
Analyzing Stores and References in a

Parallel Symbolic Language

Suresh Jagannathan’ Stephen VVeeks$

Abstract

Redescribe an analysis ofaparallel language inwhlch pro-

cesses communicate via first-class mutable shared locations.

The sequential core of the language defines a higher-order

strict functional language with list data structures. The par-

allel extensions permit processes and shared locations to be

dynamically created; synchronization among processes oc-

curs exclusively via shared locations.

The analysis is defined by an abstract interpretation on this

language. The interpretation is efficient and useful, facili-

tating a number of important optimizations related to syn-

chronization, processor/thread mapping, and storage man-

agement,

1 Introduction

Sequential programming languages have long been the tar-

get of sophisticated compile-time optimization and analysis

techniques. In particular, there has been much success in

applying optimizations derived via static analysis to expres-

sive symbolic programming languages such as Scheme [7],

Prolog [11], Self [4], or ML [1].

There has also been much work in building concurrent ana-

logues of such languages (e.g., MultiLisp [15], CML [28],

ML Threads [25], Concurrent Smalltalk [16], Concurrent

Prolog [29], etc.). There has been relatively little effort,

however, in applying semantic analysis techniques suitably

modified to handle concurrency to explicitly parallel sym-

bolic programming languages.

The introduction of concurrency complicates compile-time

analysis because programs may now define multiple threads

of control that may be introduced dynamically during pro-

gram execution. Defining a practical and useful analysis

* Computer Science Division, NEc Research Institute, Princeton,
NJ. suresh@research. nj .nec. com.

‘Dept. of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, sweeks@cs. emu. edu.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

that tracks inter- and intra-thread control-flow for such pro-

grams requires a framework more sophisticated in approach

and structure than one required to handle sequential pro-

grams.

In this paper, we address the problem of deriving store and

reference information from parallel programs written in a

higher-order programming language. We do so by develop-

ing a novel abstract interpretation [10] of this language. The

language we present supports dynamic lightweight process

creation in which processes communicate via shared loca-

tions; synchronization occurs via these locations. Its se-

quential core defines a higher-order call-by-value functional

language with list data structures. The dynamic semantics

of this core is thus similar to pure Scheme or ML; the paral-

lel extensions provide functionality similar to that found in

asynchronous parallel dialects of Lisp [13, 15, 19], ML [8, 25],

and other higher-order parallel languages [2].

The interpretation computes inter- and intra-thread control

and data-flow information for this language; in particular,

the interpretation collects information on where shared loca-

tions are created, mutated, and referenced. The information

associated with a location L includes (a) L’s creation point,

(b) the program points at which L is referenced parametri-

zed on a per-thread basis, and (c) the program points at

which L is written parameterized on a per-thread basis.

Our abstract interpretation is efficient. There is a

polynomial-time algorithm, and a complete implementation

written in Scheme; the implementation has proven to be ef-

ficient in practice. The output of the interpretation is also

useful. Because the analysis tracks the creation, reference,

and mutation points of shared data, it is possible to infer

an approximation to the dynamic communication patterns

of a program. This information can be used to implement a

number of important optimizations concerned with thread

scheduling, thread mapping, and data locality.

The abstract interpretation is described via an operational

semantics. The exact semantics is given by a transition re-

lation on program states, where a program state describes

all currently executing threads and the Iocatlons that have

been created. The approximate semantics is defined by a

transition function on approximate program states which

associate an approximate environment with every combina-

tion of program label (or continuation) and thread creation

point. Hence, the complexity of the interpretation is con-

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-3/94/0006.. $3.50

294

trolled by selectively collapsing ground values, closures, and

potential interleavings among threads; these approximations

,are performed on a per-thread basis.

The paper is organized as follows. The next section presents

related work. Section 3 describes the kernel language used.

Section 4 provides motivation for the problem by presenting

a simple example, and the information derived by the anal-

ysis on this example; we also present benchmark results ob-

tained by using the analysis to guide synchronization, stor-

age allocation, and thread scheduling strategies, Section 5

presents the operational semantics for the language, Sec-

tion 6 defines an approximation to this semantics. Correct-

ness proofs are given in Section 7, and Section 8 presents

conclusions,

2 Related Work

Chow and Harrison [6] present an abstract interpretation

for a parallel language with cobegin-coend statements.

Although the motivation for their work is similar to ours,

there are numerous differences in the technical development,

First, our kernel language permits arbitrary process creation

in which synchronization is mediated only via shared vari-

able access. Their language uses a more restrictive cobegin-

coend form that constrains all processes created at a cobe-

gin to synchronize at a coend barrier point before contin-

uing. Their language also does not support list structures.

Second, the efficiency of their interpretation is exponential

in the size of the input program, significantly weakening

t,he practicality of their results, Third, their analysis is

erroneous in its treatment of programs in which cobegin

branches have multiple instantiations of concurrently exe-

cuting threads [5]; this seriously limits its utility.

Mercouroff [24] presents an abstract interpretation of a CSP-

style language. He assumes no shared variables (and thus

no global effect changes), and no higher-order procedures or

processes. There has also been work in data flow analysis

and deadlock detection for concurrent systems that commu-

nicate via message passing [27]. Such systems do not con-

sider operations on shared variables, nor are they applicable

to programs with higher-order procedures that may initiate

such operations.

The formal underpinnings of our interpretation technique

are similar to those underlying formal optimization frame-

works devised for functional [3, 17] and logic program-

ming [11] languages. Insofar as we use abstract interpreta-

tion [10] as an optimization tool for higher-order languages,

our work also bears close resemblance to type recovery and

flow analysis algorithms developed for languages such as

Scheme [18, 30, 31], and to alias and lifetime analysis for

related higher-order languages [12], The presence of concur-

rency separates our formulation from these in some signifi-

cant respects. For example, our analysis maintains environ-

ments and continuations on a per-thread basis and does not

completely collapse closures of the same function or data

structures created in distinct threads.

There has also been much work on dynamic monitoring

of operations on shared locations in parallel programs,

e.g., [23, 32]. The goal in these efforts is to guarantee de-

terministic behavior of parallel programs using runtime de-

tection techniques. Programs that contain data races which

may lead to indeterminate results are considered erroneous;

history and access information is maintained at runtime to

determine when a data race on a shared location occurs.

Our concern is not to prohibit indeterminacy in parallel pro-

grams, but to capture useful control and dataflow informa-

tion statically that can be used to improve runtime perfor-

mance. Furthermore, unlike [23, 32] which only consider

programs that use fork-join style parallelism, our analysls

makes no assumption on the structure of the process graph

generated.

FX [22] and Jade [21] are two languages that permit users

to add annotations to a serial program which are then used

by a compiler to generate parallel code. In both FX and

Jade, programmers can declare side-effect information; in

addition, a Jade program may be partitioned into pieces that

can be executed concurrently without side-effect conflicts.

In contrast, we assume an explicitly parallel language that

is amenable to static analysis; the results of this analysis

can be used either by a programmer, compiler, or runtime

system to generate more efficient parallel code.

3 The Kernel Language

Our language (see Fig. 1) has constants, variables, functions,

primitive applications, call-by-value function applications,

conditionals, recursive function definitions, and a process

creation operation. The primitives include operations for

creating and accessing pairs and shared locations. Constants

include integers and booleans.

Shared locations m this language provide a natural com-

munication medium through which concurrently evaluating

threads may sensibly transmit data. Shared locations are

crest ed using the primop mk-lot, and are initially unbound,

If x is a location, both read(z) and remove(x) return the

value of z, blocking if x is unbound. In addition, if x is bound,

remove(z) marks x as unbound. Blocked remove and read

expressions may unblock when a write subsequently occurs

on the location of interest. The act of writing or reading a

location, or removing a location’s contents is atomic.

To create a lightweight thread of control to evaluate e, we

evaluate spawn e. Spawn returns immediately after creat-

ing a new thread; its value is TRUE. The environment in

which a newly spawned thread evaluates is the same as its

parent thread. Threads are completely asynchronous, and

communicant e exclusively via shared locations.

For example, the MultiLisp [15] expression, (future e) , is

equivalent to,

let 10C = (mk-lot)

in begin

spawn write(loc, e)

10C

end

and (touch v) is equivalent to,

295

e E Ezp

c G Const = Int + Bool

x 6 Var

f G Func

P G Prim= {cons, ca

e ..—..— c

f ,,:

x

f
p(el . . . en) (P)

el (ez e3 . . . en)

if e then el else ez

cdr, mk-lot, write, read, remove, .}

(e)

Ietreczl =fl. .zn=f nine

spawn e

AZIXZ x%. e

Figure 1: The kernel language.

if location? (v)

then read(v)

else v

(Note that ‘let” and “begin” are syntactic sugar for simple

and nested application, respectively.)

As another example, the following expression implements a

simple ~etch-and-op abstraction [14] using locations. The

procedure representing this abstraction atomically returns

the current contents of the cell, and stores a new value using

the procedure argument provided.

A init. let cell = (mk-lot)

in begin

write(cell, init)

J op. let val = remove(cell)

in begin

write(cell, op (vat))

val

end
end

Labels

For the purposes of the exact as well as the approximate

semantics defined in the following sections, each expression

in a program is labeled with entry and exit labels. Let 1, 1’ 6

Label, and let e be an expression. Then [e];, means that 1

(e’s entry label) is the program point immediately before

execution of e and 1’ (e’s exit label) is the program point

immediately after execution of e. Exit labels will also be

used to hold temporary values during the execution of a

program. For instance, 1’ in the expression [e]:, will hold

the value to which e evaluates. (In the following, we omit

entry and exit labels whenever appropriate.)

In both the exact and approximate semantics, spawn labels

are treated specially. In expression [spawn [e];,,]!, , s is a

spawn label as well as e’s entry label. Labels 1, t’, and 1“ are

not spawn labels, Spawn labels merely syntactically label

process creation points. We denote the set of spawn labels

by Slabel C Label.

4 An Example

Fig. 2 gives an example of a program written in the lan-

guage described above. This program generates a tree of

processes; children communicate results to their parent via

shared locations left and right; these locations represent

edges in the tree. Parents communicate values to their chil-

dren via shared location my-val ; this location gets bound

to parent-val in recursive calls to this procedure.

Consider the intra- and inter-thread control-flow of this pro-

gram. Threads generated at spawn points S1 and sz com-

municate only through locations written by their parent (via

locations bound to parent-val) or their children (via loca-

tions bound to left and right). Thus, not all locations cre-

ated are referenced or written by all threads, and not all

threads communicate with one another. Since the control

and dataflow properties of this program are not obvious by

trivial examination of the source text, an analysis that com-

putes this information would be beneficial,

Our interpretation maps each pair of program label and

spawn label to an approximate environment that maps vari-
ables and labels to sets of approximate values. For a par-

ticular pair (1, s), the approximate environment represents

the combination of every environment that might exist in a

dynamic instantiation of a thread created at spawn point s

which is currently executing at program label 1. In the ex-

ample shown, there are three spawn expressions: an implicit

top-level spawn, which we denote by the reserved spawn la-

bel so, and two spawn expressions internal to procedure f

wit h spawn labels s I and s z. Fig. 3 shows relevant bindings

in these environments. The approximate value of a location

is a pair of labels, (1, s) indicating that the location was cre-

ated at program label 1 by a thread instantiated at spawn

label s.

296

Ietrec ~ = A (edge parent-val op)

let my-ml = [(mk-lot)]~”

left = [(mk-lot)]11

right = [(mk-lot)]’2

in if (g)

then begin

[spawn ~(le~t my-val le~t-part)]s’

[spawn ~(right my-val right-part)]s2

[write(mg-val, (g,))]’3

let v = op ([read(le~t)]1’

[read(right)]’5

[read(parent-val)]’”)

in [write(edge, v)]17

end

else [write(edge, (g2))]18

in let tnit = [(mk-lot)]~g

in begin

[write(mit, (g~))]~’”

f ([(mk-lot)]t” zntt roo~)

end

Figure 2: A simple fine-grained tree-structured parallel program. A left child computes its result using function le~t-par~ a

right child computes its result using right-part.

For example, consider threads created by the spawn expres- In the following, we consider an abstract location to be the

sion at S1. The approximate value of parent-val at program set of location instances associated with a given (mk-lot)

label 16 is a set containing three approximate locations; the program point created during program evaluation. An ab-

first corresponds to locations allocated by the mk-loc op- stract thread defines the set of thread instances associated

sxation at label 10 when evaluated by the top-level thread, with a given spawn label instantiated during program eval-

the second and third correspond to the locations allocated uation.

by the same mk-loc operati& evaluated within threads cre-

ated at SI and S2, respectively.
Two heuristics that may lead to significantly improved per-

formance can be applied based on this information:

The information collected reveals the following:

1.

2.

3.

4.

5.

1.
Threads created by spawn expressions at spawn point

S1 write 10 locations (z. e., locations bound to my-val)

crest ed by s 1 threads; t breads crested by spawn ex-

pressions at spawn point sz write 10 locations created

by sz threads.

Threads created by spawn expressions at spawn point 2.
S1 read left and right locations created by SI; threads

created by spawn expressions at spawn point sz read

left and right locations created by SZ.

Threads created by spawn expressions at spawn point

S1 and S2 read 10 locations (i. e., locations bound to

my-val) created by so, S1, and sz threads.

Threads created by spawn expressions at spawn la-

bel SI write left locations created in SO, s-l, and sz

threads, but never write right locations; threads cre-

ated by spawn expressions at spawn label sz write

.-

Allocate threads with the same spawn label on the

same processor if they read and write the same ab-

stract location L. Such a mapping may lead to im-

proved memory and communication locality since ref-

erences and stores of L instances do not involve any

inter-processor communication.

If an abstract location L is created, written, and read

only by an abstract thread T, allocate a separate heap

for all instances of L created by T. Partitioning such

locations may lead to more efficient storage manage-

ment strategies since only instances of T need to be

involved in any garbage collection of L’s heap. More-

over, allocating a separate heap LH for L may lead

to improved locality and communication benefits since

allocations of other locations made by T (or other ab-

stract threads) are not interleaved with allocations to

LH.

right locations created in so, S1, and S2 threads, but
In addition, because the contents of a location is never re-

never writ e left locations. moved once written, writers never need to synchronize with

Locations are only read and written in this program; a blocked readers when writing a value into a non-empty loca-

location once written never has its contents removed. tion. Since readers executing concurrently with such writers

297

Program Spawn Labels

Labels

so S1 S2

13 rny-wal H {(10, so)} my-vcd H {(lo, Sl)} my-val * {(10, 52)}

14 lejl ~ {(11, SO)} lefi+ {(l~,sl)} left+ {(11, sz)}

15 Wht * {(12, so)} r-tght H {(12, 51)} right w {(12, S2)}

16 parent-val H {(19, so)} parent-val ++ {(lo, so), (lo, sI), (lo, .S2)} paTent.val w {(10, scJ), (10, .9 I), (10, 52)}

17,18 edge M {(111, .50)} edge+ {(11, sO), (11, sl), (11, s2)} edge +{(lz, so), (lz, sl), (lz, sz)}

Figure 3: Salient binding information derived by the abstract interpretation for the program shown in Figure 4.

are guaranteed to see either the new or old contents of a lo-

cation, readers only need to acquire a lock if the location

being read is empty; a reader can never block on a location

that has already been written by some other thread.

To optimize the example shown in Fig. 2, a thread created

at spawn label S1 maps its sl-created child onto its proces-

sor; a thread created at spawn label sz maps its sz-created

child onto its processor. Furthermore, left locations created

by threads instantiated at spawn label S1 are allocated on

a separate heap, as are right locations created by threads

instantiated at spawn label s.2.

To test the utility of the analysis and these optimizations,

we integrated the output generated by the interpretation

on a version of the tree programl, with an implementa-

tion of the above heuristics and optimization. The trans-

formed program compiles to Sting [20], a multi-threaded

dialect of Scheme. The 8 processor wallclock times obtained

for the optimized and unoptimized versions are shown in

Fig. 4. (The unoptimized implementation allocates all lo-

cations on a single shared heap, uses a simple round-robin

thread scheduling policy, and acquires a lock on every write

and read to a shared location.) The times indicate roughly

a factor of 10 speedup over a range of tree depths in the

fully optimized case, and a factor of close to 4 applying just

the heuristics.

5 Exact Semantics

We develop the abstract interpretation by first defining an

operational semantics for the language, and then defining

an abstract interpretation [10] of that semantics.

The exact semantics of a program F’ c Ezp is defined by a

transition system (State, +.) specific to P, where State is

the set of configurations and ~r ~ State x State is a single-

step transition relation. We define a transition function F c

Pow(State) + Pow(State) as

F(b) = {d I 3$3’ E @.r#l’+.dJ}.

The strongest global invariant of program P is the set of all

configurations reachable during the execution of P. Define

lThe program implemented allocates a 1000 element vector of lo-

cations at each leafi a random number is stored in each Iocatlon.

An internal node in the tree sends a combining procedure to its two

children via the location bound to my-vcz~ this procedure takes two

vectors of locations and returns the vector containing the smallest

sum. An internal node applies this procedure to the vectors returned

by its children.

Figure 4: Optimized vs. unoptimized times for a variant of

the program shown in Figure 4. Times were recorded on an

8 processor 150 MHz Silicon Graphics MIPS R4400 shared-

memory multiprocessor, The first time in the optimized

column measures the effect of applying the mapping and

heap allocation heuristics. The second time, in addition,

also incorporates the effect of eliminating lock acquisitions

and releases for writ es and reads of non-empty locations.

All times are in seconds.

l~p(g, z) to be the least fixpoint of g above z, i. e,, the least

fixpoint of Xy. z u g(y). The strongest global invariant of P

is expressible as a fixpoint l~p(F, @o), where @O is the set of

initial configurate ions of P.

5.1 Configurations

A configuration has two components. The first component is

the state of all executing threads, and the second component

is the global store, or heap.

In a single configuration, many threads maybe executing. A

typical representation for a configuration in an operational

semantics might be a set of thread states, each element in

the set containing a program counter (or the thread’s cur-

rent continuation), process id, and environment. For the

purposes of the approximate semantics to follow, however,

we depart slightly from this standard intuitive notion. Our

representation of the executing threads in a program is a

thread map. Given a pair of labels (1, s), the thread map re-

turns a set of thread states corresponding to those threads

whose spawn point is s and whose program counter is 1, A

spawn point of an executing thread is the spawn label at

which the thread was created. This partitioning of the set

of executing threads by program label and spawn point will

be slightly awkward in the exact semantics, but will prove

quite useful when we define the approximate semantics.

For instance, consider the expression

298

+C State = ThreadMap x Heap

v E ThreadMap = (Label x Slabel - Threads)

-11 E Threads = (Env x Kent)*

Pe Env = Var + Label * D

Kc Kent = (Label x Env)*

Heap = Lots x Paws x Closures

;: Lots = Ptr - D + {UNBOUND}

we Pairs = Ptr-Dx D

.9E Closures = Ptr * Env

dc D = Const + Ptr

UE Ptr = Label x Slabel x Nat

Figure 5: A configuration (state) in the exact semantics.

[spawn if [el]’

then

else

spawn [ez]~z]s2

spawn [es]~3]’3]51

Let t be a thread spawned at label sl. Because t’s spawn

point is S1, when t“is at the entry point of el, the thread

map maps (1, SI) to a set which has t‘s state as an element.

Another thread is subsequently spawned, either for ez or es;

the spawn point during execution of ez or eB would be $2

or ss, respectively. By definition, the (implicitly spawned)

top-level thread has spawn label so. Note that there may

be multiple threads created from a spawn point that are

simultaneously evaluating.

A single thread’s state is an (envwonment, continuation)

pair, where environments map program variables and exit la-

bels to values. A continuation is a list of (label, environment)

pairs. Each element in this list represents a stack frame in

the dynamic call chain of the thread. Label corresponds

to the return address of the frame, and envi~onment corre-

sponds to the frame’s display.

The second component of a configuration is the heap that

is shared by all threads. It is partitioned into regions for

shared locations, pairs, and closures. A pointer into the

heap is a triple (/,s, i), where 1 and s are the program label

and spawn point, respectively, at which the allocation of the

corresponding data object occurred, and i is an integer used

to disambiguate allocations made from different dynamic

occurrences of the same program label and spawn point.

5.2 The Transit ion Rules

The single-step transition relation +7 is shown in Fig. 6.

It is defined in terms of an auxiliary relation -+S (Fig. 7),

parameterized by a spawn-point label s, that expresses the

‘[sequential” component of the semantics. The relation is

given in two parts; the first describes the transition step for

all expressions other than spawn; the second describes the

transition step for spawn. The latter entails establishing

the base continuation for the new thread in the thread map.

Because of the blocking semantics for shared variable oper-

ations, each primitive operation p is defined in terms of a

relation -P; salient elements of this relation are shown in

Fig. 8.

6 Approximate Semantics

We would like to achieve a computable invariant of program

P c Exp, but as the strongest global invariant described in

Section 5 is in general not computable, we must describe a

weaker invariant. We do this via an approximate semantics

based on abstract interpretation,

The approximate semantics of a program P G Exp is defined

by a transition system (S~e, ~) specific to P, where S~e

approximates Pow(State) and ~ approximates F. The ap-

proximate (and computable) global invariant of P will be

an element of S~e that approximates the strongest global

invariant ljp(F’, @O), where @O is the set of initial configu-

rations of P. This will be done by finding an appropriate

fixpoint of P.

6,1 Configurations

An approximate configuration is a finite approximation of a

set @ of exact configurations. The domain of approximate

configurations is defined in Fig. 9. An approximate config-

uration has two parts:

●

●

The first part is an approximate thread map: a func-

tion that maps a pair (1,s) to an environment that

approximates all environments of any thread in any

configuration in @ that is at program label 1 and spawn

point s. The structure chosen for an exact configura-

tion is convenient since it partitions threads in a config-

uration into (1, s) pairs. Note that this approximation

means that there is no disambiguation between mul-

tiple instances of a thread created at the same spawn

point executing at the same program label. Also note

that the approximate thread state does not include its

dynamic context.

The second part of an approximate configuration is

the heap. A~proximate p~~nters do not di~ambiguate

multiple allocations made from the same program la-

bel and spawn point. As a result, there is no need to

allocate closures in the heap; the environment of a clo-

sure pointer (1,s) is simply the environment to which

the thread map maps (1,s).

Since we are not concerned with constants, they are ab-

stracted to the singleton set.

Each equation in Fig. 9 defines the set of elements in a (com-

plete) lattice. The lattice (S~e, 1, T, U, fl) is constructed

pointwise and elementwise from the lattice (fi, 0, {CONST} +

Label x Slabel, U, n) with the exception that the lattice of

~v is the lift of the lattice of Var + Label -+ ~ with

J- — = ABSENT.
En”

299

V(l, s) = (tl,tt. (p, fi), tt+l, fro), fm) V(l’, s) = (t\,....t.)
(Z,P,K,6)VS (1’, /, K’,6’) ‘u’ =V[(l, S) w (t,,..., k)][(,s)s) * (t\,..., t:, (OK,))])]

(7J, q+ T(v’, f5’)

‘U(l, S) = (tl). ... t,, (p, ft),tt+l, tm. ,tm) v(l’, s)=(tj,..., t~)

V(l,, lS) = (ty, .d. ,t{) [[spawn [e]’”]~,] G P

v’ = w[(l, s) w (tl,. ... t~)][(,s)s) H (tj,. ... t~, (p[~’ wTRu@,~))][(~s,~.) % (t! ’,t; >(P, ()))]

(v, 8)-%(W’,6)

Figure 6: The definition of the exact transition relation ~~.

Figure 7: The definition of -~.

300

Let new(l, s, ~) and new(l,s, w) be defined similarly to new(l, s, 0) in Fig 7.

(1, s, (C,, C2),(r), w,o))

(~, s> (~1, ~2)1 (+,~,0)

(1, s, (c), (+,W,6))

(1, s, (a), (+, W, O))

(~,s> (), (4J,~>e))

(~, s, (~,4, (+,~,e))
(1, s, (a), (Ij,w,e))

(1, s, (0), (1#, u,e))

(cl + Q, (+,~, 0)
((7,(+,(+ ++ (d,, d2)], o)); (7 = (1, s, new(l, S, b)))

((~(u))lll(lJ, ~,@)

((~(f7))12! (4J, ~,q)
(o, ($b[a - UNBOUND], W, 0)); o = (1,s, new(l, s, +))

(d, (@[a w CZ],LJ,6’))

(+(~))(?b>~>~)); if (611)(a) # UNBOUND

(~(a), (@[a * UNBOUND], o, 6)); if ~(a) # UNBOUND

Figure 8: The exact semantics of some primitive operations,

SXi2e =

Thr~Map =

Zziv =

H~p =

L~s =

Pzrs =

3=

P7r =

Thr~Map x H%p

(Label x Slabel -+ xv)

(Var + Label -+ ~)

+{ ABsENT}

L~s X P=TS

P7r + E

P7T+EX5

POW({CONST} + P~r)

Label x Slabel

Figure 9: An abstraction of Pow(State).

We express the relationship between the exact and approx-

imate domains by defining an abstraction function a E

Pow(State) + S~e. Its definition is given in Fig. 10.

If cr(@) = (~, ~) then 0(1,s) = ABSENT iff there is no

thread in a configuration in @ at program label 1 and

spawn point s. Intuitively, the transition function in Sec-

tion 6.2 will “raise” environments above ABSENT as new

(program-label, spawn-point) pairs are reached. In other

words, environments at a given (program-label, spawn-point)

that are never accessed by any thread are mapped to ABSENT

by the thread map approximation.

The concretization function on abstract states is defined

thus:

~(~) = U{@ ~ Pow(State) [a(@) Q J}

{46 State I 4{4}) C;}

6.2 Transition Function

The transition function ~ specific to a program P ~ Exp is

defined as

~(;) = (J(L s). %.(;), ~6(a).

The definition of ~1,, 6 S~e ~ ~v is given in Fig. 12 and

the definition of ~6 c S~e - H~p is given in Fig. 13.

Fig. 12, the definition of @,,, is the main part of the transi-

tion function fi. The M function for environments is similar

@(+,1,s, (iZ,iZ2),3j = {CONST}

F(cons, 1,s, (n, &)j F) = {(Z, s)}

@(car) l,s, (~, (~,~)) = U ~(~),

--
oed

@(cdr, 1,s, (~, (~, G)) = U o(;)

-.
ucd

@(mk-lot, 1,s, (),;) = {(1, s)}

F(write, 1,s, (Z, Zz), ~) = ~z

~(read,l, s, (~, (~,fi)) = u ;(=)
--
oed

@(remove, 1,s, (~, (~, ;)) = U $(6)

--
ucd

?igure 11: The definition of some approximate primitive

]perations.

I

1

2

to a join, but is used to prevent unnecessary accumulation

of environment in formati& in (program-label, spawn-point)

pairs that are never reached.

The rules for constants, identifiers, and conditionals are

straightforward. The value of an abstraction is a pair (1,s),

where 1 is the entry label of the abstract ion’s body, and s

is the spawn point in which the abstraction was evaluated.

Primitive operations are defined via the auxiliary function

2; excerpts from its definition are given in Fig. 11. Note

that we do not consider the blocking behavior of read and

remove in the definition of the abstract semantics. Thus,

optimizers based on information generated by the interpre-

tation examine (program label, spawn point) pairs found in

an abstract environment to determine the readers and re-

movers of a given location, and their inter-dependencies.

The rule for the entry of an abstraction deserves elaboration.

If an application at spawn point s applies a function (if, s’),

then the body of the function at label lf at spawn point s

should include the environment in which (lf, s’) was created

extended with bindings for its arguments. This is because

only spawns dynamically change spawn points, not function

calls. Thus, in the definition of FJ,,,, the environment is

join over the environments of all functions at (lf, s’) that

301

Q’(Q) = (Clm,rea.im,.({v I (v)b) E @}), cYHea.({6 I (V,6) E Q}))
@Th,,Wap(~)= A(Z> s).%Iv({Pt(. . . . (P,K)) ~) = ‘(1, s), v = ‘})

Cl,.V(E) =

{

ABSENT ifE=O

Az. a~({p(z) [p c E}) otherwise

W_aP(A) = (a~ocs({ti I (@,u, O) E A}), cYm({u \ (4,u,0) ~ A}))

cw.es(v) = J(l, s). aD({d I + E m, ~ = +(1, s,i), ~ e Nat})

~~~,,~(~) = A(l, S). (~D({W(l, S,i) JI I W C Q, i C N~t}),

~D({~(l, $,;) 12 ! w ~ ‘, i e ‘at}))

CZD(D) = {{ CONST} I c E D} u {(1, S) I (1,5,2) c D}

I Figure 10: The abstraction function.

Figure 12: The definition of ~1,..

302



letf= Az.

[let g = A y.[write(y, 0)]’9

in write(q g)]~r

in begin

spawn [ let m = [ (mk-lot) ‘~
)

b = [ (mk-lot) ] ‘

in begin

[f]” (~)
read(m) (b)

end

lsl
spawn [ let n = [ (mk-lot) ]1”

c = [ (mk-lot) ]lC

in begin

[f]” (n)
remove(n) (c)

end

ls’
end

Figure 14: Constructing approximate environments is

complicated by the presence of higher-order procedures

and dynamically instantiated processes.

are applied at spawn point s,

The rule for the exit of an application is also non-trivial,

Consider the function kc, [e] [, The result of this function

is placed in the environment via program label 1, but there

is a different environment, and thus potentially a different

result, for every spawn label. The environment just aft er an

application at spawn point s is therefore the environment

just before the application, extended with the join of the

result at spawn point s of each function that may have been

applied.

The subtlety of the abstraction and application rules is due

to the interaction of higher-order procedures and dynamic

process instantiation. To illustrate this point, consider the

program fragment shown in Fig. 14, In this example, g is

closed over different environments in the two threads gen-

erated within the let-body. It is useful to avoid collapsing

these environments. In addition, it is also useful not to col-

lapse the approximate values to which y is bound across

thread boundaries. Relevant binding information derived

for this program is shown in Fig. 15, This information re-
veals that the two applications of g made by threads do not

write to the same location; thus, read’s executed by threads

Program Labels Spawn Labels

52
11 ;’+ {(~f, so)} ABSENT

12 ABSENT f+ {(~f, so)}
lf x+ {(lm, Sl)} x+ {(in, S2)}

lg XH {(lm, sl)} x+ {(lm, s2))}

Y* {(lb, sl))} y~ {(1., s2))}

Heap I

m

Figure 15: Salient binding and store information derived

for the rmomam shown in Fi~,14.

crest ed at spawn points instantiated at s 1 are guaranteed

not to block because of the remove operation executed by

threads instantiated at sz.

As described in Section 5.1, regardless of the spawn point

during execution of spawn [ e ] S, the spawn point during ex-

ecut ion of e is s. Thus, in the approximate semantics, envi-

ronments for all possible spawn points at this entry label s

must be joined together.

7 Correctness of the Interpretation

Lemma 1 ~ is monotonic. ❑

Lemma 2 F is an upper approximation of F ( i.e., a o F ~

Pea). ❑

Recall that we wish to compute an approximation of the

strongest global invariant of a program [ P ] t c Ezp. As

described in Section 5, the strongest global invariant is ex-

pressible as a fixpoint lfp(F, @o), where @O is the set of initial

configurations of P. Define JO = ([(/, so) w Az. 0], J_=).

Lemma 3 lJp(~, ~o) is an upper approximation to

tjp(F, %) (i.e., tjp(F, @O) Q ~(Zfp(F, ~0))).

303



Proofi An initial configuration of P will have an empty

heap and a single thread at program label 1 and implicit

spawn point .SO with an empty environment. Therefore,

a(@o) = ~0. By Lemma 2, ~ is a correct upper approx-
. . . .

imation to F. Thus, ~~. +o u F’(d) is a correct upper ap-

proximation to JO. @o U F(cP). By the definition of lfp
. .

and [9], l~p(F’, +0) is thus a correct upper approximation

to lfp(F, @o). ❑

Lemma 4 lfp(~, TO) is computable tn time polynomial in

the size of P.

Proofi lfp(~, ~o) can be computed by a standard itera-

tive fixpoint computation that uses F to monotonically move

up the S~e lattice. We show that the height of S%e is

O(poly(n)), and that a single iteration in the fixpoint, i. e.,

the computation of ~, requires O(poly(n)) time. Because

~ is monotonic, lfp(~, ~0) can be computed in O(poly(n))

time.

Let n be the size of~ We c= consider ~ to be defined

over a finite subset State~ of State, defined as in Fig. 9, but

where Var, Label, and Slabel are replaced by finite subsets

Varp (the set of variables appearing in P), Labelp (the set of

labels appearing in P), and SlabetP (the set of spawn labels

appearing in P), respectively. Varp, LabelP, and Slabelp are

all of size O(n).

Because LabelP and SlabelP are size O(n), the size of P~r is

O(poly(n)). Hence the height of ~ is O(poly(n)), and thus

the height of L~s and P~rs is O(poly(n)). It follows that
—

the height of Heap is therefore also O(poly(n)). Because

the size of Varp and LabelP is O(n) and the height of ~ is

O(poly(n)), the height of ~v is O(poly(n)). Moreover, since

the size of Labelp x Slabelp is O(poly(n)), we know that

the height of Z’hr~Map is O(poly(n)). Thus, the height of

S~e is O(poly(n)).

A single computation of F computes O(poly(n)) environ-

ments and heap entries since there are O(n) equations for

each spawn point in Slabelp. The computation of a new en-

try requires computing the join of a polynomial number of

elements of ~. But, because the height of ~ is O(poly(n)),

computing the join of two elements in B (essentially a set

union) takes time O(poly(n)). Hence the time complexity of

computing a new environment or heap entry is O(poly(n)).

❑

8 Conclusions

Applying abstract interpretation techniques to expressive

parallel symbolic languages appears to be a promising av-

enue for future investigation. Although the interpretation

given here offers opportunities for data locality and thread

mapping optimizations in multi-threaded higher-order lan-

guages, there are important extensions to the framework

that may enable other kinds of useful optimizations. For

example, constructing refined representations of abstract lo-

cations and abstract threads capable of distinguishing their

different instances within a given context would more easily

enable optimizations such as test-for-presence, lock elimina-

tion, safe inlining, etc.. In addition, constructing an abstrac-

tion of the exact state sensitive to the blocking semantics of

read and remove might facilitate other optimizations con-

cerned with compile-time scheduling and mapping. We in-

tend to pursue such extensions as a focus of future research.

The implementation of the analysis is currently written in

T [26], a dialect of Scheme. We have also implemented a par-

allel version of the abstract interpreter [33] described here

that runs on top of Sting [20]. Abstract interpretation is a

good domain for parallel symbolic computing because the

internal structure of abstract interpreters typically contains

many concurrently evaluat able components. Parallel imple-

mentations of abstract interpreters may thus permit exper-

imentation with other kinds of useful, but computationally

expensive, analyses.

Acknowledgments

Thanks to Christopher Colby and Henry Cejtin for

useful discussions and comments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Andrew Appel. Compiling wtth Continuations.

bridge University Press, 1992.

many

Cam-

Paul Barth, Rishiyur S. Nikhil, and Arvind. M-

Structures: Extending a Parallel, Non-strict, Func-

tional Language with State. In Proceedings of the ACM

Symposium on Functional Programming and Computer

Archdecture, pages 538–568, August 1991. Published

as Springer Verlag LNCS 523.

Adrienne Bless, Paul Hudak, and Jonathan Young. An

Optimizing Compiler for a Modern Functional Lan-

guage. The Computer- Journal, 2(32), April 1989.

Craig Chambers and David Ungar. Iterative Type

Analysis and Extended Message Splitting: Optimiz-

ing Dynamically-Typed Object-Oriented Programs. In

ACM SIGPLAN ’90 Conference on Pmgr-amming Lan-

guage Des~gn and Implementation, pages 150–164, June

1990.

Jyh-Herng Chow, June 1993. Personal Communication.

Jyh-Herng Chow and Williams Ludwell Harrison III.

Compile Time Analyeiis of PoraJlel Program~ that Share

Memory. In 19’k ACM Symposium on Principles of

Programming Languages, January 1992.

William Clinger and Jonathan Rees, editors. Revised4

Report on the Algorithmic Language Scheme. ACM

Lisp Pointers, 4(3), July 1991.

304



[8] Eric C. Cooper and J. Gregory Morrisett. Adding

Threads to Standard ML. Technical Report CMU-CS-

90-186, School of Computer Science, Carnegie Mellon

University, December 1990.

[9] Patrick. Cousot. Semantic Foundations of Program

Analysis. In Program Flow Analysis: Theory and Foun-

dation, pages 303–342. Prentice-Hall, 1981.

[10] Patrick Cousot and Radhia Cousot. Abstract Inter-

pretation: a Unified Lattice Model for Static Analysis

of Programs by Construction of Approximation of Fix-

points. In ACM ~th Symposium on Principles of Pro-

gramming Languages, pages 238–252, January 1977.

[11] Saumya Debray and David Warren. Static Inference

of Modes and Data Dependencies in Logic Programs,

ACM Transactions on Programming Languages and

Systems, 11(3):418-451, 1989.

[12] Alain Deutsch. On Determining Lifetime and Aliasing

of Dynamically Allocated Data in Higher-Order Func-

tional Specifications. In 1 ‘$h ACM Symposium on Prin-

ciples of Programming Languages, pages 157–168, Jan-

uary 1990.

[13] R. Gabriel and J, McCarthy. Queue-Based Multi-

Processing Lisp. In Proceedings of the ACM Symposium

on Ltsp and Functional Programmmg, pages 25–44, Au-

gust 1984.

[14] Allan Gottlieb, B. Lubachevsky, and Larry Rudolph.

Basic Techniques for the Efficient Coordination of Very

Large Numbers of Cooperating Sequential Processors.

ACM Transactions on Programming Languages and

Systems, 5(2): 164-189, April 1983.

[15] Robert Halstead, Multilisp: A Language for Concur-

rent Symbolic Computation. Transactions on Program-

ming Languages and Systems, 7(4) :501–538, October

1985.

[16] Waldemar Horwat, Andrew Chien, and William Dally.

Experience with CST: Programming and Implement a-

tion. In ACM SIGPLAI? ’89 Conference on Program.

ming Language Design and Implementation, pages 101–

109, June 1989.

[17] Paul Hudak and Jonathan Young, A Collecting In-

terpretation of Expressions. ACM Transactions on

Programming Languages and Systems, pages 269-290,

April 1991.

[18] Williams Ludwell Harrison III. The Interprocedural

Analysis and Automatic Parallelization of Scheme Pro-

grams. Lisp and Symbolic Computation: an Interna-

tional Journal, 2(3/4): 179-396, 1989.

[19] T. Ito and R.H Halstead, editors. Parallel Lisp: Lan-

guages and Systems. Springer-Verlag, 1989. LNCS 441.

[21] Monica Lam and Martin Rinard. Coarse-Grained Par-

allel Programming in Jade. In Second ACM Sympo-

sium on Principles and Practice of Parallel Program-

ming, pages 94–105, 1991,

[22] John Lucassen and David Gifford. Polymorphic Effect

Systems. In 15th ACM Symposium on Principles of

Programmmg Languages, January 1988.

[23] John Mellor-Crummey. On-the-fly Detection of Data

Races for Programs with Nested Fork-Join Parallelism.

In Proceedings of Supercomputing ’91, pages 24-33,

1991.

[24] N. Mercouroff, An Algorithm for Analyzing Communi-

cating Processes. In Mathematical Foundations of Pro-

gramming Semantics. Springer-Verlag, 1991,

[25] J. Gregory Morrisett and Andrew Tolmach. Procs and

Locks: A Portable Multiprocessing Platform for Stan-

dard ML of New Jersey. In Fourth ACM Symposium on

Principles and Practice of Parallel Programming, pages

198-207, 1993.

[26] Jonathan A. Rees and Norman I. Adams. T: A Dialect

of Lisp or, LAMBDA: The Ultimate Software Tool, In

Proceedings of the ACM Symposium on Lisp and Func-

tional Programming, pages 114–122, 1982.

[27] John Reif and Scott Smolka. Data Flow Analysis of

Distributed Communicating Processes, International

Journal of Parallel Programming, 19(1) :1-30, 1990.

[28] John Reppy. CML: A Higher-Order Concurrent Lan-

guage. In Proceedings of the SIGPLAN’91 Conference

on Programmmg Language Design and Implementation,

pages 293–306, June 1991.

[29] Ehud Shapiro, editor. Concurrent Prolog : Collected

Papers, MIT Press, 1987. Volumes 1 and 2,

[30] Olin Shivers, Data-flow Analysis and Type Recovery in

Scheme. In Topics in Advanced Language Implementa-

tion. MIT Press, 1990.

[31] Olin Shivers. The Semantics of Scheme Control-Flow

Analysis. In Proceedings of the ACM SIGPLAN Sympo-

sium on Partial Evaluation and Semantics-Based Pro-

gram Manipulation, pages 190–198, 1991.

[32] Guy L. Steele Jr. Making Asynchronous Parallelism Safe

for the World. In ACM 1 ?h Symposium on Princi-

ples of Programming Languages, pages 218–231, Jan-

uary 1990.

[33] Stephen Weeks, Suresh Jagannathan, and James

Philbin. A Concurrent Abstract Interpreter. Lisp and

Symbolxc Computation. To Appear.

[20] Suresh Jagannathan and James Philbin. A Founda-

tion for an Efficient Multi-Threaded Scheme System. In

Proceedings of the 1992 Conf. on Lisp and Functional

Programming, pages 345–357, June 1992.

305


