
In-place Updates in the Presence of Control Operators

Sandip K. Biswas*

Department of CIS

University of Pennsylvania

Philadelphia, PA 19104

Abstract

This paper presents a formal account of the concept of in-

place updates inpurely functional languages. Inpurelyfunc-

tional languages, updates of abstract objects involve creat-

ing duplicates of these objects. This paper reviews static

conditions, which, if satisfied by Yterms, guarantee that,

even if updates areperformed in-place, the purely functional

semantics is retained. These static conditions, however, fail

to guarantee the requisite safety in the presence of control

operators like cattcc and throw. The conditions are hence

augmented by another condition which is defined on the

operational semantics. Here we statically verify the satisfi-

ability of a conservative approximation of this condition by

data-flow analysis on CPS-terms. Also a significant class

of programs is identified for which the condition holds even

without data-flow analysis.

1 Introduction

operational Semantics for functional languages can be de-

fined without reference to a store of any kind. How-

ever these languages are implemented on von-Neumann ma-

chines, which have store-based architect ures. If t he language

contains abstract data-types with update operations defined

on such data-types, the actual implementations of the lan-

guage in fact return a new copy of an abstract object on

an update operation: there are no mutating operations per-

formed in the memory. If the abstract object is something

like an array, then this copy operation becomes very expen-

sive. But if we can specify static conditions that guarantee
that generating a new copy on an update and updating the
object in the memory itself always produce the same result,

then we have effectively changed the cost of the run-time

update operation from the size of the object to a constant.
Such conditions were presented in [8] in context of deno-

tational semantics. In the Scott-Strachey [10] denotational

definition of a programming language, the denotation of a

program is defined as a function from Store to Store. In

[8] Schmidt proves an implementation of the denotational

“Th]s research was supported by ONR grant number NOOO14-88-
K-0557

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

definition need not pass the store around as a parameter,

instead it can be replaced by a single global variable, which

could be updated in-place. A predicate on programs, szngie-

threadedness, was defined. Programs satisfying this predi-

cate have their denotations preserved under the implemen-

t ation.

This paper re-phrases the above theorem in the language

of A-calculus, st sting much more explicitly the meaning of

in-place updates. The predicate single- threadedness is ex-

actly the one Schmidt states. It is shown that, in the pres-

ence of control operators, callcc and throw, satisfiability of

single- threadedrzess does not imply that in-place updates are

safe. An additional condition required to ensure the safety of
in-place updates without being overtly restrictive is defined
on the operational semantics, and its correctness is proved.

The technique of data-flow analysis is used to verify stati-

cally that a conservative approximation of this condition is

satisfied.

Like Schmidt, this paper addresses programs that con-

tain a single array iabstract data-type initially and the pro-

gram performs a multitude of update and selection oper-

ations on this array in the course of its execution. In the

terminology of [7], it is the single-19 pebbling situation. This

is not a restrictive assumption: it allows a large number of

programs of interest such as various sorting programs and

programs that use an array as a global variable.

The fundamental principle involved in safe in-place up-

dates is simple: when an abstract value is being updated,

there must be no other reference to this value. This is

exactly the way the problem is addressed in [3]. Hudak

presents a finite abstraction for a first order language: it is

not clear what a finite abstraction should be for a higher-

order language. In the presence of callcc and throw, the com-
plexity of the problem increases, as a user-level program rep-

resents a continuation as a variable that is bound to the rest

of the computation at run-time. So the approach chosen in

this paper is a more syntactic one. If the user-program sat-

isfies the initial conditions, then, at an update at run-time,

the reference count of the abstract value is indeed one.

2 Syntax and Semantics of the Functional Language

2,1 Syntax of the Language

The simply-typed A-calculus along with a mutable abstract

data-type T is considered as the functional language. The

definition given below follows [4]:

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-3/94/0006..$3.50

283



Definition: A mutable abstract data-type T is one in which

each operation can be classified as either a generator of type

Xl * r, a mutator of type Xx ~ T -+ r or a selector of type

X2 * T -+ X4, where x, $ T are types in the language.

Our language does uot contain tuple types. Hence all

functions are curried versions: the types X,, in the definition

above, need to be ‘curried’ in the language. As shown in

Figure 1, a curried version of znt array in SML/I’JJ, may be

considered as a mutable abstvact data- type.l

Considering int array as the prototype, it is assumed

(without loss of generality) that r has three operations: the

generator ~ : int-+i.nt-AT,the mutator M : int -+ znt +

T + T and the selector S : int ~ r ~ int.This paper

considers a typed language with the standard typing rules:

[2] is a standard reference.

The functional language of interest is specified by the

following grammar:

M::=ilz [A/ MI SIAz:~. MIMM

V::=ilz \AIMIS]Jz:~. MIMi ]Mijl Sz’

where i is a variable representing the integers and V is a

subset of the terms M, representing the values in the lan-

guage. A is a variable representing a value of the abstract

data-type T. Symbols A , A’ , A“ all represent abstract

values of type r. Note that the language of terms M does

not contain the generator for the type r: this is because

we are interested in the set of terms that contain a single

value of the type T initially, and only update and selection

operations are performed on this value. The terms in the

language are explicitly typed. When types are not relevant,

or are obvious from the context, they are dropped.

2.2 Operational Semantics

As r is an abstract type, the concrete structure of a value

of type ~ is not known. The operational semantics for oper-

ations on abstract values of type r is defined with the aid of

an interpretor function 6. For example, (M z j A) returns

a new value 8(M , i , j , A) of type ~. Since the actual se-

mantics of the abstract type is not relevant here, we merely

assume that the interpretor function 6 returns a value of the

appropriate type.

The operational semantics for this language is given in

the style of [11]. This involves defining a set of redexes,

and an evaluation strategy: how to locate the next redex

in a term, The redexes in the language are ((k. M) V),

(M z J A) and (S t A). The evaluation strategy is given by

an evaluation context 13[ ], which is a term with a ‘hole’ [ ]

in it. 13[ ] is specified by the following grammar:

E[] ::= [] I (E[])M I V(J9[])

The operational semantics defined below is deterministic.

This is because any type-checked term M which is not a
value can be partitioned uniquely into an evaluation context

,E[ ] and a redex R such that M - 13[R]. The transition

semantics is as follows:

E[(h.fl’f)v] - E[M{z/v}]

E[M i j A] +-+ E[A’]

1In fact, array operations m SML/NJ actually perform mutations
m the memory

where A’ = 6( M,z, J,A)

E[S i A] H E[j]

where j = 8(S, i,A)

2,3 Single-Threadedness

The evaluation context E[ ] defines a specific evacuation

strategy for call-by-value. We define a more generaJ con-

text F[] as,

F[] ::= [] [ (F[])il’f [ M(F[])

Definition: N is an active sub-term of a term M, if N is

not contained under a A in M, i.e. M - F[N].

Definition: N1 and NZ are disjoint sub-terms of a term

M, if it is the case that neither N1 nor N2 is contained in

the other.

Definition: A term E is single-threaded iff all sub-terms

N of E possess the following properties:

A. Non-Interference

1. If N is of type r then if N contains disjoint active sub-

terms N1 and NZ of type r, then N1 = NZ R A or

NI G Nz = u for some variable v.

2. If N is not r-typed, all active sub-terms of type r in N

are identical to a particular abstract value or variable.

B. Immediate Evaluation

1.

2.

If N a h .M : T ~ V, then aJl active variables of

type r in M are occurrences of z. There are no active

~-typed abstract values in M.

If N a Jz.kf : m -+ 712, where VI z r, then M

contains no active terms of type r.

The definition of single-threaded terms applies irrespec-

tive of the constants in the language.

The following important properties of single-threaded

terms are expressed as lemmas. The proofs in most cases

are trivial.

Lemma 2.1 If a single-threaded term JW = E[N], has a

redex N of type T, then M does not contain any other active

sub-term of type r, disjoint from N.

Lemma 2.2 If (Ax. N) u a sub-term of a szngie-threaded

term M, then it does not contain free variables of type T

nor does at contain any abstract vaiue of type T.

Lemma 2.3 In any closed single-threaded term M, ail oc-

currences of abstract values of type T are active. If M con-

tains disjoint active sub-terms Ml and M2 of type T then

M,EM,sA.

3 In-place Updates are Safe

Let ~ denote the n-fold composition of the transition re-

lation = and let +--A* denote its transitive closure.

The next two lemmas show that the property of being

single-threaded is preserved under the transition semantics

l---+.

284



val

val

val

array: int->int->array

update: int->int->array->array

sub: i.nt->srray->int

the generator, with the first argument stating the

size and the second the initial value.

the vnutator, with the first argument giving the

subscript and the second argument the value.

the selector, with the first argument giving the

subscript

Figurel: The data-type intamayin SML/NJ

Lemma 3.1 Let N be an active sub-term of a single-

threaded term M, i.e M z F[N]. Let N’ be a closed term

satisf@ng the foliotuitzg conditions:

● It is single-threaded,

● It has an active sub-term of tgpe T on!g if N has an

active sub-term ojtyper.

● If F[ ] contains an active value A of typer and. N’

contains an active vake A’ of typer, then Aa A’.

lfN is nota ualueoftyper then F[N’] isa single-threaded

term.

Proofi By case analysis onthetypesof M andN. ❑

Lemma 3.2 Let M be a closed single-threaded term. If

M M“ M’, then M’ is single-threaded.

Proofi We need to prove the preservation of single-
threadedness over asingle step of the reduction process. The

proof for an arbitrary number ofsteps follows by induction.

Let M- E[N] M M’~E[N’]. By Lemma 3.1, M’is

single-threaded if N’ satisfies the following three conditions:

1. Itis single-threaded.

2. It has active sub-terms oftyper only if Ndoes.

3. If 11[ ] contains an active value A of type~ and N’

contains a value A’ of type r, then As A’.

There are two non-trivial redexes to consider:

c N= (Ad i j A) * A’, where A’ = 6( M,i, j, A).

This result follows from Lemma 2.1

● N ~ (k.P)V x P{z/V},

If V : T then it must be some abstract value A.

P is single-threaded by assumption. By Lemma 2.2,

abstractions do not cent ain free variables of type T,

thus z : ~ is not free in any abstraction in P. Hence

V : T cannot be substituted into the body of any

abstraction in P. Thus abstractions in P{c/V} are

single-threaded. F’{z/A} satisfies Condition A, be-

cause Condition A applies for both variables and val-

ues. Thus P{z/A} is single-threaded. Statement (2)

holds as N contains an active term of type r. By

single-threadedness, JT[ ] can only contain A as an ab-

stract value of type r. By Lemma 2,2, P contains no

abstract value of type r, thus P{x/A} can contain only

the value A of type T. Hence statement(3) is satisfied.

If the single-threaded term V is not of type r, then
the syntactic structure of values in the language shows

that it has no active sub-term of type r. It is single-

threaded, hence its substitution retains P{z/V} as

single-threaded. (k. P) is single-threaded. Hence, by

Lemma 2.2, P has no active sub-term of type r. As

observed earlier nor does V, hence nor does P{z/V}.

Thus statement (2) and (3) do not apply.

❑

The preservation of single-threadedness over the reduc-

tion process is not valid in a call-by-name evaluation strat-

egy because an argument to a function even though not of
type r may contain a value of type r, e.g. (S i A) is a valid

argument of type int.

The order of arguments in the type of the constructs M
and S is critical in the proof of Lemma 3.2. If the order

of the arguments in S : int + r + int is switched to

s: T + ~nt+ znt then S A would be a value of type

int ~ int but would contain a value of type r. Hence single-

threadedness would not be preserved.

By Lemma 2.3, a closed single-threaded term M con-

tains exactly one value of the type ~ and all its occurrences

are active. Hence to formally handle the operation of in-

place updates in an implementation, we may store this sin-

gle active value of type ~ in a ref-cell and replace all its

occurrences by its location in memory. This may be for-

malised by a transition semantics, in a manner similar to

[II], with a single-element global store with address WO. This

new language, where all updates are performed in-place, no

longer has any values of type r: they are all replaced by

values of type T ref. As there is a single address in the

memory, there is only one value of type ~ ref : UJO. Thus,

M:int~int +rref~rrefand5 :int+rref+int.

The transition semantics with a global representation for the

value of type ~ is given as follows,

p(wo, A). E[(k.M)V] =+- ,o(wo, A). E[M{zN’}]

,O(WO, A). E[M t J w,] * ,O(WO, A’). ~[wo]

where A’ = 15(M,i, J,A)

o(wo, A). J?3[S i too] = P(WO, A). E[j]

where J = 8(S, t,A)

Just as for M, ~ denotes the n-fold composition of

the transition relation =+-, Obviously the ~ transition

relation is a deterministic operational semantics.

The safety of in-place updates can now be conceived as

follows: Consider a single-threaded term M. By Lemma 2.3

it contains exactly one value A of type r, Consider a term

M’ obtained by replacing all occurrences of this value A by

zoo. Then at every stage in the evaluation of p(wo, A).M’

under the ~ semantics, replacing W. in the term by its
value in the memory must exactly match the term obtained

from the evaluation of M under the +---+ semantics.

285



{uJ~A}
Definition: M’ – M iff M’{wO/A} - M and

M{ A/we} G M’.

Theorem 3.1 (In-place Updates are Safe) Constder a

closed single-threaded term Ml such that M;
{wO&} Ml.

If Ml ~ MZ and p(wo, A). M{ & p(wo, A’). M~, then

Proofi We need to prove the substitution property for
a one-step transition, the rest follows by induction. This is

because by Lemma 3.2 single-threadedness is preserved over

transition.

There is only one important case to be considered:
E[MzJA] R 13[A’]

p(wo, A). E’[Mzjwo] =+ ~(Wo, A’).~’[wo]

By assumption l?’[ ] ‘w~A} 13[ ], i.e 13’[ ]{wo/A} = ./3[ ]

and 13[ ]{ A/we} - E’[ ]. As [ ] is a redex of type r, by

Lemma 2.1, 11[ ] does not contain the value A of type ~.

Therefore E[ ] a 12[ ]{ A/we}. As E[ ] and E’[ ] are related

by a renaming substitution, Ii?[ ] contains no occurrence of

VJO. Hence,

E’[ ]{wo/A} a E’[ ] - .E[ ] (1)

We need to prove that IJ’[ ] ‘WO#’} E[ ], i.e

. E’[ ]{wo/A’} s E[ ]. As 13’[ ] contains no occurrence of

WO, E’[]{wO/A’} s E’[]. Hence by (I) E’[]{wO/A’} s

E[].

c E[ ]{ A’/Wo} ~ E’[ ], As [ ] is a redex of type r , by

Lemma 2.1, E[ ] does not cent ain the value A’ of type

r. Hence E[ ]{ A’/wo} ~ E[ ]. Thus by (1) we have

E[ ]{ A’/wo} s E’[].

u

4 Extending the Language with Control Operators

4.1 Introduction

We would like to extend the language with two control op-

erators. One of them is the if-then-eke statement and the

other is the call with current continuation. The definition of

single-threaded terms can be extended in a straight-forward

way to accommodate the i~-then-eke statement. To prove

that in-place updates are safe, when a term satisfies the ex-

tended definition, we present a translation of an if-then-eke

term M to a term M’ in the original language such that M’

is single-threaded iff, M is single-threaded by the extended

definition.

In the presence of continuations in-place updates of

single-threaded terms are unsafe. A simple extension of the

definition of single-threadedness, though fixing the problem,

turns out to be too restrictive. Hence we impose a run-time

condition on the evaluation and prove that if this condition

is satisfied, in-place updates, in the presence of continua-

tions, are safe.

4.2 The if-then-else statement

The if-then-else term is a basic control operator present in

most call-by-value languages. The conventional semantics

for an if-then-eke statement involves a boolean value. In

our language it is assumed that booleans are generated from

pre-defined functions on id, like ‘=’, ‘#’, ‘<‘ etc.

The extended language is defined by the grammar:

M ::= tlxl AI MI Slk. M\MM

[ if (M, P Mz) then Ms else M+

F’::= #1=1 <1...

The standard operational semantics is as follows:

if true then Ml else M2 w Ml

if false then Ml else M2 = M2

Let M - if (Ml P M2) then M3 else M4. From the op-

erational semantics it is seen that both Ml and Mz are eval-

uated before either MS or Ml is, and exactly one of M3, M4

is evaluated. Thus condition A(1) for single- threadedness

should not consider M3 and MA as disjoint terms. Also as

Ml and Mz are of type int and are evaluated strictly be-

fore MS and Ml condition A(1) should not consider Ml /M2

disjoint from Ms /M4.

F’[ ], as defined below, is an extension of F[ ]. The con-

text F’[ ] defines active terms in the extended language.

F’[] ::= [] I (F’[])M I M(F’[])

I if (F’[ ] P M2) then M, else M4
I if (M, P F’[]) then Ms else Ml
I if (MT P M2) then F’[ ] else Ml

I if (Ml P M2) then MS else F’[ ]

We define a new context G’ [ ] to conveniently refer to an

active term in the if part of the conditional.

G’[] ::= (F’[]PM) \ (M PF’[])

A revised version of condition A(I) is as follows:

A. Non-Interference

1. If N is of type r then if N cent ains disjoint active

sub-terms N1 and Nz of type T, then:

Nlz N2=A, or

N1 = N2 s v for some variable V, or

(if . . . then F; [Nl] else F; [N2]), or

(if G’[NI] then F~[Nz] else .), or

(if G’[NI] then else F; [N,]), is an active
sub-term of N. If Al : r is an active value in N1

and Az : ~ is an active value in N2 then AI E AZ

But a revised condition involves revising the proofs given

in the previous section. Hence we try to give the if-then-

eke statement a new syntax so that it can fit into the old

framework. The pre-defined function ‘=’ is removed from

the language and instead we introduce a function P= 2 which

returns a projection function instead of a boolean value, i.e.

P=ii++Ax. Ay. x

P=ij*Jx. Ay. y,ifi#j

2As this M a simply-typed language, technically, we are mtroducmg
a set of functions P: for every type q, such that, P: z i ++ ~x q ~y
qz,

286



Similarly the set of functions P< and P# are defined: true

corresponds to firstprojection and false to second projection.

Thus the term,

if(s = t) then (Ml : q) else (M2 : q)

can now translated to,

[P= s t (Aw.if,) (AW.M2)] ()

where w @ FV(M1) U FW(M2) and () is new value of type

unit. A dummy abstraction and application on Ml and M2

is required because the language is call-by-value.

The above translation is faithful to the operational se-

mantics but may fail to be single-threaded when the origi-

nal term is. This is because by Condition B(2), if the term

(/lw : unit. Ml) is single-threaded, then Ml can have no

active sub-term of type ~. Hence a translation involving an

abstraction variable of type unit may not work.

Let M - if (s = t) then Ml else Mz, be a sub-term
of a single-t breaded closed term N. A translation of M is

defined by cases:

c There is no enclosing A for M in N, i.e. M is active in

N. Since M is closed, if M, does not cent ain a value

of type T then M, is not of type r. Thus if a value of

type T is not present in M the following representation

is single-threaded if M is,

[P= s t (Az.MI) (Az.M2)] ()

If a value A of type ~ is present in M then the following

representation is single-threaded iff M is,

[I’= s t (Az.M,) (AZ. W)] (A)

This is because, by the modified Condition A, the

closed single-threaded term M has exactly one value

A of type r.

● kc. is the nearest enclosing abstraction for M in N,

i.e. N ~ . . . (Az.F’[M]), ,., Then the following repre-

sentation is single-threaded iff M is,

[P= s t (Az.M,) (Az,Mz)] (t)

If z : q, where q # ~, then by Condition B(2) Ml

and Mz do not contain active terms of type r. Hence

(~z.M1), (Ax.M2) are single-threaded.

If z : r then by Condition B(I), both Ml, M2 do not

contain values of type r nor a variable of type r distinct

from z. Thus (Az.M1 ),( Jz.M2) are single-threaded.

4.3 First-Class Continuations

We next extend the language with the control operators,

letcc and throw. Due to technical reasons the construct letcc

is chosen over the more traditional catlcc. The extended lan-

guage, of terms M and values V, is defined below:

M ..—..—

v .._..—

zlilAIAz.MIMMIMISl

letcc k in M I throw

tlzlAIMISIMZIMZjl Stl
XZ.M I throw I throw (Az.M)

The operational semantics for the new constructs are as

follows:

E[letcc k in M] H E[M{k/(kz. E[x])}]

E[throw (k. M) V] w M{z/V}

The additional typing rules involved are:

I’, k:~conth M:q

rt-letcckin M:q

17 1- throw : ~1 cent -+ VI + 772

The standard definition of single-threadedness depends

on the types of the terms and not on the terms and con-

structs themselves. Thus the earlier definition still applies

to the terms of the language extended with the constructs

letcc and throw. Under this operational semantics

single-threadedness is not preserved. This is because of the

letcc transition. Consider a single-threaded term N, where

N & E[letcc k in M]. If E[letcc k in M] is single-

threaded and [ ] is of type r, then by Lemma 2.1, E[ ] con-

tains no term of type r disjoint from []. Hence (--h. E[z]) is

single-threaded. But if [ ] is not of type ~, ,?3[ ] may contain

terms of type r disjoint from [ ]. Thus the captured con-

tinuation (Az. E[z]) may contain values of type ~. But this

violates Condition B(2) as (Xx. E[z]) is of type V1 ~ qz,

where VI ~ r.

Figure 2 presents a counter-example demonstrating that

in-place updates are not safe in terms initially single-

threaded. In term (1) in Figure 2 the captured continua-

tion k = (Jf. fA) contains a value A of type r. Thus the

continuation to which k is bound is not single-threaded. Per-

forming the updates in place returns the value A’, instead of

the correct answer A. The term is initially single-t breaded,

but as the captured continuation is not a single-threaded

abstraction, the instant letcc is executed the term loses its

single-threadedness. The source of the problem is the fact

that a captured non-r continuation may fail to be single-

threaded, i.e. may possess a value of type r.

The obvious solution is to disallow such continuations.

This solution is inordinately restrictive on programs. For

example, let r ~ znt array. Then consider the term

(update 4 (letcc k in M) A). The term M is a simple

arithmetic expression which takes in a continuation k to

short circuit the evaluation when we have a multiplication

by O. This program, however, must be disallowed as k will

be bound to (Az. update 4 x A), which contains a value of

the type int array. In many programs continuations are

captured for such short-circuit operations and they must be

likewise disallowed. Hence the obvious solution is not ac-

cept able.

As it is our aim to allow continuations to contain values

of type r, denoting a captured continuation by (Az. E[x])

will always violate Condition B(2). So we introduce a new

binding construct for continuations Cnt. The continuation

(Az. E[z]) is now represented as ( Cnt z. E[z]). Just like

A, terms enclosed by Cnt are not considered active. The

revised clauses for the operational semantics are:

E[letcc k in M] w E[M{k/( Cnt z. E[z])}]

.E[throw (Cnt z. M) V] w M{z/V}

An additional typing rule is required:

r,x:ql EM:~o

1? F (Cnt X. M) : VI cent

287



[letcc k in (Xsl.(k+2.M (throw k (Az.z)) 4 s,))(M 14 s1)]A
I---+ [( AsI. (Asz. M (throw (Af. fA) (lz. z)) 4 s2))(M 1 4 sl)]A

++ [(k+2. M (throw (A$. fA) (~z.z)) 4 SZ) (M 14 A)]

++ [(kz.M (throw (J-f. fA) (kz. z)) 4 52) A’] , where A’ = 8(M, 1,4, A)
+-+ [M (throw (Aj. fA) (Xr. z)) 4 A’]
= (kr. z)A
E---+A

(1)

p(zuo, A). [letcc k in (Asl. (Jsz.M (throwk (~x.z)) 4 s2))(A4 14 S1)]UIO

=+ p(zuo, A). [( AsI. (As2. M (throw (A.f. fWO) (XZ. Z)) 4 52))(M 14 SI)]WO

==+ ,o(wo, A). [( L92.M (throw (J.f. jwo) (Az.z)) 4 s2) (M 14 WO)I

z p(wo, A’). [( Asz. M (throw (A~. ~wo) (kz. x)) 4 SZ) wO] , where A’ = 8(M, 1,4, A)
==+ p(wo, A’). [M (throw (Jf. @o) (Jz. z)) 4 ZOO]

==+ P(WO, A’). (h.X)WO

==+’ P(WO, A’). WO

Figure 2: A violation of safety of in-place updates

The rest of the typing rules are exactly the same as before.

Let a term M be single-threaded when it satisfies the con-

ditions A and B defined in Section 2. Thus ( Cnt z. N) is

single-threaded when N is. This is intuitively what it should

be, because when the execution of N begins the surrounding

context is thrown away completely. It is important to note

that Lemma 2.3 does not hold anymore. All occurrences of

abstract values of type r need not be active and need not be

the same value. A single-threaded term in this language may

contain several different values of type r (of course, exactly

one of these values is active). In the counter-example given

previously, it is seen that single-threadedness can no longer

guarantee that if we start with a term with exactly one value

of type T then the term will continue to have exactly one

value of type r. Notice that if the captured continuation in

Figure 2 is represented as (Cnt f.fA), the term retains its

single-threadedness.

Definition: In a term (letcc k in M), the sub-term M is

considered as the syntactic scope of the variable k.

A variable k ‘escapes’ a syntactic scope M if, during the

evaluation of M, k or a closure containing k, is returned as

a value or is passed as a parameter to a free variable in M.

Consider the single-threaded expression (letcc k in M). If k

is a non-~ continuation then M is not of type ~. By single-

threadedness, M does not contain an active mutating oper-

ation. If k does not escape its syntactic scope, then, even

if k captures a continuation containing a value of type ~,

in-place updates should be safe. This is because all points

of application of k are contained in its syntactic scope, the

body of M, which contains no active mutating operations.

In fact, if no continuation escapes its own syntactic scope

then it is possible to define an operational semantics in which

it is not necessary to bind a continuation to a variable. This

is described in [6]. In this case, as there are no captured

continuations, single-threadedness is retained all along.

Actually we can do better: suppose

M & E[letcc k in N]

Let us assume that E[letcc k in N] does not contain any
captured continuation. If k is a non-r continuation then
N does not contain an active mutating operation. If no

continuation captured within N escapes the syntactic scope
of k, the body of N, then in-place updates should be safe.

Within the syntactic scope of k, it is not necessary to restrict

captured continuations from escaping their own scopes. A

formal presentation of the correctness of this idea is given

in the next section.

5 Non-Escaping Continuations

5.1 Operational Semantics

The operational semantics given in the previous section does

not keep track of the scope of the captured continuation. As

discussed earlier, at any instant it is necessary to keep track

of the scope of a single non-r continuation: the outermost

one. Let us denote it by (Cnt x. cl), where c1 is a special

symbol not used anywhere else in the program. The actual

continuation denoted by c1 is carried around with the term

as an explicit context E[ ]. Thus the operational semantics

is defined on a pair (M, L), where M is a term and L is

a list of terms at most one element long. L, if non-null,

contains the continuation E[ ] denoted by c1. As we are

concerned exclusively with non- ~ continuations, the terms of

type rcont are labelled: (letcc k : r in , . .), ( Cntk : r. . . .).
To represent the concept that no non-r continuation in

a syntactic scope escapes, a predicate Non- Tau-Free is de-

fined on terms. This predicate is true if there are no non-~

continuations present in a term, i.e. all the continuations in

the term are of the form ( Cnt k : r. .). When a value is

thrown to the continuation denoted by c1 or the syntactic

scope of the continuation denoted by c1 evaluates to a value,

the predicate Non–Tau–Free ensures that there are no non-r

continuations in the value.

A non-standard operational semantics is presented in

Figure 3. The intent of this non-standard operational se-

mantics, containing clauses with guards, is to present a run-

time condition for the safety of in-place updates. Hence

programs that can be statically proven to satisfy these con-

ditions, at run-time, must allow safe in-place updates.

5.2 [n-place Updates are Safe

Definition: An evaluation context E[ ] is defined single-

threaded, if ( Cnt z. E[z])is single-threaded. E[ ] is of

type q cent if [ ] is of type ~.

The following two lemmas are proved with the fact that

values, not of type r, do not contain active values of type r,

288



(Jq(k. M)v] , L)

(E[M z j A] , L)

(E[S z A] , L)

(13[letcc k : Tin M] , L)

(E[letcc k in M] , nd)

(E[letcc k in M] , [lJ’[]])

(E[thrcnv (Cnt z : r. E’[z]) A] , L)

(E[throw (Cnt z. E’[z]) V] , L)

(E[throw (Cntz.q) V] , [E’[]])

(V, E[])

(v , nil)

(E[M{z/v}] , L)

(E[A’] , L) where A’ = $(&t, i, j, A)

(E[j] , L) where j = 8(S, i., A)

(E[A4{k/(Cnt .x: r. E[x])}] , L)

(M{k/(Cnt z-. cl)} , [E[]])

(E[M{k/(Cnt z. E[$])}] , [E’[]])

(E’[A] , L)

(E’[V] , L)

(E’[V] , nd) if Non-Z’au-Free(V)

(E[V] , nil) if Non-Tau-R-ee(V)

v

Figure 3: Operational Semantics

and the use of Lemma 3.1, which is still valid in the extended

language.

Lemma 5.1 l~E[] is a closed single-threaded context of

type rlcont, and V:q isasingle-threaded value, then E[V]

is single-threaded.

Lemma 5.2 l~E[letcckin M] is a closed single-threaded

term, then E[M{k/(Cnt z, E[x])}] isalso single-threaded.

The following lemma is crucial for the safety of in-place

updates:

Lemma 5,3 Constder a closed stngle-threaded terra NO zn

Muser.

1~ (NO,D) ~, (NI , Ll) *, (N2 , L2)

The following are invariant over transition:

1.

2.

3.

4.

5.

N, is sangle- threaded

If N, : r, then Non-Tau-Free(Ni)

If L, s [E[ ]], then Non-T’au-Free(Efl) and E[] is

single-threaded.

If L, ~ [E[]], then N, is not of type r.

If L; ~ nil, then Non-Tau-Free(N,)

Proof: By case analysis, using Lemmas 5.1-2 and Subject
Reduction Theorem for Types, ❑

Lemma 5.4 Consider a closed single-threaded term No in

Muser.
If (NO, U) ~. (. ., (Cnt z : r-, E[z]) . . . , Ll) then, E[z]

conta~ns no value A of type r, actzve or otherwise.

Proofi By induction on the step m in which a continuation
of type r is generated. It is to be noticed that terms of the

form (Cnt z : r. . ..) are not generated anywhere except at

the letcc k : T redex. Let,

(No, u) ~, (M+ -EIIetcck : Tin .], L).

Let (Cnt z : r. E[z]) be generated during the next transition.

By single-threadedness M must be of type ~. Hence by

Lemma 5.3, Non-Tau-Free(M) and L ❑ nd.

The continuation (C’nt z : r. E[z]) is a closed value. By

Lemma 2.1, E[ ] contains no active terms of type r, thus no

active values A. As M is single-threaded, values of type r

can only be found in captured continuations within M. But

Non–T’au-Free(M), therefore E[ ] has no non-i- continua-

tions. Any continuation of type r present in E[ ] must have

been generated earlier. By the induction hypothesis they do

not contain values of type T, active or otherwise.
u

A theorem analogous to Theorem 3.1 can be stated re-

garding the safety of in-place updates in the presence of

non-escaping continuations.

Theorem 5.1 (In-place Updates are Safe) If

(Fo . nil) ~, (FI , L1) +. (F2 , L2) and\ -,,
p(too, A’’). (F~ , nd) +, ~(wo, A).(F( , L;)

=+s P(WO, A’). (F; , L2).

, {wo~A”}
If FO is szngle-threaded and F. _ Fo, then this sub-

stitution property is invariant over transition, i.e.

F, {wo~A’!)
2— F2 and L2‘ ‘wo~’} Lz

Proofi The proof is by induction on the length of the

transition, By Lemma 5.3, single-threadedness is preserved.
Hence we only need to prove that if the substitution proP-
erty holds for (Fl , L1 ) then it holds for (F2 , L2). Let

FI R El [Ml]. As W. is a special variable different from



bound variables and no redex except mutation changes the

contents of WO, the substitution property is trivial for all

redexes except the mutation redex. If F, is single-threaded

and contains an active redex of type r then F, : r. By

Lemma 5.3, If F, : I-, then lVon-Taa-Free(F, ) and L, ~ nil,

In the case of the mutation redex,

● (E[M ZJ A] , []) +-+s (aE[A’] , [1)

/J(wo, A). (E’[M z j too] , [ 1) =+,
p(wo, A’). (~’[WO] , [])

By assumption E’[ ] ‘W~A} E[ ]. To prove the sub-

stitution property, we must show that E’ [ ] { wo /A’} ~
E[ ]. By transitivity this is the same as proving

E’[ ]{too/A’} ~ E’[ ]{wo/A}. Hence if E’[ ] does not

contain any occurrence of wo, the property holds. But

if E’[ ] contains an occurrence of wo, then E[ ] contains

an occurrence of A. There are two possible cases:

– A is an active value of type i-: this immediately

violates Lemma 2.1, for single-threaded terms.

– A is not an active value, hence by Lemma 5.4

must be enclosed in a non-r continuation. As

F1 = (E[MzjA]) is of type r, by Lemma 5.3,

Non–Tau–Free(Fl). Thus FI has no non-r con-

tinuations. Thus E’o cannot have an occurrence

of wo enclosed in a non-~ continuation.

6 Static Analysis of Programs

6.1 First-Order Continuations

Continuations of type q cod, where v is not of a function

type or continuation type, are termed as first-order contin-

uations.

Theorem 6.1 Let M be single-threaded term where all

letcc terms capture first-order continuations. Evaluation

of the terra M with in-place updatea zs safe.

Proofi By Theorem 5,1, if transitions are made un-
der the non-standard operational semantics defined in Sec-

tion 5.1, then in-place updates are always safe. As certain

transitions are not allowed in the non-standard operational
semantics, it is a restricted version of the standard oper-

ational semantics. But a term with first-order continua-
tions will not be restricted by the non-standard semantics:
it never gets ‘stuck’. This is because there are two clauses

with guards:

(E[throw (Cnt z. cl) V] , [E’[]]) -5 (E’[V] , nil)

if Non–Tau–Free(V)

(V , E[]) w, (E[V] , nd)

if lt0r2-Tau-Free(V)

As all continuations are first-order, the value V does

not have a closure nor is it a continuation, hence

Non-Tau-Free(V) always holds. Thus if M evaluates to

a value under the standard semantics, it also evaluates to

the same value under the non-standard semantics. An ap-

signature CPS = sig

eqtype var

datatype value = VAR of vex

I INT of int
dat at ype primop =

*1 -I+ldiv l-l

<1<= 1>1>=1=

datatype cexp = APP of value * value list

I FIX of

(v= * Var list * cexp) list * cexp
I PRIMOP of

primop * value list * var list *

cexp list

end

Figure 4: The CPS data-type

In the presence of higher-order continuations a term M

evaluating under the non-standard semantics may get ‘stuck’

because of the guards to the two transitions. Theorem 5,1

guarantees that if a term does not get ‘stuck’ when evaluat-

ing under the non-standard semantics then in-place updates

are always safe. A term under evaluation fails to satisfy

the guard only if a non-r continuation attempts to escape

the scope of the outermost non-r continuation enclosing it.

Hence the strategy of the static analysis is to ensure that

a non-r continuation does not escape the syntactic scope of

the outermost non-r continuation enclosing it.

6.2 The CPS Language

In this section we describe a technique to statically anal-

yse programs to determine whether they contain escaping-

continuations, The language for this data-flow analysis is

the CPS data-type that is the language used by the Stan-

dard ML of New Jersey Compiler [1]. The use of a different

language is not an overhead as the analysis is to be used by

the compiler itself. The advantage of using this language

for analysis is the fact that all intermediate terms are val-

ues which have names, and letcc and throw are changed into

function applications. A description of the language is given

in Figure 4 as a SML/NJ signature.

The conditional is expressed as two continuations asso-

ciated with the PRIMOP ‘ =’

PRIMOP( =,[a, b], [], [Cl, Cz])

The convention being that if the equality indeed holds be-

tween a and tI, then Cl is executed otherwise C2 is. The

language allows functions defined within a FIX to be recur-

sive.

This language does not contain callcc/letcc operations,

as continuations are passed around as arguments. Figure 5

gives a translation of A-terms into the CPS data-type, by

a recursive function X. -F is defined on an object language

where an abstraction is represented by F N, applications are

represented explicitly by a constructor A PP, recursive func-

tions use an explicit FIX and variables use the constructor

VAR. The translation of a term M, in the object language,

is performed by calling F(M , (~n z => z)).

plication of Theorem 5. I now gives the required result.

❑

290



6.3 A Simple Analysis

The fundamental problem with higher-order analysis of

functional programs is termination [5]. Theorem 5. I

presents a very liberal condition for safety of in-place up-

dates. From the translation 7 it is seen that for every term

(letcc kl in M), we are going to have the term:

FIX( [ (k, [z], c( VAR z)),

~ (f, [h, k2], w

iPP(f, [vAR k, vAR k]))

where N ~ .F(M, Jz. APP( VAR k2 , [z]))

The strategy for static analysis is to first locate every

syntactically outermost declaration of a non-r- continuation.

Let (letcc kl in M) be one such declaration. We must

ensure that kl does not escape its syntactic scope. As seen in

the definition of the term N, above, the F-translation of M

is made with the initial continuation, Jz. APP( VAR k2 , [z]).

Thus any captured continuation in the body of M must

contain kz in its closure. As explained at the end of Section 4

it is also necessary to ensure that no captured continuation

in the body of M escapes the scope demarcated by M. In

the F-translation this is equivalent to stating that kz does

not escape the scope of N ~ F(ikf, ~z.APP( VAR k2 , [z])).

Our static analysis returns a set of functions that may

escape the syntactic scope demarcated by M. If these escap-

ing functions contain kl or k2 in their closures then either kl

or any continuation captured in the body of M may escape:

hence, in-place updates are conservatively declared unsafe,

If neither kl nor kz escapes, then static analysis will have

to be repeated for every escaping function. This is because

a declaration of a non-r continuation, P s (letcc k in . . .),

in an escaping function, may become the outermost letcc
term at run-time.

The question whether captured continuations, in the

scope demarcated by M, escape becomes the question as

to whether kl or kz escapes N. The key step in the solution

is control-flow analysis, i.e. computing the set of defined-

functions/free-variables to which a formal parameter of a

function may be bound at run-time. The technique em-

ployed is similar to the one used in [9]. If a function escapes

then we would like to know whether its closure contains ei-

ther kl or kz. But a statically computed closure contains

free variables. Hence we have to use the control-flow infor-

mation to find out whether a closure contains the variable kl

or k2. This will be an iterative computation as a statically-

computed closure may contain the variable kl or L-z, or it

may contain a parameter that may be bound to kl or kz, or

it may contain a closure which may contain kl or kz, and so

on recursively. This information is computed simultaneously

with the control-flow data.

The flat closure associated with a function is the set of

free variables present in the function body, In the absence of

mutual recursion, flat closures can be computed in a single

pass. All the PRIMOPS in the language take non-function

arguments and return non-function results. Since we are

interested exclusively in functions that escape, these non-

functional terms are ignored. The function CLOSURE, as

defined in Figure 6, returns a tuple: set of free variables

of the term, and a function CL which maps every defined

function to its flat closure.

Let (., CL) = CLOSURE N

Notation:

FV(N) denotes the set of free variables of N.

{al-+ s,}u{a++ s,}={ a+(sl us,)},

if S1 and S2 are sets.

{a Hp, }u{a~P2} ={@* (Plv P2)},
if /31 and ~2 are boolean values.

V(S) is the disjunction on a set S, of boolean values.

(A – ~ – c) ~ ~~A – B) – C), i.e. the set difference\ , \\ /
operator is assumed to be left associative.

Control-flow analysis is done by a function CONTROL

which takes in four parameters: a term T, and functions

CL, C and ‘T, The function CL is the mapping of function

names to their flat closures. The function C maps a param-

eter of a function to a set of functions to which it may be

bonnd at run-time, The function T maps a function name

to true, if its closure at run-time contains Icl or JCQ. ‘T maps

a parameter to true, if it may be bound to a closure contain-

ing k] or k2, By default, it is assumed that C maps defined

functions to themselves and T maps kl and kz to true. The

function CONTROL, as defined in Figure 7, returns a tuple

cent aining updated versions of C and T. Cent rol-flow analy-

sis begins with (CONTROL N CL (fn _ w q$) (in. w false))

and terminates when CONTROL N CL C T = (C, T)

Iteration to fixed point of this routine must terminate, as

each parameter of a defined function can be bound to only

finitely many defined functions.

Once the functions C and T have been computed, we can

compute the actual escape points of the term N. Escape

points within N are points where there is an application to

a free variable within N. To ensure that neither kl nor k2

escape, all we need do, is verify that the arguments supplied

at the escape points have their T value false. A function

ANALYSE is defined, which takes in a term and the function

C, and returns the set of escaping functions of the term.

As the control flow information is already available we can

get more sophisticated than ANALYSE and throw out the

escape points associated with functions that are not used.

● ANALYSE PRIMOP(P , 1; , 1; , [tl , . . . ,tn]) C

Let VZ, A, = (ANALYSE t, C)
.

in (u:=,At- {l;}- {J})
cANALYSE APP(VAR f , [/1 , . . . , L]) C

if (FV(N) n C(f)) # d
= then U:=l C(L)

else ~

● ANALYSE F1-X([(gl, ol, tl), . . . , (g~,~~,tn)] , to) C

Let Vi, A, = (ANALYSE t, C)
.

in (u:=, At) u (ANALYSE to c)

Let A = (ANALYSE N C). If [V(T A) = true] then

either kl or k2 escapes. If neither kl nor kZ escapes then the

analysis has to be repeated for the body of every function

in A.

Notation: k : v coni denotes a non-~ continuation vari-

able, i.e q + r

291



7(VARV , C) = c(VARW)

F(F.N(v, E), c) = FIX([(f, [v, k],.F(E, h,APP( VAR k, [z])) )], c( VAR f))

Y(APP(P121M th7’OW, E), c) = F(E, M. FIX([(f, [z, j], APP(k, [VAR z]))], C( VAR f)))

.F(A.PF’(F, E), c) = FIX([(T, [z], C(VAR z))],.F(F, Af..F’(E, Ae.APP(f, [e, VAR ~]))))

3( FIX(f, FN(v, B), E),c) = FIX([(.f, [v, k],.F(B, AL4PF(VAR k, [z])) )],.F(E, c))

F(LEZ’CC(kl, F),c) = FIX( [ (k, [z], c(VAR z)),

(f, [h, h], f(~, ~z.ApP( VAR b> [z])))

1,
APP(f, [VAR k, VAR k]))

Figure 5: Translation to CPS

. .
● CLOSURE PRIMOP(P , 10 , II , [tI , . . . ,tn])

_ Let vi < t-t (Si , CL,) = (CLOSURE ~i)—
in (U;=l Si - {~} - {~} , u~=l CLi)

● CLOSURE APP( VAR f , [11 , . . . , /n])

= ({ f}u{Jl, o.. ,L}, +)

- )], t)● CLOSURE FIX([(gl, V;, tl), . . . . (gn, vn, tn

Let Vi s n (Si , CL~) = (CLOSURE ti)
—— (s, cL) = (CLOWRE ~)

in (S U~=l(Si - {;,, g,}), CLu~=l(CL, U (g; R (S; - {ii, g,}))))

Figure 6: Computing the Closure

● GON’I’ROL PRIMOP(P , 1; , 1; , [tl , . . . ,tn]) CL Co 70
Let Vi < n (Ci , 7J = (CONTROL ~; CL C;_l Z._l)—
in (Cn , ~n)

● CONTROL APP(VAR f , [11 , . . . , in]) CL C T
Let . = Vg EC(~) ifg a(VARh, [cq,. ... an])

then C - C u~=l{ai ++ C(li)}
=

T - TIJ&{Qi ~ v T(C L)}
in (C , T)

. CONTROL FIX([(gl, ~;, tl), . . . . (g~,~~,~~)] , to) CL Co 70
Let (Cl , Z) = CONTROL tl CL Co m

= Vi> 1 (C,, 2’J = CONTROL t, CL C,_l (Z-l u (g,-, w V 7(CL gi-l))

in CONTROL to CL C. (~n U (g. * V T(CL g.)))

Figure 7: Control F1OW Analysis

292



The algorithm for static analysis can be summarised as

follows,

Static.Analyse(M);

{

stack = nd ;

For every outermost term of the form

(f, [k] : q COnt, k2 : q cent], N) in M
stack = (~, [Itl, kz] , N) :: stack;

While (stack # nil) do

{

~~a~~~ ~~i~ ~~c~ ‘d ‘tack;
( ., CL ) = CLOSURE( N );

(C, T)= CONTROL NCLCT;

/“ Fix Point Computation ‘/

S = ANALYSE N C ;

If V(T(S))

then return ( In-place updates are unsafe )

else For every function g E S, defined within N

For every outermost term of the form

S[~jk[kI : V cent, b : ~ cent], IV) in g

)
= (~, [kI, kz], N) :: stack

~eturn(In-place updates are safe);

}

7 Relation to Existing Work

A different approach to safe in-place updates is taken in [3].

In that paper a non-standard semantics is defined for a first-

order language, where the store keeps an explicit count of

the number of references to a value of the abstract data-type.

Any term which is single-threaded by the criterion presented

here can have safe in-place updates when analysed by Hu-

dak’s criteria. In a language with multi-argument first-order

functions with a strict left-to-right evaluation the criterion

presented here can be improved. But even with an improved

criterion the reverse cent ainment does not hold. This is be-

cause while the criterion presented here is strictly context-

free, Hudak’s criterion uses information about the call-sites

of the function. Let P R (Az, M) : r + q, where q # ~, be a

single-threaded term. M cannot cent ain an active mut sting

operation. But if in all positions where P is used there is

no subsequent use of a value of type I- then in-place muta-

tion in M should be safe. This can be detected by Hudak’s

analysis.

The analysis considered in [3] does not extend in a

simple-way to handle callcc and throw. The source of the

problem is throw. This is because the current context is

thrown away during the throw operation and thus reference

counts of memory locations drop by an arbitrary number.

8 Conclusion

A simple condition is presented for the safety of in-place up-

dates in purely functional programs with higher-order con-

trol operators. The verification of this condition takes no

more time than required to perform any other control-flow

analysis by the compiler. Thus there is no significant over-

head on the compiler to implement this optimisation. By

Theorem 6.1, if all continuations in a single-threaded pro-

gram are first-order, then in-place updates are always safe,

As this is an extremely common case, it is seen that control-

flow analysis need not be performed for a large number of

cases.

An important extension of the above work, is to present

it as an abstract interpretation of the J-calculus and then

present a finite or computable abstraction of the interpret a-

tion. In many situations it is desirable to have a type system

which can statically reject programs which do not allow safe

in-place updates. The analysis presented here is a static ap-

proximation of the run-time situation. In the presence of

control operators it is doubtful that a type system that is

not overtly constraining can be obtained.

Acknowledgements

The author is grateful for technical and editorial help from

Carl Gunter.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A. Appel. Compding with Continuations. Cambridge

University Press, 1992.

C. A. Gunter. Semantics of Programming Languages:

Structures and Techniques. Foundations of Computing.

The MIT Press, 1992.

P. Hudak, A semantic model of reference counting and

its abstraction. In Abstract Interpretation of Declara-

tive Languages, pages 45–62. Ellis Horwood, 1987. (Pre-

liminary version appeared in Proceedings 1986 ACM

Conference on LISP and Functional Programming, Au-

gust 1986, pp. 351-363).

P. Hudak. Mutable abstract datatypes. Technical Re-

port YALEU/DCS/RR-914, Yale University, 1993.

P. Hudak and J. Young. Higher-order strictness analysis

in untyped lambda calculus. In Principles of Progrcsrn-

rning Languages. ACM, 1986.

P. Curien R. Cartwright and M. Felleisen. Fully abstract

models of observably sequential languages. Technical

Report TR93-219, Rice University, 1993,

J. Raoult and R. Sethi. The globaJ storage needs of

a subcomputation. In Principles of Programming Lars-

guages. ACM, 1984.

D. A. Schmidt. Detecting global variables in denot a-

tional specifications, ACM Transactions ors Program-

ming Language and Systems, 1985.

0. Shivers. Control flow analysis in scheme. In Con~er-

ence on Programming Language Design and Implemen-

tation. ACM, 1988.

J. E. Stoy. Denotational Semantics: The Scott-Strachey

Approach to Programming Language Semantics. The

MIT Press, 1977.

A. K. Wright and M. Felleisen. A synt attic approach

to type soundness. Technical Report COMP TR91-160,

Department of Computer, Rice University, 1991.

293


