time
savings of 20% represents a savings of 68 seconds of the 291 seconds
required to compile all six programs; in our environment,
compilation time is a significant cost worthy of optimization effort.
Based on these results, we consider inlining trials to be effective at
meeting our goal of balanced compilation and execution times.

The parser program shows particularly good improvement in
compilation time. Under the old source-level heuristics, the
advance routine, called to move the current character position
forward in the input buffer, was inlined 26 separate times. However,
advance does not benefit much from type information available at
the call site, so there is little indirect benefit to inlining. The inlining
trial-based system detected this and consequently never inlined the
advance routine, saving a lot of compilation time and code space in
the process.

The compilation improvement shown by these programs, while quite
significant, is not as impressive as it might be in another environment.
For these programs, the current SELF compiler is unable to statically
bind many messages because of a lack of static type information.
Future compilers for SELF and other object-oriented languages
[Chien et al. 93, Holzle & Ungar 93, Chambers et al. 93] are expected
to incorporate interprocedural type analysis and extract type
information from execution profiles, leading to many more messages
being statically bound and thus eligible for inlining. We expect the
importance of making good inlining decisions to grow as other parts
of the compiler become more effective.

The above experiments used the same initial threshold for both
systems. To see how sensitive the two approaches are to the choice of
this threshold, we repeated the comparison of the two systems on the
large programs for a range of thresholds. In figure 2, on the previous
page, we report the geometric mean of compilation time and
execution time for the two systems on the six-program benchmark
suite for several different thresholds. The values in the chart have
been normalized to the performance of the old inlining heuristics
when using the default threshold of 8. Increasing the threshold value
increases the number of routines considered for inlining.”

Compilation time is much less sensitive to the choice of threshold
under the new inlining trial-based heuristics than under the old
source-length heuristics, and the new approach has significantly
better compilation time behavior than the old system. Also, the new
inlining trial-based decision-making achieves nearly the same
execution speed as under the old heuristics. Together, these results
illustrate some of the different compile-time/run-time tradeoffs that
can be made. In our system we set the threshold to 8, leading to 2 20%
reduction in compilation time with a negligible loss of execution
speed. If instead we set the threshold to 10, compilation time would
still drop by 9% but run time would also drop by 4%. Because
compilation speed does not degrade much when using a higher initial
threshold under the new system, we can use a higher threshold and be

* The existing source-level length heuristic is computed by summing
weighted values for non-trivial message sends within the target routine.
Centain messages which the compiler expects to be optimized (such as “+"
and “at :") are assigned a weight of 1 and other message sends are
assigned a weight of 2. A routine is eligible for inlining if the weighted
sum of its messages is less than or equal to the inlining threshold.

279

more robust in the face of future superficial changes to the source
code of libraries and applications, such as the superficial rewrite of
the for-loop implementation described in section 2.

Figure 3 on the previous page reports the number of database entries
generated by compiling the large programs (Appendix A includes the
raw data). The first six columns represent the number of entries
created when compiling each program individually against an
initially empty database. In our implementation, each database entry
takes up approximately 75 bytes of space; the savings in compiled
code space for using inlining trials compensates for the additional
space cost of the database entries, and the compiled code space
savings persist after program development ceases. The rightmost
column indicates the total number of entries generated by compiling
the six programs in succession, starting with an initially empty
database. The numbers to the right of this column indicate the number
of new entries generated by each program in this successive
compilation, Because many database entries are used by more than
one of the programs, such as entries for functions in the standard
library, the total number of entries generated by compiling all six
programs in succession (1275) is only half of the sum of the number
of entries generated by compiling each program separately (2612).

6 Related Work

Previous work on automatic inlining has focused primarily on
attempting to maximize the direct benefits of inlining without too
much increase in compiled code space [Scheifler 77, Allen &
Johnson 88, Chang ef al. 92]. In the context of this related work,
indirect benefits of inlining tend to be relatively unimportant.
Automatic inliners for higher-level functional and object-oriented
languages have quite a different flavor, particularly because many
things which would be built-in operators and control structures in
lower-level languages tend to be user-defined in higher-level
languages, and these user-defined routines need to be inlined
aggressively to get good performance. Additionally, in the context of
higher-level languages, the indirect benefits of inlining often are more
important in determining profitability than the simple direct costs.

Ruf and Weise describe a technique for avoiding redundant
specialization in a partial evaluator for Scheme [Ruf & Weise 91, Ruf
& Weise 92]. When specializing a called routine using the static
information available at a call site, their technique computes a
generalization of the actual types that still leads to the same
specialized version of the called routine. Other call sites with
different static information can then share the specialized version of
the called routine, as long as they satisfy the same generalization. Our
type group analysis computes similar summary information about
argument types, although the details of the two analyses differ.

Cooper, Hall, and Kennedy present a technique for identifying when
creating multiple, specialized copies of a procedure can enable
optimizations [Cooper et al. 92]. They apply this algorithm to the
interprocedural constant propagation problem. To reduce the number
of specialized copies of a procedure, their system evaluates when
merging two specialized versions of a procedure would not sacrifice
an important optimization. Our type group guards on database entries
accomplish a similar task, enabling the results of an inlining trial to
be reused for those call sites where similar optimizations are enabled,
but over a richer domain of types.

7 Conclusion

Inlining trials are a promising mechanism for gathering more
accurate information about the costs and benefits of inlining in an
optimizing compiler. Better information can in tun lead to better
automatic decisions about which call sites to inline. If these automatic
decisions are good enough, standard library routines won't need to be
hard-wired into the compiler for performance and programmers
won’t need to annotate routines with explicit inline directives.
Ultimately, good automatic inlining can foster a better programming
style by making the use of abstraction cheaper.

Unlike standard source-level inlining heuristics, inlining trials can
consider the effect of post-inlining optimizations when assessing the
costs and benefits of inlining. This provides the compiler with more
accurate data upon which to base its inlining decision, and the post-
optimization data is much less sensitive to superficial details of the
source code. By storing the results of trials in a persistent database,
the extra cost of a trial can be amortized across uses of the
information. Type group analysis is key to reusing database entries
for exactly those call sites whose static information would lead to the
same set of optimizations being performed. Type group analysis may
be applicable to other compilation problems, such as deciding when
procedure specialization is profitable.

We have applied the language-independent ideas of inlining trials and
type group analysis to improving the response time of the optimizing
SELF compiler. In our implementation, the use of inlining trials cut
compile time by 20% with virtually no effect on execution speed. By
changing the cost/benefit tradeoff embodied by the final inlining
decision-maker, we could have saved both compile time and
execution time by making more intelligent inlining decisions. The
extra compile-time cost of inlining trials is more than paid for by
avoiding over-inlining. Incorporating dynamic profile information
could improve the results even more.

Inlining trials and type group analysis appear most useful for
languages where procedural abstraction is used heavily, where the
compiler can determine statically the single target of a call, and where
the effects of post-inlining optimizations are substantial and can vary
across call sites. Many high-level functional and object-oriented
languages meet this description. As the analyses of the targets of call
sites improve, the compiler will have more opportunities to inline and
consequently bear more responsibility for making wise decisions.

Acknowledgments

Susan Eggers, David Notkin, Erik Ruf, and Daniel Weise provided
helpful comments on an earlier draft of this paper. This research has
been supported by a National Science Foundation Research Initiation
Award (contract number CCR-9210990), a University of Washington
Graduate School Research Fund grant, and several gifts from Sun
Microsystems, Inc.

280

References

[Adams et al. 93] Norman Adams, Pavel Curtis, and Mike

Spreitzer. First-Class Data-Type Representations in
SchemeXerox. In Proceedings of the SIGPLAN 93 Conference
on Programming Language Design and Implementation, PP
139-146, Albuquerque, NM, June, 1993. Published as SIGPLAN
Notices 28(6), June, 1993.

[Allen & Johnson 88) Randy Allen and Steve Johnson. Compiling
C for Vectorization, Parallelization, and Inline Expansion. In
Proceedings of the SIGPLAN '88 Conference on Programming
Language Design and Implemensation, Pp. 241-249, Atlanta,
GA, June, 1988. Published as SIGPLAN Notices 23(7), July,
1988.

[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P, Gabriel,
S. E. Keene, G. Kiczales, D. A. Moon. Common Lisp Object
System Specification X3J13. In SIGPLAN Notices 23(Special
Issue), September, 1988.

[Bondorf 91] Anders Bondorf. Similix Manual, System Version 4.0.
Technical report, DIKU, University of Copenhagen,
Copenhagen, Denmark, 1991.

[Chambers & Ungar 90] Craig Chambers and David Ungar.
Iterative Type Analysis and Extended Message Splitting:
Optimizing Dynamically-Typed Object-Oriented Programs. In
Proceedings of the SIGPLAN *90 Conference on Programming
Language Design and Implementation, pp. 150-164, White
Plains, NY, June, 1990. Published as SIGPLAN Notices 25(6),
June, 1990. Also published in Lisp and Symbolic Computation
4(3), Kluwer Academic Publishers, June, 1991.

[Chambers & Ungar 91] Craig Chambers and David Ungar. Making
Pure Object-Oriented Languages Practical. In OOPSLA 9]
Conference Proceedings, pp. 1-15, Phoenix, AZ, October, 1991,
Published as SIGPLAN Notices 26(10), October, 1991,

[Chambers 92] Craig Chambers. The Design and Implementation of
the SELF Compiler, an Optimizing Compiler for Object-Oriented
Programming Languages. Ph.D. thesis, Department of Computer
Science, Stanford University, technical report STAN-CS-92-
1420, March, 1992,

[Chambers et al. 93] Craig Chambers, Jeffrey Dean, Dave Grove,
and Charlie Garrett. Analysis and Optimization of Object-
Oriented Languages. Unpublished manuscript, October, 1993.

[Chang et al. 92] Pohua P. Chang, Scott A. Mahlke, William Y.
Chen, and Wen-Mei W. Hwu. Profile-Guided Automatic Inline
Expansion for C Programs. In Software—Practice and
Experience 22(S), pp. 349-369, May, 1992,

[Chien er al. 93] Andrew A. Chien, Vijay Karamcheti, John
Plevyak. The Concert System: Compiler and Runtime Support
for Efficient, Fine-Grained Concurrent Object-Oriented
Programs. Technical report R-93-1815, Department of Computer
Science, University of Illinois at Urbana-Champaign, 1993.

[Consel 90] Charles Consel. The Schism Manual, Version 1.0. Yale
University, New Haven, CT, December, 1990.

{Cooper et al. 92] Keith D. Cooper, Mary W. Hall, and Ken
Kennedy. Procedure Cloning. In Proceeding of the 1992 IEEE
International Conference on Computer Languages, Pp. 96-105,
Ouskland, CA, April, 1992,

{Dean & Chambers 93] Jeffrey Dean and Craig Chambers. Training
Compilers to Make Better Inlining Decisions. Technical report
93-05-05. Department of Computer Science & Engineering,
University of Washington, Seattle, WA, May, 1993.

[Goldberg & Robson 83] Adele Goldberg and David Robson.
Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, Reading, MA, 1983.

281

[Hall & Kennedy 92] Mary W. Hall and Ken Kennedy. Efficient
Call Graph Analysis. In ACM Letters on Programming
Languages and Systems 1(3), pp. 227-242, September, 1992,

[Hoblzle & Ungar 93) Urs Hélzle and David Ungar. Optimizing
Dynamically-Dispatched Calls with Run-Time Type Feedback.
Unpublished manuscript, 1993.

[Hudak ef al. 92] Paul Hudak, Simon Peyton Jones, Philip Wadler,
Brian Boutel, Jon Fairbairn, Joseph Fasel, Maria M. Guzmin,
Kevin Hammond, John Hughes, Thomas Johnsson, Dick
Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson,
Report on the Programming Language Haskell, Version 12. In
SIGPLAN Notices 27(5), May, 1992.

[Meyer 92] Bertrand Meyer. Eiffel: The Language. Prentice Hall,
New York, NY,1992.

[Milner et al. 90] Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML. MIT Press, Cambridge, MA,
1990.

[Nelson 91] Greg Nelson, editor. Systems Programming with
Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991,

[Palsberg & Schwartzbach 91] Jens Palsberg and Michael I.
Schwartzbach. Object-Oriented Type Inference. In OOPSLA '91
Conference Proceedings, pp. 146-161, Phoenix, AZ, October,
1991. Published as SIGPLAN Notices 26(10), October, 1091,

[Rees & Clinger 86] Jonathan Rees and William Clinger, editors,
Revised” Report on the Algorithmic Language Scheme.
Published as SIGPLAN Notices 21(12), December, 1986.

[Ruf & Weise 91] Erik Ruf and Daniel Weise. Using Types to Avoid
Redundant Specialization. In Proceedings of the PEPM '9]
Symposium on Partial Evaluation and ~Semantics-Based
Program Manipulations, pp. 321-333, New Haven, CT, June,
1991. Published as SIGPLAN Notices 26(9), September, 1991,

[Ruf & Weise 92] Erik Ruf and Danie] Weise. Avoiding Redundant
Specialization During Partial Evaluation. Technical Report 92-
518. Department of Computer Science, Stanford University,
Stanford, CA, 1992,

[Scheifler 77] Robert W. Scheifler. An Analysis of Inline
Substitution for a Structured Programming Language. In
Communications of the ACM 20(9), pp. 647-654, September,
1977.

[Shivers 88] Olin Shivers. Control Flow Analysis in Scheme. In
Proceedings of the SIGPLAN '88 Conference on Programming
Language Design and Implementation, pp. 164-174, Adanta,
GA, June, 1988, Published as SIGPLAN Notices 23(7). Tly,
1988.

[Slade 87] Stephen Slade. The T Programming Language. Prentice
Hall, Englewood Cliffs, NJ, 1987.

{Stallman 90] Richard M. Stallman. Using and Porting GNU gee
Version 2.0. Free Software Foundation, November, 1990.

[Steele 90] Guy L. Steele, Jr. Common Lisp: The Language, second
edition. Digital Press, Bedford, MA, 1990.

[Swoustrup 91] Bjame Stoustrup. The C++ Programming
Language, second edition. Addison-Wesley, Reading, MA, 1991,

{Ungar & Smith 87] David Ungar and Randall B, Smith. SELF: The
Power of Simplicity. In OOPSLA '87 Conference Proceedings,
Pp. 227-241, Orlando, FL, Ociober, 1987. Published as
SIGPLAN Notices 22(12), December, 1987. Also published in
Lisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991

Appendix A Raw Data

The following table shows the raw data for the experiments. All times are in milliseconds, and all ratios are relative to the compilation and
execution times for the old heuristics with the default threshold of 8 (shown in bold):

Time| Ratid Time|Ratio}
0.48) T 1.00]| 35322i 1.08|| 42748 1.30]| 87252 [92358
47666] 1.00/| 49218] 1.03|| 68345 1.43]} 250143} 5.25]| 256611} 5.38
5683] 1. 6816 120l 7108] 125l 72090 1.27]| 7700} 135
9969! ool 1821 119 11784f 1a8|| 12166} 1.22f| 12253} 1.23
96895] 1.00] 104681; 1.08|| 157452] 1.62][306041] 3.16] 363681 3.75
98719; 1.00i| 105818 1.07]| 1963081 1.99|| 507001} s.14| 536549} 5.44
1.00{ 1.11 1.44 2.66 2.83
23304] 0.71|[25212 0.77]| 260141 0.79|| 36510] 1.11]| 38554} 1.17
379421 0.80)| 42553; o0s89f] 43948} o0.92]| 787071 1es|| 81599} 1.71
sas8] 097]| 6062 1.07]] s949] 1.05] e125f 108/ 6201f 1.11
9706] 097|] 10459i 1.0s|| 9746] o098]] 10303f 1.03|| 10361} 1.04
89775] 0.93]] 1040631 1.07|| 102252} 1.06| 122176} 1.26][128032 1.32

Z| primitiveMaker

' | pathCache
‘| deltaBlue
5 cecillnterp

Compile
rials

cecilCompiler 86947] 0.88]] 973781 099l 973021 0.99]| 103427} 1.05]| 104016} 1.05
§ Geometric mean 0.87 0.97 0.96 1.18] 1.22
parser 17042} 0.52|| 21488 0.65|| 20785] 0.63|| 24530f 0.75|| 27405} 0.83
5| primitiveMaker 36805] 0.77|| 41520i os87]| 42988] o0.90[| 583417 1.2l 76548} 1.61
| pathCache 52271 092]| se93i 100l ss97i 104 ses2i ooof] ss23} 1.02
:EldeltaBlue 9514} 09s|| 9s91i o096]| 9680} 0.97]] 9669f 0.97l| 9712} 0.97
%] cecillnterp H 82777; 0.85|| 84771} o087|| 8s181] o.88|| 93261: 096|| 95259] 098] 107946} 1.11]| 105125} 1.08
g cecilCompiler 81034 0.82f| 82892] o84l 86749} ossl] 91747i 093] 97294] 0.99f| 102350; 1.04]| 102949} 1.04
S| Geometric mean 0.75 0.78 0.80] 0.89) 0.91 1.00) 1.07
parser 972 2.14 7641 1.68]] 455 1.oor 436: 098|| 412] 091 4287 094]| 432f 095
B primitiveMaker 1877i 18d| 1501} 1. 1042} 100 1030; 099l 1001} o096l| 10370 100 940} 091
'Elpamc“he 3019i 133| 2418} 1.06]| 2274} 100 22740 100 2282] 1ooff 22861 1.01)| 2130} 0.94
21 deltaBluc 2364} 170 1522} 1.09| 1391F 1.00f| 1320} o096] 1247 o090} 1254] 090| 1257f 0.90
3 cecilinterp 32475 11| 29124} 0.99|[29293] 1.00] 30492i 104l 20452] t1o1f] 29169} 1.oof] 32059} 1.09
. gcecilCompiler 28715 174 2232} 13| 1649] 100 1642} 100 - 1628] 099l 1559} o0.9s|| 1621} 0.98
=
g 1.65 : . 0.95 0.93
primitiveMaker 1891 1.81|| 1540] 1.48|| 1088] 1.04]| 1070i 1.03|| 1032] o099l| 1053} 1.01]| 1023} 098
pathCache 3129 138]| 2406} 1.06]] 2293} 1.01|| 2308] 1.01f| 2191} o96l| 2225] o098l 2229} 0.98
5| deltaBlue 2409f 173 1567i 1a3f| 1381) 099f| 1348 o097|| 1274} o092] 12577 o090|| 12691 0.91
] cecilnterp 328531 1.12) 30649} 1.0s{| 294871 101f| 20920i 1.02|| 28907 o0.99|| 29104} 0.99[| 30745} 1.05
%'eecﬂCompuer 29711 1.80|| 2228 135]| 15971 097 1593: 097]| 1556] 0.4 15601 0.95| 1640} 0.99
5| Geometric mean || 1.63 1.27, 1.01 1.00 0.96) 0.96) 097

The following table shows code sizes for the six programs compiled with the old heuristics and with inlining trials (with a threshold of 8):

Program Code size-old || Code size - trials

parser 107676 1.00 83040 0.77
primitiveMaker 233148§ 1.00) 225812 0.97
pathCache 30164 1.00 30160 1.00
deltaBlue 51036§ 1.00 30616 0.99
cecillnterp 421400 1.00 399428 0.95
cecilCompiler || 4299481 1.00| 407080} 095
Total 1273372} 1.00 1196136 0.94

282

