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Abstract

Inlining trials area general mechanism for making better automatic
decisions about whether a routine is profitable to inline. Unlike

standard source-level Mining heuristics, an inlining trial captures the
effects of opdmizadons applied to the body of the irdined routine
when calculating the costs and benefits of inlining. The results of

irdining tritds are stored in a persistent database to be reused when
making future irdining decisions at similar call sites. T~ group
analysis can determine the amount of available static information

exploited during cornpilsti~ and the results of analyzing the

compilation of ~ ildined routine help hide when a future@ site
would lead to aubetantislly the same generated code as a given

hdining hid. We have implemented inlining trials and type group

snslysis in an opdmizing compiler for SELP, and by making wiser
hdinirtg decisions we were able to cut compilation time and compiled

code space with virtually no loss of execution speed. We believe that

Mining trials and type group analysis could be applied effectively to
many high-level languages where procedural or functional
abstraction is used heavily.

1 Introduction

Irdining is an important implementation technique for reducing the
performance costs of language abstraction rnechsnisrna. Mining

(also known as procedure integration and unfolding) not only confers
the direct benefits of eliminating the procedure call and return
sequences but also facilitates optimizing the body of the called

routine in the context of the call sitq sometimes these indwect post-
kdining benefits dwarf the direct benefits. Inlining has long been
spplied to languages like C and FOrIXaIL but it may be even more

batefioisl in the context of higher-level languages, Functional
languages such asScheme and ML [Reea& Clinger 86, Milner et al.

90], pure object-oriented languages such as Smslltalk and Eiffel
[Goldberg & Robaon 83, Meyer 92], and reflective systems such as
CIXM and ScherneXerox ~obrow et al. 88, Adams et aL 93]
encourage programmers to write gener~ reusable routines and solve
problems by composing existing fimctionality, leading to programs

with very high call frequencies. Compilers and partial evaluators,

such as Similix and schism ~ondorf 91, Consel 90], can exploit

Mining to reduce the cost of these abstraction mechanisms and

thereby foster better programming g styles.

h-dining is possible only when the compiler can determine statically
the single target routine invoked by a cM, in functional and object-
oriented languages, this deterrninadon can require sophisticated
ttnalysis [Shivers 88, Hall & Kennedy 92 Chamberx & Urger 90,
F’slsberg & Schwartzbsch 91]. But even if the call site is potentidy

irdinable, inlining may not be profUable. Care must be taken not to
Mine too much or compilation time and compiled code could swell
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prohibitively. Irdining should only be applied where the benefits
obtained by inlining outweigh the costs.

In many systems, the profhbility of inlining a particular routine is

hard-wired into the compiler. For example, the SmaUtalk-80
cx-nnpiler hsrd-wires the definition and optimized implementation of

several basic functions from its standard library, and the Httskell

standard prelude is fixed so that compilers cart implement the
ftmctions in the standard library more efficiently [Hudak et al. 90]. A

drawback of the hard-wiring approach is that built-in routines usually
run much faster than userdefined routines, discouraging
programmers from defining and using their own abstractions. Other

systems, including C+t, Modtda-3, T Scheme, SchemeXerox,

Common Lisp, Similix, and Schism [Stroustrup 91, Nelson 91, Slsdc
87, Adams et al. 93, Steele 90], allow programmers to indicate

explicitly which routines are profitable to irdine. While granting

programmers fine control over the compilation process, this approach

requires programmers to have a fair understanding of the language’s

implementation issues (an assumption becoming leas likely as

implementations become more sophisticated) and can be tedious if
irdining must be applied heavily to get good performance.
Additionally, most explicit declaration-based mechanisms do not
allow programmers to specify that inlining is profitable only in
certain contexts, or that itdining should only take place at particular
high-frequency calls of some routine.

Our research investigates technique-s for automatically deciding

when inlining is profitable. Making good Mining decisions depends

crucially on accurately assessing the costs and benefits of irdining.

Previous automatic decision makers used simple techniques for

estimating costs based on an examination of the target routine’s

source code (or unoptimized intermediate code), and consequently

they failed to take into account the effect of post-inlining
optimization of the target routine. Our work corrects this deficiency,
leading to more accurate mst and benefit estimates and therefore

better Mining decisions.

Our system sssessea the costs and benefits of Mining by first

experimentally irdining the target routine, in the process measuring

the actual costs and benefits of that particular inline-expansion, and

then amortizing the cost of the experiment (called an inlining trial)

across future calls to that routine by storing the results of the &ial in
a persistent database. Because the indirect costs and benefits of

inking can depend greatly on the amount of the static information
available at the call site (e.g., the static value or class of an argument),
our system performs type group analysis to determine the amount of
available call-site-specitic static information that was exploited
during opdmizadon. Each database entry is guarded with type group
information restricting reuse of the information derived tim an
inlining trial to those call sites that would generate substantially the

same compiled code.

We implemented and measured this approach in the context of an
optimizing compiler for SELF [Ungsr & Smith 87, Chambers &

Ungsr 91], a pure object-oriented language similar to Smalltalk but

without any hard-wired operations or control structures. The SELF
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compiler exploits dynamic compilatio~ interleaving compilation

with executi~ to get fast turnaround times and to benefit from a
form of profile information. By replacing the original heuristics for
making automatic idining decisions with an irdiuing trial-based

appmack we sought to reduce compilation time while retaining the
same level of run-time performance. Irdining trials were effective at
this task for four medium and two large SELF programs, compile

time was reduced by an average of 20% with virtually no loss in run-
time performance. We believe that in systems with more

~tunitiea to Mine than the optimizing SELF compiler we studi~

mlm.ms ~~ Snd @ gIOUp dysis could make an even bigger
improvement in the cmnpile-time/run-time tradeoff.

The next section of the paper reviews previous techniques for making
irthdng deciiions automatically. Section 3 &scribea irdining trials,
with type group analysis &tailed in section 4. In section 5 we present

experimental measurements of our implementation. Section 6

describes some other related work and section 7 concludes.

2 Previous Work on Automatic Decision Making

Existing cmnpilers typically make automatic irdining deciskms using
an estimate of the cost of Mining based on an examination of the

routine’s unopdmized source code or intermediate representation.

For example, the original SELF compiler counts the number of
message sends in the carddate routine and inlines the routine if this
number is below some threshold [Chambers 92]. The GNU gcc C
compiler Mines a routine only if the number of instructions in its
RTL (register transfer language) representation is less than some
threshold [Stallman 90].

Source-level heuristics suffer horn the problem that they do not

considex the effect of opdmizadons applied to the body of the called

routine after hdining, in particular those opdmizations derived fkom

static information available at the call site. For example, a hash table
lookup routine may normally be considered too big to irdine

profitably. But if the key to the hash table is a compile-time constarIL

then some of the code of the lookup (such as computing the hash of
the key) could be optimized away after irdining, making the lookup
routine more attractive to Mine. If the hash table itself is a compile-

time constan~ then the entire lookup routine can be constant folded
away. Some partial evaluators can perform this sort of optimization
already, but compilers typically are not hmed to irdine so

aggressively. Inlining trials allow the effects of post-irdining

optimizadons to be considered when making irdining tiisions, and

type ~Oup analysis allows call sites with differing amounts of
available static information to be treated separately,

Source-level heuristics can be overly sensitive to the superficial form
of the target routine. For example, the SELF compiler’s original
source-level heuristics had been tuned so that imptant routines such

as the one implementing a f or-loop were irdined. Several years later,
the standard library was reorgti and the definition of the for-
loop routine was changed in a superficial way to be easier to read. The
changed version appeared more complex to the compiler, however,

and the compiler (silently) ceased to irdine for loops. Performance

on loopintensive code mysteriously plummeted as a result. Such
experiences, as well as only modestly-suceedul attempts to improve
the source-level heuristics, provided the motivation for us to develop

- @isIs. BY assessing wsts and benefits of hdining on the
routine qtler opdmiratio~ inlining trials are much leas sensitive to
superficial &tails of the source code and cau adapt as the source code
evolves.

The Impact C compiler uses profile information to help guide the

inhing process [Chang et al 92]. The profile information is used to
weight srca in the program’s call grapk allowing the cost/benefit
estimatea to be weighted by the expected execution frequency, aud

leading to better inlining decisions. Our current implementation of

Mining trials does not incorporate profile dam instead relying on

static estimstea of execution frequency, but proiiling information
would be easy to incorporate into an irdining trial-based system.

3 Inlining Trials

To make better Mining decisions, the compiler needs more accurate
information on the actual costs and benefits of Wining aroutine in the
context of a particular call site. Accurate information can be obtained

by tentatively Mining the routine, opdmixiig the irdined routine in
the context of the call site, and then ex amining the resulting code. If
the costs outweigh the benefits, the effects of irdining on the program

representation can be undone. Such a conditional irdine expansi~

used to calculate the costs and benefits of irdining including the
effects of @mizatim we call an inlining trial.

Clearly, performing an irdining trial is much more time-consuming

than estimating costs and benefits based on unoptimized source code.
To regain acceptable compile-time costs, we save the results of each

irdining trial in an Wining database that persists across compiles.

Future opportunities to inline the same routine at other call sitea

consult the database instead of repeating the triaL thereby amortizing
the cost of the trial over rdl uses of the information in the database. If

a routine is called from many call sites, the amortized compile time
cost of the trial can be small. Furthermore, if a few routines are
identified that turn out to be bad choices to irdine, the savings reaped
by not Mining those routines can offset the cost of all the trials. Our
experkw using this approach in the SELF compiler is that many
routines are invoked from multiple call sitea; as reported in section 5,
overall compilation time for an application actually decreases when
using irdining trials.

The process involved in making an Mining decision is summarized
by the following pseudocode:

F tie estimated execution frequency of the call site

R: the target routine

R static information available at the call site

TG: type group information describing call site-specific static
information exploited during inlining trial

c, b cost and benefit information for Mining trial

D:inlining database =Rx TG+cxb

should-inline(l?, T, F, D) =

if 3 (R, TG) c dom(ll) such that T cs TG then

use database entry if available
;, b) - D(R, TG)

else if source-level-length(R)< threshold then

-- do inlining trial ifshple source-level heuristic passes
(c, b, TG) - perform-trial(R, T)
add ((R, TG) + (c, b)) to D

else
-- don’t bother with trial

(c, b) e (00, O)

end

return makedecision(c, b, F)

The remainder of this section discusses inking trials in more &tail.
Sections 3.1 and 3.2 &scribe how we estimate costs and benefits of
inlining during a trial respectively, and section 3.3 discusses how to
make the final irdining deciiion given cost and benefit information.
Section 3.4 addresses what happens when irdining is invoked

recursively within a trial. Section 4 explains type group analysis, the
mechanism whereby our system deacribea the amount of caU-site-
specific type information exploited when optimizing the Mined

routine.
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3.1 EstimatingCosts

The major costs of Mrting are increased canpiled code size and

increased compile times. Computing the space cost of Mining a

routine is easy to measure: after @mizing the routine in the context

of the call-site+ the compiler sums the expected space needed to

generate machine code for each control flow graph node in the body

of the inked rouh, in our implementation this is an estimate since

register abcation and instruction scheduling have not yet been

performed. The compiled code space needed to generate a call is then
subtracted from the space taken by the Mined routine to determine
the total expected space cost for idining.

Estimating the compile time required to Mine a routine is more
difficult. Simply using a timer to measure compilation time suffers
from the low resolution of most hardware clocks. It also is diflicult to

calibrate scross different compilation platforms and across versions
of the compiler with differing levels of &bugging instrumentation.

%tunstely, compilation time in our system seems to be roughly

Ppofionttl to compiled code Space usage we measured the
compilation of 1,972 SEW procedures and found a correlation

coefficiertt r = 0.93. Consequently our implementation considers

only compiled code space usage in the cOst/benefit tradeoff.

3.2 EstimatingBenefits
The major benefit of itdining we consider is reduced execution time

throu@- elimination of exe&ted instructions. Tune savings can be
viewed either as an absolute savings or as a relative savings. Our

implementation supports both views by computing two execution
time eatimatw the amount of time taken by an execution of the
inlined routine and the number of instructions saved as a result of

Mining, after o@tnkdm have been applied. Absolute and relative
estimated execution time savings can be calculated from these two
numbers.

Computing an estimateof time taken in an invocation of the irdined

routine requires estimating the time taken for each control flow graph

*=WtioJatiom weighting it by its expected execution

, ununing. This calculation is mostly straightforward,

using standard compiler static estimates for execution frequency.
(Due to space constraints, some of the subtleties involved with this
calculati~ are relegated to a separate technical report [Dean &

chambers 93].)

To determine the execution time saved as a result of irdining, the

compiler monitors each opdmizadon performed on the body of the

itdined routine and estimates the number of dynamic machine
instructions skipped as a result of the optimizati~ weighted by

expected execution frequency. However, the compiler considers ordy

those optimixations enabled by static information that was available
at the call site; other optimizsO “ens would be performed whether or

not the routine was irdined. During an irdining trial, the compiler
maintains a data stmcture describing the subset of available static
information derived from the call site. Ordy optimization based on

information in the subset affect the execution time saved as a result
of itdining. The savings attributed to these optimixations, plus the
direct savings of the eliminated call and return sequence, form the

estimated savings in execution time due to inking.

3.3 MakingFinal Inlining Decisions
Once the cost and benefit information for a call site has k

obti either by performing an irdining trial or by locating an
applicable entry in the database, the compiler must make a decisbn.
This decision &pends on the environment to detetmine the relative
value of compile timq cmtnpiled mde space, and execution time.

hdirting trials ~Vide better illfOmMtiOIt upon which to base an

idining decisi~ but some controlling mechanism still needs to

make a deciiion. For our implementati~ we use a simple function

that considers compiled code space cost and relative execution time

savings and irdines the routine if the ratio of time savings to space

mst is above a particular threshold, dynamic protie data could be

inclu& easily by weighting the expected execution time savings.

3.4 Nested Inlining

When optimizing an Mined routin% calls within the inked routine

may themselves be candidates for *g. Opdmizii these

c.snddstes can lead to recursive inhning trials. Such recursion poses

no problems, and in fact occurs often in our implementation. The
costs of Mining a routine include the costs associated with irdining

any of its calls, and the benefits of Mining a routine include any

benefits derkwd as part of inlining calls within the routine. ‘I%e

compiler must track the flow of static information from the outer call

site through any contained calls, in order to correctly attribute the

savings derived from some optimization to the appqx-iate source of

static information.

4 Type Group Analysis

During an inlining trial, the compiler uses any information available

statically at the call site to optimize the body of the inlined routine.
Consequently, the costs and benefits of the trial reflect this csU-site-

specific information. For example, if at some call site the compiler

knows the concrete type of an srgurnen~ accesses to the argument in

the body of the irdined routine are likely to get optimimd

substantially, increasing the apparent Ixmefi@ of Mining the routine.

However, a diJYerent call site that lacked static information about the

argument’s ~ would be attributed a lowex Mining benefit. If the

reauhs of an irdining trial for one of these two call sites were applied

to the other, inappropriate irdining deciskms might be made.

To avoid these potential problems, an Mining trial database entry is

guarded with a description of the kind of static information that

should be present at the candidate call site for the results of the trial

to be reasonably predctive. During an Mining trial the compikx

monitors uses of static information derived from the caller and

records the amount of static information that enabled (or dissbld in

the case of a lack of static information) each optimization. This

summary information is added to the Mining database entry storing

the results of the trial. When a future call site searches the Mining

database, the static information available at the call site must be

compatible with the summary of an entry for it to match.

In our system, concrete type information about the arguments to the

irdined call are the principal sources of optimixdon. Guarding an

irdining trial’s database entry with the actual concrete type

information available about the arguments would be too speciiic,

however: few call sites would have exactly the same static type

information as the Mining trial, and consequently there would be

little reuse of the results of irdining trials. Instead, the idining entry

should be guarded with a description of the kinds of static type

information that lead to mugbly the same degree of opdmixationo We

@ these descriptions of static type information fype groiqm. A type

group specifies a set of types, where all member types lead to

substantially the same optimizaO “Ons being performed as part of

inlining. Types themselves in our system describe sets of vahtea that
share common properties relevant to rhe op dlnizadons performed by

the compiler. The main types represented in the SELF compiler are
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the following (V is the set of all possible values, which is partitioned
into aaetof classes {c~,....c“)]

I Meaning I
UnknownType IV lExprcssions of unknown concrete typs

ClaSS(Ci) Ci Instances of a chw+ most genetrd typ
Suppotiittg itdining

Constant(v e V) (v) Cc9npile-time cutstant

Union(tl, .... Q t, u ... u t, Combined ~s, from merge CFG
nodes

!Oiffarance(t,, r~ f, -12

I
certain typed exsluded, fratt failed
value- and type-tests I

h the same way that types represent sets of values, type groupe
represent sets of types. The following type groups are used in our
extension of the SELP compiler (T stands for the set of all types]

ACISSS (te Tl Any type With clsss-
t CC, Caclssstype) level information

AClosure {te Tl Any closure type (a
t is a closure type ) spwisl kind of class

info)

AConstsnt (t GTlltl=l) Any type describing
a wxttpile-time

eoostant

lnteraectGroup(rl, .... r$ 11n ... n t~ Intersection of

several type groups

xdudaGroup@ e T) {t6Tlrczs) Anytypcnotina
Ctstsin type group

4,1 UsingTypeGroup Information

Each argument of a database entry is guarded with a type group. For

a database entry to be applicable to the call site, the static type
information for each actual argument must be a member of the set
specified by the corresponding type group. If for example the type

Wq of some argument is the Universal type group, then any actual
~gmn~t type will match, this implies that the optimization of the
irdined routine does not depend on the static type information

available for that argument. If instead the type group was
lntersectGroup(SubtypeGroup(Fixnum), AConstant), then only

actual arguments whose static type information conveyed that the

argument was some fixnum constant would match. Such a precise

type group implies that the compilation of the inlined routine is able
to exploit the information that the argument is some fixnum constan~
say through constant folding within tfte itditted routine, that would
not be possible if less static information were available. As a 6rtsl
example, if the type group were ExcludeGroup(AClaaa), then only
static types that were leas specific then a concrete class type would

match. ‘l@ groups that exclude the more precise kinds of type
information ensure that itdining cendidatea do not match against
database entries for trials that were unable to perform optitnizations
due to a lack of static information at the call site. In this specific
example, the lack of class-level type information during the trial

prevented some optirnizatiorL such as performing message lookup at
compile-time or eliminating a run-time type check.

4.2 ComputingTypeGroup Information

To compute type group information for each argumenL the compiler

performs type group analysis. Type group analysis is unusual in that

it does not compute some abstraction of the values manipulated by

the program being cornpikx+ but rather it monitors the corrtpilstion
pceas itself, computing how the compiler manipulates static W

information. From this standpoirt~ type group analysis is a kind of
Ma-analysis.

W grouP ~~ys~ ~ performed in parallel with regular concrete
type analysis during an irdining trial. At the beginning of a tri~ each

argument to the inked routine is associated with the Universal type
group, indhting &z so far, no static information about the

arguments has been used Whenever an optimh.ation is performed
based on static type informatkm derived from an argurnem the type
gmttp associated with that argument is rtmrowed by intersecting it

with a type group that rqmaents the kind of static information that

enabled the optimization. Similarly, whatever an opdmizadon is
disabled because of a lack of precision in the static type of an
srgumen~ the type group for that argument is intersected with an
EwhJckGroup type group that rules out types that could have
enabled the op timizadon. The following table indicates, for some of

the more common optitrtizations performed in the SELP compiler, the

type group intersected if the static information about the argument

enabled or disabled the optimizatkm

optimization if enabled I if dfaabled 1

perform ISubtypeGroup(rhe ckssj ExdudeGroup(AClass) I
message lcokup

at compile-time

constant folding AConstant ExducfaGroup(AConstani

eliminate SubtypeGroup(ths class) ExdudaGroup(AClass)
Iimum, float,
etc. type tests

eliminate true. lAConstant I ExdttdeGroup(AConstsnt
false value teis

. .

Mine-expand AClosure ExdudeGroup(AClosure)
bodyof closure

The type groupscalctdatcd aspart of type group analysis are intended
to represent the Iargeat set of argument types that wotdd lead to the
same optimizadotts kiig performed at a future call site. Further
details of type group analysis and ita itnplementstion in the SELP

compiler can be found in a separate technical report [Dean &

chambers 93].

4.3 An Example

We will usc the following irdining csrwlidate to illustrate how type

Sttd@S and ~ gIOUp i31tdySiS illterflc~

method growable_sequence: : fetch (index) {
if index < 0 or index > self. max index then

error (“index out of bounds”)–
endif

return self .elems [index + self .base_index]
}
. . . seq. fetch(i) . . .

Assume that the compiler knows the concrete class type of the seq
variable statically and it has statically-bound the seq. f etch

message to the growable sequence: : fetch method above.

Consider the case the static-~ of the argument i is fixnum. The
compiler consults the inlining database for a matching entry; assume
this fails. Since the target method is not unreasonably large, the

compiler begins an irdiig trial. Initially the type group associated
with the argument index is lh’tiVWSak no optitnizstions yet exploit
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any static information about index. The first operation within the

routine sends the < message to index. The compiler examines the

static type of index, discovers that index is a class ~ and

statically-binds and irditte-expattds the f ixnum: :< method

(perhaps invoking a recursive Mitthtg trial in the process).To reflect
using class-level type irtformation about the index argumen~ the

compiler narrows the type group of index !hm hhr~i to

lntereectGroup(Universal, SubtypaGroup(fixnum)), w simply
SubtypeGroup(fixnum). ‘l%e compiler also updates the benefit

Mmrtation for the trial to reflect saving more than a dozen cycles by
eliminating the overhead of dynamic binding and the Caitieturn

sequences for the < message.

The compiler analyzes the body of the irdined < method, The built-in

fixnum: :< method lint teats that its agumcnt type is also a
fixnum. It is, but since the argument to < is not beii monitored as

part of the Mining trial for fetch, no type group information is

affected After verifying that its arguments arefixnum’s, the compiler
attempts to constant-fold the comparison. This requires botit

srgmn~ts to be irt@ger constants, which does not WX3d. ‘he
compiler again narYows the type of index to indicate that its static
type was not specific enough to enable the optimizati~ intersecting

index’s type group with ExcludeGroup(AConstant) to give

lntersectGroup(SubtypeGroup(fixnum),
ExoludeGrottp(AConstant)). ‘his type group matches ail types that
are at least as specific as fixnum type but that are less specific than a
fixnum constant. Such types include fixnum and
Union(Constartt(3), Constant(4)) but excludes Constant,
UnknownType, anti Union(fixnum, flonum). Note that the type
group of index excludes types that are constants, but clearly it doea

not exclu& integer vahtes reaching that part of the program. ~

group information can exclude overly specific type informatio~ but
the vuhur described by the excluded types can still appear, as long as
some more general type including the vahte is included in the type

grow.

The compiler vishs each of the remaining operations m the iniirted

routine, but no additional narrowing of the type group of index

occurs; adtihiomd time savings ~ howeve~ during opdmization

of the > attd + messages. The compik then completes the trial by

crew anew database entry that records the compiled code size Of

the mltned f et ch meti the expected cycle count of an execution

of the irdined meth@ and the expected number of cycles saved as a

result of inhirtg the fetch method. ‘Ilk enhy is added to the

dam guarded by the typ group calculated for the index

argument. Finally, the compiler maims a deciiion about whether the

fetch method should be itdin~ undoing the effects of the trial if not.

&lraeqttent statically-bound invocations of the f et ch method

examine this database entry. If their index argument type is at least

a fixnum but not a fixnum cottstanL then the results of the database
entry are consulted to determine whether in.bing is warranted. If
index is known statically to be a particular !ixtnnn const@ then a

new Mrtirtg trial is performed. During such a trial, the index< O

expression can be cottstartt-fol~ resulting in additional savings in

execution time and compiled code space that might change the
decision about whether the call site is profitable to inline. Similarly,
if the static type of the argument is leas specific than a fixnum, or is
some other class~ then a new *mg trial is performed to assess

the costs and benefits of a dtierent kind of static type information
about index.

Whhout some mechanism like Mining trials and type groups, the

compiler could examine only the tmopdmized source code for the
fetch method. In this and many sirrtiiar cases, the kind of static

information about the arguments to the call can have a sigrtiftcant

effect on the nature of the final mdq some caiis will be profitable to
* while others will not be. Irdining trirds provide the compiler

with more accurate information upon which to make deciiions, and

type groups enable the compiler to dwtingttish among call sites with
different available static information.

5 Experimental Results

Our original motivation for developing the technology of irdining
trials was to improve the response time of the opdmizing SELF

Comder. ~ the SELF system, compilation is ~leav~ ~~
program execuho~ and a slow compiler leads to slowly running
programs. Consequently we attempted to construct an idining
decision maker that would lead to a significant decresse in

compilation time without a major loss in execution * other

ertviruttrnents might choose different tradeoffs, such as improving
execution speed without a major loss of compilation speed.

To assess the effectiveness of Mining trials, we compared our new

iniining decision making system using itdinirtg trials against the
source-level heuristics found in the existing SELF compiler,

measuring compilation tirnG execution timtA and compiled code

space consumption. To make a more direct compariaotL we set the

initial “reasonably short” threshold (identifying routines where

performing an inlinbtg trial seems feasible) to exactly the same value
used by the source-level heuristics. Thus the only tii.tference between
the two decision makers is that the new system might choose not to

irditte something that the existin~ system would inline. We examined
the following suite of prograrnx

Program
Source

(lines)
Description

parser 400 Parser for an old version of SELF

primtdaker 1,300 Program to generate wrapper functions from
an interface descriptkm tile

pathCache 300 Traverses the SELF object graph and assigns
path names to objects

deltaBlue WI Incremental constraint solving program

oacillnterp 10,700 lrtterpretcr for the Cecil language

ceeilCompiler 12$00 Compiler for the Cecil language
I

We suspected that the existing heuristics, tuned initially on smsii

benchmarks, over-irditted for these larger programs, This over-

irdining led to slower compiles and more space-consuming compiled

code without much benefit in execution speed. We hoped that irdining
trials would make better &cisions on what routines were profitable to

irtline. Figure 1 on the following page reports the mtnpilation time,

execution time, and code space usage of these six programs for our
new system, relative to the existing System.t (Appendix A includes

the raw &ta.) Shorter bars indicate better performance for the new
system. The chart shows compilation times both for starting with an
empty iniining database for each program (“cold”) and for starting

with a filled iniining database (“warm”). The warm cotnpilea were
measured by reusing the database generated during the “cold

compile” for the benchmark. In practicq since the database is
persistent and entries are shared across programs, the compilation

● We also examined a large nmnbcr of smatl benchmarks, used during the
original development of the SELF cunpiler. ‘Ihe Mining trial-based
system achieved the same cunpile-tirne and run-time perfarmmce as the

existing system, as we hoped.

t The values in thechart are calculated as the cunpilatiorr time, execution
time. and ecmpiled code space usaae for the new system divikt by that
for the existing system, converted to a percentage. Execution time denotes

just rhe time spent executing compiled code, not the time spent compiling
the code.
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performance is closer to the warm compile figures than to the cold

compile figures.

On average (using geometric mean), compilation time decreaaea by

20%, execution time increases by an average of 1%, and code apace

usage decnwea by 6%. On an absolute scale, the compilation time
savings of 20% represents a savings of 68 seconds of the 291 seconds

required to compile all six progrm, in our environment

compilation time is a signi6cant cost worthy of optimization effofi
Based on these raatdts, we consider Mining trials to be effective at

meeting our goal of bahmced compilation attd execution times.

The parser Fogmtn shows particularly good improvement in
compilation time. Under the old source-level heuristics, the

advance routine+ called to move the current character position
forwsud in the input buffer, was isdined 26 separate times. However,
advance doea not benefit much from type information available at
the call site+ so there is little indirect benefit to Mining. The Misting

trial-based system detected this and consequently never Mined rhe
advance routine, saving a lot of compilation time and code space in
the process.

The compilation improvement shown by these programs, while quita
signifkan~ is not as impressive as it might be in snother enviromncnL

For these programs, the current SELF compiler is unable to statically

bind many messages because of a lack of static type information.
Future compilers for SELP and other object+riented languages

[Chien etal. 93, H61zle k Ungar 93, Chambers et ul. 93] are expected

to incorporate intepxdural type analysis and extract type
irtformation from execution profiles, leading to many more messages
beiig statically bound and thus eligible for irdining. We expect the

importance of making good ixdining tilons to grow as other parts
of the compiler become more effective.

The above experiments used the same initial threshold for both
systems. To see how sensitive the two approaches are to the choice of

this thrashol~ we repeated the comparison of the two systems on the
large programs for a range of thresholds. In figure z on the previous

page, we report the geometric mean of compilation time and
execution time for the two systems on the six-program benchmark

suite for several different thresholds, The values in the chart have

been normalized to the performance of the old irdining heuristics
when using the &fault threshold of 8. Increasing the threshold value

increases the number of routinea considered for Mining.”

Compilation time is much less sensitive to the choice of threshold
under the new irditting trial-based heuristics than under the old

source-length heuristics, and the new approach has significantly
bettex compilation time behavior than the old system. Also, the new
Mttittg trial-baaed decision-making achievea nearly the same

execution speed as under the old heuristics. Together, these reauks

illustrate some of the different compile-dtnehttrt-time tradeoffs that
can be made. In our system we set the thrdtold to 8, leadiig to a 20%0

reductkm in compilation time with a negligible loss of execution

speed. If instead we set the threshold to 10, compilation time would
still drop by 9~0butrun time would also drop by 4%. Because

compilation speed doea rtot degrade much when using a higher initial
rhreahold under the new systerm we can use a higher threshold and be

“ The existirsg source-level length heuristic is computed by summing
weighted values for non-trivial message sends witbiss she target routine.
Ccstaio messages which the corrtpilerexpccts to be optimizd (such as” +“
astd “at:”) are assigned a weight of 1 and other message sertds ase
assigned a weight of 2. A routine is eligible for Mining if the weighted
sum of its messages is less than or equal to the Mioing threshold.

more robust in the face of future sttperlicial changes to the source

code of libraries and applications, such as the superficial rewrite of

the for-loop irnplemantatiott described in section 2.

Figure 3 on the previous page reports the number of databaseentiea
gemmed by mtttpiling the large programs (Appendix A includes the

raw data). The fuat six columns represent the number of entries

created when compiling each program individually against an

initially empty database. In our isnplemantatio~ each database entry

takea up approximately 75 bytea of space; the savings in compiled

code space for using inlining trials cornpensatea for the additional

apace cost of the database enhies, and the compiled code space

savings persist after program &velopment ceases. The rightmost

column indicates the total number of entries generated by compiling

the six programs in successim starting with an initially empty

databaae,’fltcnurnbers to tharight of this cohunnindicate thenuntber

of new entries generated by each program in this successive

compilation. Because many database antries are used by more than

one of the programs, such as entries for functions in the startdard

library, tie tottd number of entries generated by compiling all six

programs in succession (1275) is ordy half of the sum of the number

of entries generated by compiling each program separately (2612).

6 Related Work

Previous work on automatic isdining has focused pdsnarily on

attempting to maximiz e the direct benefits of Mining without too

much increase in cmnpiled co& space [Scheiflar 77, Allen k

Johnson 88, Chang ~ al. 92]. Jn the context of this related work,
indirect benefits of inlining tend to be relatively unimportant.

Automatic Miners for higher-level functional and object+riented

languages have quite a different flavor, particularly because many

things which would be built-in operators and control structures in

lower-level languages tend to be user-defined in higher-level

languages, and these userde6tted routinea need to be irdinad

aggressively to get good performance. Addkionally, in the context of

higher-level languages, the indiiect benefits of Mining often are more

impmtsmt in determinh g profitability than the simple direct rests.

Ruf and Weise describe a technique for avoiding redundmt

specialization in a partial evaluator for scheme [Ruf& Weiss 91, Rttf

& Weise 92]. When specializing a called routine using the static

information available at a call site, their technique computes a

generaliiadon of the actual types that still leads to the same

specialized version of the called routine. Other call sites with

differemt static information can then share the specialized version of

the called routine, as long as they satisfy the same genedization. Our

type group analysis mmputea similar summary information about
argument types, although the details of the two analyses differ.

Cooper, Hall, and Kennedy present a technique for identifying when

creating multiple, specialized copies of a procedure can enable

op~iti_ [Cooper ef uZ. 92]. They apply this algorithm @ tie
intcrprocechmd constant propagation problem. To reduce the number

of specialized copies of a procedure, their system evaluates when

merging two specialized versions of a prccedure would not sacrifice

an important optisniration. Our type group guards on database entries

accomplish a similar tss~ enabling the results of an Misting trial to

be reused for those call sitea where similar optimiratiosta are enabltxi

but over a richer domain of types.
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7 Conclusion

Irdining trials are a promising mechanism for gathering more

accurate information about the costs and benefits of kdining in an
opdmizing compiler. Better information can in tum lead to better

automatic decisions about which call sites to kdine. If these automatic

deciiions are good enou~ standard library routines won’t need to be
hard-wired into the compiler for performance and programmers
won’t need to annotate routines with explicit irdine directives.

Ultimately, good automatic Mining can foster abetter programming
style by making the use of abstraction cheaper.

Unlike standard source-level Mining heuristics, inlining tials can
consider the effect of post-irdining opdmizadons when assessing the
costs and benefks of irdining. This provides the compiler with more

accurate data upon which to base its itdining decisiom and the post-

optimimtion data is much less sensitive to superficial details of the
source code. By storing the results of tials in a persistent da-

the extra cost of a trial can be amortized across uses of the
information. ~ group analysis is key to reusing database entries

for exactly those call sites whose static information would lead to the
same set of optimization beii performed. ‘l@ group analysis may
be a@cable to other compilation problems, such as deciding when
procedure specialization is profitable.

We have applied the language-independent ideas of Mining trials and

type group analysis to improving the response time of the opdmizing
SELF compiler. In our implementation the use of inking trials cut
compile time by 20% with virtually no effect on execution speed. By
changing the cost/benefit tiadeoff emborhed by the final inlining

decision-maker, we could have saved both compile time und

execution time by making more intelligent irdining decisions. The
extra compile-time cost of inking trials is nwre than paid for by
avoiding over-idining. Incorporating dynamic profile information

could improve the results even more.

Mining trials and type group analysis appear most useful for

languages where procedural abstraction is used heavily, where the

compiler can determine statically the single tqet of a call, and where

the effects of post-irdining optimization are substantial and can vary
ecross call sites. Many high-level functional and object-oriented

languages meet this description. As the analyses of the targets of call

sites improve, the compiler will have more oppmhmities to irdine and

consequently bear more responsibtity for making wise deciiions.
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Appendix A Raw Data

Thefollowing table shows the raw data for the experiments. All times are in milliseconds, and all ratios are relative to tbe compilation and
execution times for the old hetrristics with the default threshold of 8 (shown in bold)

Thresholdll 6 II 7 II 8 II 9 II 10 II 11 II 12

parser

Program II ‘Ilme[Rati~l Ttmel Ratk Timel Ratic llm~ Ratic ‘llmel Rati~ I Timel Ratl~l TimelRatio

35322j 1.08 42748

49218: 1.03 68345

5683 / 1.00 6816: 1.2Q 7108 IEdoathCache ii 5021 i 0.8d1 4922\ 0.8711 :
2 ................................ ..............*......... .,
Q deltaBlue
3

9216! 0.92

‘ acilInterp 79425 ~ 0.8 ~
~ . ................................ ........................ ..

91481 O.~1 9969] l.oq 11821 ~ 1.19]1 117841

87456] 0.90tl 96895 I 1.00H 104681! 1.0811 157452]

‘ $1~ 987191 l.001~ 105818! 1.071t 1%3081

............. .......... .............. .......... ........................... .............. ....
B.................................................

I 78919; 0.8Cj 84398I 0.85,

Gcornetricmean ! 0.73 ] 0.77 [ 1.00 j 1.11 I 1.44 ~ 2.66 f 2.83

psrser 14327 ~ 0.44 17518{ 0.53 23304~ 0.71 25212! 0.77 36510~ 1.11 38554{ 1.17

i EU:e
9454 ! 0.95

85486 ~ 0.8

80398 ~ 0.81

Geometric mean i 0.77 I 0.80 \ 0.87 ! 0.97 I o.% ! 1.18 [ 1.22

~ ‘
parser 13444! 0.41 15080/ 0.46 171M2~ 0.52 21488! 0.65 20785 \ 0.63 24530\ 0.75 27405 f 0.83

: *rive~er .,,~:::~~.:;:: 35000 0.73 368I35 0.77 41529! 0.87 42988 0.90 58341 1.22 76548 1.61
................................ p,..., .......... .........* ............. ..........* ........o.....o... o...o.oo ............... .,,,,,,,,,,. ,.............. ............ .............. ..,,,,,,, ,

j =.e II 5148! 0.91

9362! 0.9

82777! 0.85 84771 \ 0.87 85181 ~ 0.88 93261 j 0.96 952S9 I 0.98 lo7946~ 1.11 105125 I 1.08

81034~ 0.82 828921 0.84 86749 ] 0.88 91747: 0.93 972941 0.99 102350 1.04 102949 1.04

Geometdc meart i 0.75 I 0.78 I 0.80 ~ 0.89 ! 0.91 ! la) \ 1.07

parser 972! 2.14 764/ 1.68 4s5\ 1.00 446! 0.98

8.~ prhnitiveklaker 1877: 1.80

A
. &ltaBlue 2364: 1.7C

%cilJ.nta’p II 32475! 1.ll!I 29124! 0.9911 29293] l.~1 30492! l.~1 294521 LOIII 291691 I.Od! 32059! 1.091

g Cecilcempiler 2871~ 1.74 2232\ 1.35 16491 1.00 1642! 100 16281 0.99 1559] 0.95 1621\ 0.98

d Geometricmean i 1.60 I 1.25 ! 1.00 ! 0.99 ! o.% ~ o.% \ 0.96

parser 963; 2.12 750 1.65 466 1.02 466: 1.02 446 0.98 430 0.95 425 0.93
................................ ............... ......... ................ .......... ............. ............ ..............*... ........

orirnitiveMsker 1891: 1.81 1540 1.48 1088 1.04
,Wo ~ ~.03. ............... ........... . ................ ............. ,......{$3 ..;98

1032 0.99 1053 1.01

lcathCache ]! 3129! 1.3dl 2406/ l.~1 22931 LOIII 2308! LOIII 21911 0.9611 22251 0.9811 222910.981

7 CxilInterp.,
J Cecilcartpikr 2971: 1.8C 22281 1.35 1597 \ 0.97 1593 i 0.97 15561 0.94 lmj 0.95] 1640[ 0.99

a Gecmetric mean ; 1.63 I 1.27 I 1.01 : 1.00 I o.% \ o.~ ~ 0.97

The following table shows code sizes for the six programs compiled with the old heuristics rmd with Mining trials (with a threshold of 8)

II Code size-old II Code size - triab

1076761 l.odl 83040 I 0.77

prirnitiveMsker 225812
................................ .....
pathcache

deltaBhie 51036{ 1.OC 30616\ 0.99

CecNrrterp 4214(M 1.(K 399428 ~ 0.95

cecil(lxnpiler 429948 ] 1.OC 407080 \ 0.95

Total 12733721 1.OC 11%1361 0.94
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