
Set-Based Analysis of ML Programs*
(Extende$ Abstract)

Nevin Heintzet

School of Computer Science

Carnegie Mellon University

nch@lcs.cmu.edu

Abstract

Reasoning about program variables as sets of “values” leads

to a simple, accurate and intuitively appealing notion of

program approximation. This paper presents approach for

the compile-time analysis of ML programs. To develop the

core ideas of the analysis, we consider a simple untyped call-

by-value functional language. Starting with an operational

semantics for the language, we develop an approximate “set-

based” operational semantics, which formalizes the intuition

of treating program variables as sets. The key result of the

paper is an 0(n3) algorithm for computing the set based

approximation of a program. We then extend this analysis

in a natural way to deal with arrays, arithmetic, exceptions

and continuations. We briefly describe our experience with

an implementation of this analysis for ML programs.

1 Introduction

Information about the run-time behavior of a program is

necessary for many import ant compiler optimiz at ions. This

information is typically computed by some kind of program

analysis. Such analysis often takes the following form: given

a program (or program fragment), compute hvar-iants about

the possible values of variables, For compilation of func-

tional programming languages, import ant issues include:

array bounds checks: For languages with “safe” array

operations, the cost of performing run-time array

bounds checking can be prohibitive. Experiences in

the CMU FOX project [6] (which addresses systems

building in ML) suggest that this is a critical issue for

ML implementations of software such as the TCP/IP

network protocol suite.

cent rol flow: In a language with higher-order functions,

the flow of control from one program statement to sn-

other is not explicit. However, a knowledge of control

“This work was sponsored by the Advanced Research Projects
Agency, CSTO, under the title ‘[The Fox Project. Advanced De-
velopment of Systems Software” , ARPA Order No. 8313, issued by
ESD/AVS under Contract No. F1962S.91-C-0168.

tsooo Forbes Ave., Pittsburgh, PA 15213, USA.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

flow is needed to perform many traditional loop opti-

mization transformations.

redundant tests: Many tests that are performed during

program execution can be eliminated using analyses

that compute information about the run-time values

of variables. Examples include tag-checking, run-time

type checking and tests relating to pattern matching

and case stat ements.

inlining and specialization: Inlining and specialization

of program fragments can lead to significant program

improvements. The key issue is when to apply these

transformations. Information about control flow and

run-time values of variables can provide important

guidance.

Other areas where program analysis can be utilized are data

represent ation, distributed computation (for which informa-

tion about structure sharing and structure access are im-

portant) and program verification (program analysis can be

viewed as a “weak” logic for establishing useful program in-

variant).

Most program analysis research targets a specific com-

pilation optimization. As a result, when combining a va-

riety of optimizations, it is necessary to perform a number

of different analyses. Thus, from a conceptual as well as

an engineering perspective, it is desirable to design a single

analysis that covers a number of needs. This makes partic-

ular sense for analysis of higher-order functional languages

since there are interactions between the various analyses (the

interact ions bet ween cent rol flow information and data-flow

analysis are well known).

This paper describes an approach to program analysis

for call-by-value higher-order functional languages that ad-

dresses a variety of program analysis/transformation needs

(including those mentioned above). Unlike other works in

the literature, it is designed around a single uniform defini-

tion of approximation: all dependencies between variables

are ignored by treating programs variables as sets of values.

No other approximations are present (in particular, there

is no “abstract domain” to approximation the underlying

domain of values). To develop the foundations of this set-

based analysis, we start with an operational semantics for

a small call-by-value functional language. We then modify

this operational semantics so that the notion of environment

is replaced by a set environment, which maps program vari-

ables into sets of values. These sets are arbitrary in the sense

that no a priori assumptions are made about finiteness or

LISP 94- 6/94 Orlando, Florida USA
0 1994 ACM 0-89791 -643-3/94/0006..$3.50

306

represent ability of these sets. This set-based operational se-

mantics is used to define the set-based approximation of a

program. Importantly, we then show that even though the

approximation is defined using a system that allOWS reason-

ing about arbitrary sets of values, the program approxima-

tion that arises is decidable, and can in fact be computed

on 0(n3) time. This leads to an analysis with the following

properties:

●

●

●

The analysis provides relatively accurate information

about a program, with particular emphasis on the pro-

gram’s data structures.

The underlying notion of approximation has a simple

uniform definition, and the results of the analysis are

intuitive and predictable.

It inflexible and easily modified toincorporate arith-

metic and operations such as assignment, continua-

tions and exception handling.

Inter-Variable Dependencies

To illustrate the ideas of set-based analysis and in partic-

ular to show what is meant by inter-variable dependencies,

consider some example ML programs,

let fun mk_list (u, v) = [u, v]

in

mklist(l,2);

mklist(3,4)

end

Program 1

During the execution of Program 1, the body of the func-

tion mk.list is executed in two environments: [u I+ 1, v * 2]

and [u w 3, v w 4]. Inter-variable dependencies arise here

in the sense that the variable u takes the value 1 exactly

when v takes 2, and u takes 3 when v takes 4. In general,

we say that inter-variable dependencies arise whenever the

set of environments encountered at some program point is

such that fixing a value for one or more variables restricts

the possible values of the other variables.

Such dependencies may be ignored by treating the pro-

gram variables as denoting sets of values instead of individ-

ual values. In Program 1, the sets for u and v are {1, 3}

and {2, 4} respectively. If program variables are treated as

sets, then the result of Program 1 is approximated by the set

of values {[1,2], [1,4], [3,2], [3,4]}, in contrast to its actual

result which is the single value [3,4].

let fun append(x :: XS, y) = x :: append(xs, y)

I append(nil, y’) = y’

fun rev(z :: ZS) = append(rev ZS, [z])

I rev nil = nil

in rev [1,2,3,4]

end

Program 2

In Program 2, dependencies arise between the variables x,

xs and y in the function append, and between z and zs in the

function rev. If the values of variables are collected into sets,

then we obtain the set {1,2,3,4} for both x and z. Using this

information, a set-based interpretation of the program can
be developed as follows. Consider the definition of append.

From the first clause, we see that the values returned by

append include values 1 :: 1, 2 :: 1, 3:: 1 and 4 :: 1 where

1 is some list returned by append. From the second clause,

the values returned by append include any value of y, and

noting the call append(rev ZS, [z]) in the definition of rev,

these values include the singleton lists [1], [2], [3] and [4],

Combining these two observations, it is easy to see that the

set-based interpretation of Program 2 yields the set of all

lists constructed from 1, 2, 3 and 4.

The notion of set-based approximation can be extended

in a variety of ways. For example, consider programs in-

volving arrays. In keeping with the methodology of ig-

noring dependencies, we shrdl ignore the dependencies be-

tween subscripts and array values. In essence, we treat an

array as a set of values. When the array is updated, a

new wdue is added to this set. When the array is sub-

scripted, the whole set is returned. For example, the set-

based approximation of Program 3 yields the set of all val-

ues obtained by summing any number of 3’s and 4’s i.e.

{3n+4rn: m~o, n>o, m+7z> l}.

let fun cum (arr : int array) =

let fun f O = arr sub O

I fi=(arr subi)+f(i–1)

in

f ((length arr) – 1)

end

val arr = array(lO, 3)

in

update(arr, 6, 4);

cum arr

end

Program 3

fun map f (x :: 1) = (f x) :: (map f 1)

I map fnil= nil

val t = [1,2,3]

val d = dynamic

val u = map (fn x ~ (x, d)) t

val v = map (fn (x, y) * x) u

val w = map (fn (x, y) * y) u

Program 4

Set-based approximation can also be extended to deal

with non-standard values. For example, to perform a bind-

ing time analysis [8, 18, 24], a non-standard value dynamic

is introduced to represent a value that will not be known un-

til “run-time”. To illustrate this, consider Program 4. The

set-based approximation of this program yields the follow-

ing information] about the variables u, v and w: u is a list

of pairs whose first element is either 1, 2 or 3 and whose

second argument is dynamic; v is a list of 1 ‘s, 2’s and 3’s,

and w is a list of dynamic’s.

To summarize, the analysis developed here is based on

the notion of ignoring inter-variable dependencies by treat-

ing variables as sets. In other words, the environments en-

countered at each point in a program are collapsed into a

single set environment (mapping from variables into sets).

Strictly speaking, there are three kinds of dependencies that

1 This information ,5 m fact obtained Only if tbe analYsis of ‘nap’s

“polyvarwmt” (that m, provldcd there can be dl~emnt “versions” of
map). We refer to th]s Issue later m the paper.

307

are ignored in set-based analysis. First, dependencies be-

tween different variables are ignored – this was illustrated

by Program 1. Second, dependencies between different oc-

currences of the same variable are ignored. For example the

approximation of Program5 yields {[1,1], [1,2], [2,1], [2,2]}

and not {[1,1], [2,2]}. Third, dependencies between the do-

main and codomain of functions are ignored. For example

the approximation of Program6 yields {2,3} and not {3}.

let fungl=2

let fun f x = [x,x] I g2=3

in in

f 1; g 1;

f 2; g 2;

end end

Program 5 Program 6

Overview of paper

The body of this paper consists of two main components.

First, we develop the underlying ideas of set-based analysis.

We give a simple and natural formalization of the notion

of set-based approximation, and then present an algorithm

(based on constructing and solving set constraints) for com-

puting this approximation. This is carried out in the context

of a small untyped call-by-value functional language that is

intended to be suggestive of a number of aspects of ML [22].

Second, we describe an implementation for the set-based

analysis of ML programs that extends the basic notions of

set-based analysis to arithmetic, arrays, continuations and

exceptions. This implementation is built on the LAMBDA in-

termediate representation of the SML/NJ compiler [4]. Typ-

ical execution times are about 200-400 lines per second for

programs up to several thousand lines in length. The core

part of the implementation provides accurate type informa-

tion for variables and functions as well as control flow infor-

mation (which in turn can be used to check the conditions

of “safety analysis” [27]). The implementation has also been

adapted to perform polyvariant partially-static binding time

analysis [8].

2 Related Literature

The approximation of ignoring inter-variable dependencies

is used in many works on program analysis. It was identified

as an important notion by Jones and Muchnick in [20], where

it was called independent attribute analysis.

The idea of defining an approximation of a program by

ignoring inter-variables dependencies and making no other

approximation (that is, by treating program variables as set
of values) has been used previously in the analysis of logic

programs and imperative programs by Jaffar and the present

author [10, 12, 13]. This paper extend the approach to anal-

ysis of functional programs. We now briefly review several

areas of related work.

Soft Typing

The aim of soft typing [7] is to infer “types” for identifiers

and expressions in a dynamically typed language. These are

used to remove unnecessary run-time type checks as well as

help document programs. Recent work [30] describes a soft

typing system for Scheme (including a treatment of assign-

ment and callcc). From a program analysis viewpoint, soft

typing incorporates a notion of approximation akin to ignor-

ing inter-variable dependencies, in addition to other kinds

of approximation. It therefore appears that, in principal,

it is less accurate than set-based analysis. However, issues

such as the treatment of polymorphism and the specific op-

erations of the languages used, make comparisons somewhat

problematic. At a systems level, early comparisons indicate

that set-based analysis is somewhat faster than the soft typ-

ing system of Wright [30]; however again direct comparison

is difficult because the two systems treat different languages.

Perhaps more closely related to our work is the soft typ-

ing system developed by Aiken et. al. [2, 3]. Their system

extracts type constraints from a program and provides a

normalization rxocedure for solvirw these constraints over.
the domain of downward closed sets of finite elements (es-

sentially the “ideal” model of t yp es). These constraints are

similar in spirit to our constraints (in particular, they ex-

press relationships between sets of values). However, the

constraints used and their simplification algorithm are very

different from those used in set-based analvsis. In terms

of accuracy, the key observation is again that, at a concep-

tual level, set-based analysis represents an upper bound on

the accuracy of systems that ignore dependencies between

variables. Since the systems of [2, 3] effectively ignore such

dependencies, they will in general be less accurate. How-

ever, other issues, such as the treatment of polymorphism,

complicate this relationship. We note that, whereas the de-

velopment of set-based analysis starts with an operational

semantics, the construction of constraints in [2, 3] is inspired

by a denotational semantics. We also note that both systems

include a mechanism for reasoning about non-emptiness of

sets (these are called “conditional types” in [3]).

A comparison between [3] and set-based analysis at the

performance level indicates that set-based analysis is sub-

st ant ially fast er. For example, [3] reports that the largest

programs that have been analyzed are in the order of sev-

eraJ hundred lines and for such programs, this analysis takes

about 15-30 seconds. In contrast, set-based anrdysis haa

been used to analyze programs of the order of 2000-3000

lines in about 5-1o seconds. This appears to be related

to the underlying complexities of the methods used. For

set-based analysis, the core algorithm is 0(n3); for the algo-

rit hm of [3], the complexity is exponential-time. In fact, due

to efficiency problems, the implementation described in [3]

does not implement the accompanying type system exactly,

but makes some additional approximations. However, our

implementation of set-based analysis implements the notion

of set-based program approximation exactly.

The two soft typing systems described above and the

set-based analysis system described in this paper were in-

dependently developed over the same period of time. One

advantage of the soft typing systems is that they directly ad-

dress the on-line type inference problem: given a program

fragment, determine a type for this fragment. In cent rast,

set-based analysis is designed for global program analysis.

The tradeoffs here are difficult to characterize. Finally, we
note that an important difference between soft typing sys-

tems and our implementation of set-based analysis is that we

address a much larger scope of analysis problems, including

control flow analysis and reasoning about arithmetic tests.

Constraints

Constraints have also been used in binding time analysis

[15] and safety analysis [27]. In the former, the program ap-

308

proximation that arises is different from set-based approxi-

mation (and in fact less accurate), but can be computed in

almost-linear time. In the latter (which is based on closure

analysis), the constraints are solved over subsets of a finite

domain of “closures”. In contrast, our constraints are solved

over an infinite domain. (Very recent work [26, 28] essen-

tially extends the approach in [27] to data-constructors and

side effects for an object oriented language),

Grammars

Another closely related work is by Jones [17] where a gram-

mar approach is presented for the analysis of lazy higher-

order functional programs (this is one of the first treatments

of control flow analysis in the literature). Also see [16, 23]

for subsequent developments.

In summary, one of the main aspect of our work that

sets it apart from other works is that we start with a sim-

ple, intuitive definition of approximate semantics based on

an operational semantics, and only then present algorithms

(using constraints) that correspond exactly to this approxi-

mation. Moreover, we extend this analysis to deal with side

effects and continuations in a uniform and intuitive manner.

3 Set-Based Approximation

Consider a simple call-by-value functional language whose

terms e are defined by

e ..—..— zlc(el, . . . ,en) I kc.e [e, e, I fizz.e

I case(e~, c(zi, . . . ,Zn) * ez, y * ea)

where z and y range over program variables and c ranges

over a given set of (varying arity, “first-order’)) constants. It

is convenient to adopt the usual convention that bound vari-

ables appearing in a term are distinct (that is, each variable

in a term has at most one binding occurrence). The opera-

tor case is essentially a very restricted form of the ML case

expression and provides a mechanism for branching on the

result of a computation as well as “reconstructing” values.

The operator fix serves to express recursion2.

The operational semantics for the evaluation of the

closed terms of this language is given in Figure 1. The vari-

ables E and v range over environments and values respec-

tively, and these are defined mutually recursively as follows.

An enrkmmerat E is a finite mapping from program vari-

ables into binding expressions. A binding expression is either

a value or an expression of the form (E, fis c.e). A value v is

of the form c(vl, ..., v~) where the vi are values, or a closure

of the form (E, kr.e) where E is an environment. If E is an

environment then we write dom(ll) to denote the (finite) set

of variables on which E is defined. The notation E[s+ezp]

denotes the environment that maps z into ezp and all other

variables z’ into E(z’). We write t- e ~ v if E i- e ~ v,,
when E is the empty environment.

This operational semantics is a fairly standard

environment-based semantics. The only slightly unusual

component is the treatment of jix. In essence, there is a

choice between (a) expressing recursion directly at the level

of environments and (b) extending the definition of environ-

ments so that variables map not just into values, but also

to certain kinds of non-values that represent jix expressions.

For presentational simplicity we have chosen the latter, al-

though this issue is orthogonal to the developments in the

21n j?.z c.e, the expression e shall typically be an abstraction.

rest of the paper. We also note that the inclusion of environ-

ments in binding expressions (E, .jiz x .e) is done for clarity

and is not strictly necessary, given our assumed convention

that each bound variable is distinct.

We now modify the operational semantics so that de-

pendencies between variables are ignored. This is achieved

by treating program variables as sets of values. To formalize

this, first define that a set environment&is a finite mapping

from variables into sets of binding values. The variable V

(possibly subscripted) will be used to denote sets of values.

An expression c(V1,..., V~), where the V, are sets, denotes

the set of values {C(Vl,..., Vn) : v, c ~,z’ = l..n}. The

expression (t, kv.e) denotes the set of closures {(E, k.e) :

E(z) 6 ~(z) for each s E dorn(t)}. The set based opera-

tional semantics, presented in Figure 2, is essentially ob-

tained by replacing environments E in the rules of Figure 1

by set environments3 &, and values v by sets of values V.

That is, wherew the (standard) operational semantics de-

fines a relationship E + e e v, the set-based operation

semantics defines a relationship & 1- e + V which should

be read as: in the context of set environment & the term e

“approximately” evaluates t 0 V.

This replacement necessitates two kinds of changes to

the rules. First, the two variable rules VAR- 1 and VAR-2

are modified to accommodate e the fact that E(x) is a set.

Second, the rules that involve variable binding (APP, CASE-

1, CASE-2 and FIX) are modified so that the binding infor-

mation is dropped. Note that the set-based semantics is

non-deterministic: in general, there will a number of sets

V such that & 1- e. w V. To obtain the result of the

set-based execution of a closed term eo in the context of

&, we shall collect the various sets together to form the set

{ve V:tl-eo*V}.

Observe that a number of the rules in Figure 1 will in

general lead to an unsound approximation. That is, certain

set environments f will be such that for some closed terms

eo, 1- eo -+ v but there is no set V such that & t- eo w V

and v c V. We shall however always ensure that whenever

one of these rules is applied, S is “sufficiently large” that it

contains all bindings to variables. To illustrate this issue,

consider the term (A~.c(~ a, $ b)) k.z, where a, b and c are

constants4. Denote this term by eo. Now, consider three set

environments f], t2 and 23 satisfying:

&l(x) = {} t’z(z) = {v : v is any value}

f,(f) = {} f~(j) = {v : v is any value}

t,(z) = {a,b}
&3(f) = {(E, h.z) : E is any environment}

Consider the set-based semantics of eo under S1, SZ and

~3 in turn. For fl, the only derivation of the form &l 1-

e. N V is such that V = {}. Hence, the use of & does

not lead to a safe approximation of the execution of eo.

Now consider ~2. There are many derivations of the form

tz +eo-Vand theset{ve V:22 l-eow V}

is {c(v, v’) : v and v’ are values}. This is a safe approxi-

mation of e., but not a particularly useful one. Finally,

consider t?s. In this case, the set {v c V : & 1- eo - V} is

{c(a, a), c(a, b), c(b, a), c(b, b)}.

3 We remark that one reason for the explicit use of environments

in the operational semantics in Figure 1 M precisely to enhance this

intuition. However, the notion of set based approximation is not

limited to this style of semantics. Analogous definitions can be made

starting from an operational semantics that uses substitution.
4~e ~halI write a as an abbreviation of ao.

309

E}x~v (v= E(x), v # (E,jizy.e))

EFel~v,, i=l..n

E h c(el,en+c(vl.l, v~), v~)

E k k.e ~ (E, k.e)

E 1- el-c(vl,..., v~) EIxIwv1, . . . , zn=vn] E .2 ~ v

E k case(el, c(zl,..., z~)ez,z, y+es)~v

Figure 1: Operational Semantics for the Simple Language.

cl -x-v (V= {v G E(z) : v # (E, fizy.e)})

.51- el~V,, i=l..n

& 1- c(el,.. . ,en)+c(Vi,..., Vn)

E } jizz.e-+V

Figure 2: Set-Based Operational Semantics.

(vAR-1)

(vAR.2)

(APP)

(coNsT)

(ABS)

(CASE-1)

(CASE-2)

(FIX)

(vAR-1)

(vAR-2)

(APP)

(CONST)

(ABS)

(CASE-1)

(CASE-2)

(FIX)

310

To obtain a safe approximation, a set of local safety con-

ditions must be satisfied. For rule APP, the required condi-

tion on f is Vz $ S(X). Similar conditions can be given for

the other rules revolving binding. Note that it is not ap-

propriate to just add these conditions as side conditions to

the respective rules, since side conditions have the effect of

reducing the number of possible derivations (and therefore

reducing the set {v : & E eo + v}). Instead, we require

that whenever one of the potentially unsafe rules is applied

in a derivation, an appropriate safety condition is satisfied.

To formalize this, define that & is safe with respect to a

closed term eo if every derivation of the form & F e. - V

satisfies the following four conditions (we follow the notation

established in Figure 2):

1. In every use of APP, Vz ~ ~(z).

2. In every use of CASE-1,

ifc(zq, . . . ,%) G VI then w G t(si), i = l..n.

3. In every use of CASE-2,

if v G VI and v # c(. ..) then v c t(g).

4. In every use of FIX, (~,fiz x.e) ~ E(z).

Importantly, safety implies soundness in the following sense:

Theorem 1 (Soundness) If& is sate w-t a closed term eo

then {v:+ eoav}~{ve V:tl- eo+ v}.

Proof: The proof follows by structural induction on the

sub derivations of the derivation k e ~ v. The induction

hypothesis must be strengthened slightly to include a simple

property about the closures that may be encountered. u
In essence, this proves that if we guess &so that it is safe,

then the set-based operational semantics provides a sound

approximation of the execution of a term. However, given
a term e., there are many correct choices for f, and these

give rise to different approximations of eo. The following

proposition implies that, given e., there is a canonical choice

for f, and that this choice gives rise to the most accurate

approximation of eO. First, define that the intersection of

set environments &l and &2, denoted ~1 n &2, is given by:

(tl n f2)(z) ‘=f 21(z) n E2(x), provided El (z) and ~z(z) are

both defined. Then:

Proposition 1 (Minimality) 1~ t] and &z w-e sate w-t a

closed term eo, then so is &l n&z. Moreover, &l n .52+ e. u

v implies El 1- eo - v and &z 1- eo - v.

Proofi The proof here is straightforward and follows from

the observation that any derivation Z1 n ~z } e. w V can

be replayed to give isomorphic derivations S] 1- eo + V

and &Z ~ eo * V. c1
This motivates the following definition.

Definition 1 (Set-Based Approximation) Let e. be a

closed term. Let .tk~ be the least set environment that

is safe wrt eo. The set-based approximation of eo, denote$

sba(eo), is defined by:

sba(eo) ‘~f {v C V : ~min E eO-+ V} B

51t is possible to give a direct defitutlon of set-based approxima-

tion, which avoids the minimization over t?. However such a definition

is substantially more complex.

To summarize, the set-based operational semantics ap-

proximates the execution of a term by collapsing all envi-

ronments into one single set environment. No other form of

approximation is employed. In particular, no use is made

of abstract domains (such as those commonly employed in

abstract-interpretation styles of program analysis [9]). We

remark that the results of the analysis are typically infinite

sets of values, and that we make no a priori requirement

that these sets be finitely presentable.

4 Main Result

We now present the main result of the paper, which is an

algorithm for computing sba (e.) for any closed term e..

The structure of the algorithm is as follows. First, we con-

struct set constraints corresponding to the input term e..

In essence, these constraints express relationships between

sets of values in such a way that a model of the constraints

corresponds to the set-based execution of e. in some safe

set environment &. Importantly, the least model of these

constraints corresponds to execution in the smallest safe set

environment, and hence to sba(eo). The second part of the

algorithm is a simplification procedure for set constraints. In

essence, this algorithm constructs an explicit representation

of the least model of the input set constraints. This rep-

resentation is in the form of a regular tree grammar. Note

that no assumptions have been made about the adequacy of

regular tree grammars. The fact that the least model of the

set constraints (and hence sba(eo)) can be represented using

regular tree grammars is a corollary of the correctness proof

of the algoritlm.

Before describing the form of the set constraints em-

ployed by the algorithm, we first note that the environment

part of closures in sba(eo) is essentially redundant. In par-

ticular, if ~ is the least set environment that is safe with

respect to a closed term eo, and if sba(eo) contains a closure

(E, Xc.e), then sba(eo) must in fact contain all closures of

the form (E’, Jz.e) such that E’ c &. This is because the

set-based operational semantics collapses all environments

into the single set environment &, and moreover, the only

closures generated during the set-based execution are via

the (ABS) rule. In the computation of sba(eo), it is con-

venient to drop the redundant environment information in

closuress. More formally, define an operator IIvll on values

v, which forgets the environment part of closures, as follows:

C(llwll, ~.
1[41 = { Jze

.,llvnl[) if v is c(vl,..., vn)

if v is (E, Jx.e)

The algori~hm presented in this section computes a repre-

sentation of the set Ilsba(eo)ll = {Ilvll : v c sba(eo)}.

Set Constraints

The use of set constraints for analysis of programs dates

back to the early works by Reynolds [29], and Jones and

Muchnick [19], which employ constraints involving projec-

tion. The calculus of set constraints was first defined and

studied in a general setting by Jaffar and the present author

[13]. [13] also contained a decision procedure for a class of

set constraints involving projection and intersection. Later

works have provided algorithms for different classes of set

s We note that this can be recovered if needed, although it is not

completely trlviai to do so since values and envn-onments ewe mutually
dependent

311

constraints (Aiken and Wimmers [1] have dealt with com-

plement ation and intersection; Jaffar and the present author

have dealt with set constraint operators that are designed for

analyzing logic programs and imperative programs [10, 12],

and combinations of set constraint techniques and abstract

interpretation techniques [14]), as well as generalizing previ-

ons results (Bachmair, Ganzinger and Waldmann [5] est ab-

lish a connection between certain kinds of set constraints and

a fragment of logic shown decidable by Lowenheim, and in

the process give a simple proof of decidabilit y of a class of

set constraints that subsumes the earlier resnlts in [I] and

[13]).

We extend the basic set constraint calculus of [13] by

adding operations to model function application and case

statements. The form and meaning of these constraints is

defined in the context of some given closed term eo. We

assume a fixed infinite class of set variables; set variables

shall be denoted W, A’, Y, 2. We distinguish two special

disjoint subclasses of set variables. First, for each program

variable z in eo, there is a distinct set variable AL which

shall be used to capture all of the valnes for the program

variable x. Second, for each abstraction Xz. e appearing in

eo, there is a distinct set variable ran(k e), the “range”

of Jx. e, which shall be used to captnre all of the values re-

turned by applications of Jx.e during execution. Now, in

the context of the given term eo, we define that a set ex-

pression (se) is either a set variable, an abstraction Az.e

that appears in eo, or of one of the forms c(sel, sez),

appl~(sel, sez), case(sel, c(X1, AA) * se2, Y * se3)
or ifnonernpty(sel, se2) (this is essentially the U* operation

of Reynolds [29]; it shall be employed later in the paper).

The first form is used to model execution of expressions

$(el, . . . , e~), the second form models application, the third

1s for case statements, and the last is used to reason about

emptiness. A set ccmstmint is an expression of the form

X ~ se, and a conjunction C of set constraints is a finite

collection of set constraints.

We now define the meaning of the set constraints. In

essence, set expressions shall be interpreted as sets of val-

nes with the environment component of closures removed.

Specifically, a set constraint value (se-value) is either an ab-

straction k.e that appears in eo, or of the form c(v1, v~)

where each v, is an se-value. An znterpretahon is a mapping

from each set variable into a set of se-values. Such an in-

terpretation is extended to map set expressions to sets of

se-values as follows:

1. Z(c(sel,. .,sen)) = {c(w, .,vn) :0, 6 Z(se,)}

3. Z(ifnonemptu(sel, se2)) =

{

~jse2) if Z(sel) = {}

otherwise

5. Z(case(sel, c(Xl, Xn) * sez,y+- sea)) = S1 US2

provided:

(z) S, = {V:ZI C ~(sez) A qv’ C Z(sel) s.t. v’ = c(. .)}

(iz) ,92= {V:V E T(ses) A %’ G ~(sel) s.t. v’ # c(. .)}

(222) if c(vl, vR) c Z(sel) then v, c Z(X,), z = l.. n

(~v) if v c Z(sel) A v # c(.. .) then v c Z(Y)

Note that the above interpretation of set expressions is some-

what unusual, because in parts 4 and 5 of the definition, the

set expressions themselves impose restrictions on Z. If these

conditions are not met, then the interpretation of the ex-

pression is undefined. An interpretation Z is a model of a

conjunction of constraints C if, for each constraint X a se,

it is the case that Z(se) is defined and Z(X) ~ Z(se). It

is easy to verify a model intersection property for the set

constraints used in this paper, and it follows that a con-

junction C of constraints possesses a least model, denoted

lm(C), where models are ordered as follows: Z1 ~ T.z if

71 (X) ~ ZZ (%), for all set variables .%.

Constructing Set Constraints

The construction of set constraints from a term is described

in Figure 3. (Strictly speaking, this is a somewhat simplified

version – the complete version appears in the Appendix.) In

the rules (APP), (CONST), (ABS) and (CASE), the variable Y

is intended to be a new set variable that is not used in any

other part of the derivation. Using these rules, we define

Definition 2 Let eo be a ctosed term, then SC(eo) is the

pair (X, C) such that eo b (X, C). D

To illustrate the construction of the constraints, consider

again the term eo = el ez where e] is ~~.c(~ a, ~ 6), ez is

AZ .x and a, b and c are constants. For this term, we derive

eo b (Xl, C) where C consists of the constraints

xl 2 cwph/(x2 , X3) ~ ,

X2 ~ el
4 _ applg(X~, a) ran(el) ~ c(A’4, X5)

X3 ~ e2
X5 ~ applg(.%j, b) ran(e2) a X=

In irn(C), Xl = r-cm(el) = {c(a, b), c(ZI, a), c(a, a), c(b, b)},

Xj = {e]}, Xs = {e,}, X, = X5 = r-an(ez) =X, = {a, b}

For present ational simplicity, the constraint construc-

tion given in Figure 3 does not completely correspond to

sba(eo). To see this, consider the term eo = e] ez where e]

is ~~.((~u.~ a)(~w.~ b)) and e2 is kz. z. The least f that is

safe with respect to eo maps f into {Az. x}, u into {Aw.$ b}

and x into {a}, and sba(eo) is {a}. However, the set con-

straint construction procedure traverses all subexpression of

eo. Hence SC(eO) contains the set expressions appig(%f, a)

and appiy(Xf, b). As a result, X. must contain both a and

b, and so the execution of eo is approximated by {a, b}. The

problem is that the term Aw. f b is never ‘(executed” under

the set-based semantics, but is traversed by the set con-

straint construction process. To rectify this situation, the

constraint construction must be such that if k .e appears

in eo, then the constraints constructed for e are vacuously

satisfied whenever AL (the set of values for z) is empty. The

complete constraint construction procedure appears in the

Appendix. The correspondence between sba(eo) and SC(eo)

is given by the following Lemma’:

Lemma 1 Let eo be a ciosed term, let SC(eo) be (X, C) and

let 11~ = lrn(C). Then Zin(X) = l\sba(eo)ll. D

Proof Sketch: The proof is fairly lengthly and consists

of two main parts. The first part involves modifying the

‘We note that Lemma 1 holds using the constraint construction

process described m Figure 3 if the following condition is satisfied.

the least set environment C that is safe wrt .0 is such that C(z) # {}

for all z.

312

x b (&, {})

el b(Xl, Cl) ez b (%’2, Cz)

et ez b (Y, {Y 2 WPh/(~1,~Z)} u CI UC2)

e: P (c%’i, cj), ‘i = 1.. ?Z

c(el, ..., en) p(Y, {Y~C(~l,&)} lJCl U...UCn)

e b (%, C)

kr.e b (Y, {Y ~ Az.e, rara(k.e) z X} U C)

el b (Zl, Cl) ez b(.%, C2) es b (i%, C3)

case(el, c(zl, ..., z.)+-ez,~~es) b(Y,CUCIUCzUCs)

where C = {Y ~ case(Zl, C(XZI, X=.) + 22, XY * 23)}

e b (X, C)

fixx.e b (X=,{X~ a ~} UC)

Figure 3: Construction of Set Constraints (simplified version)

definition of f k e ~ v so that environments are removed

from closures. Call this new system 1-’. The proof for this

part involves showing a correspondence between k and +’.

The second part then relates t-’ with SC(eO) by showing two

relationships: (a) if Z is the least set environment that is

safe wrt e. (in F’), then g can be used to define a model

Z of C such that & l-’ e - v iff rJ ~ Z(X); and (b) if Z is

a model of C then we can define an t that is safe wrt eo

such that if & l-’ e m v then v c Z(X), In essence, part (a)

shows that Zl~ (X) ~ Ilsba(eo) it, and part (b) shows that

Itm(%) q l[$~a(eo)ll. 11

Set Constraint Algorithm

We first address the issue of the output format of the al-

gorithm. What we desire is an explicit representation of

the least model of the set constraints, and specifically, of

sba(eo). Since these sets are typically infinite, we must deal

with finite representations of infinite sets. What is needed is

a representation from which simple questions such as mem-

bership, emptiness and containment can be directly deter-

mined. The representation we use is based on a restricted

form of set constraints. Specifically, define that a set ex-

pression is atomic if it is either an abstraction Axe that

appears in eo, a set variable, or of the form c(ael, ae~)

where each ae, is atomic. A constraint is in explicit form if

it has the form X ~ ae where ae is an atomic set expression

that is not a set variable (ae may of course contain set vari-

ables). A collection of constraints is in explicit form if each

constraint therein is in explicit form. If C is a collection of

constraints, then ezp/icit(C) denotes the explicit form con-

straints of C. We note that explicit form constraints can be

regarded as regular tree grammars by treating set variables

as non-terminals and regarding a constraint X ~ ae as a

production X +- ae.

The simplification algorithm accepts as input a collection

of constraints (such as those constructed for a closed term

eo) and outputs an explicit form collection of constraints

that has the same least model as the input collection. The

main part of the algorithm involves exhaustively applying

a series of simplification steps, and this serves to add new

explicit form constraints so that information about /m(C) is

(VAR)

(APP)

(CONST)

(ABS)

(CASE)

(FIX)

incrementally transferred into the explicit part of C. The

algorithm terminates exactly when all information about

bn(C) is present in explicit. The details of the algorithm

appear in Figure 4. The phrase “add X ~ se to C“ is used

to mean “add the constraint X ~ se if it does not already

appear”. An expression of the form irn(ezphcii(C))(Y) # {}

indicates a test which can be performed as follows: construct

ezphcit(C), and (using standard algorithms), check to see if

Y is empty in the least model of explicit(C) (analogous pro-

cedures can be found in [10, 13]).

We note that the correctness of the algorithm relies on

the fact that there are no “nested” set expressions. In other

words, if an expression of the form apply (se 1, sez) appears in

the constraints, then sel and sez are both set variables, and

similarly for expressions involving @noraernpt~ and case. It is

easy to see that SC(eO) satisfies this property, and it is trivial

to verify that the algorithm preserves this property. The

next lemma establishes the correctness of the simplification

algorithm, and, combined wit h Lemma 1, proves Theorem

2.

Lemma 2 (Correctness of Algorithm)

The algorithm terminates on input C and outputs explicit

jorrn constraints C’ such that lrn(C’) = lrn(C).

Proof Sketch: Termination is straightforward to verify

since the algorithm adds only constraints of the form X ~ ae

where both X and ae are expressions that already appear

in the constraints. The main part of the proof is to estab-

lish that the transformation steps are complete in the sense

that when no further transformation steps can be applied,

then irn(C) = lm(explicit). This is achieved by show-

ing that when no further transformation can be applied, the

interpretation irn(ezplicit(C)) is in fact a model of C, c1

Theorem 2 Given a C1O.WXIterm eo, there is an 0(n3) algo-

rithm to compute an explicit representation (which is equiv-

alent to a regular tree grammar) of I[sba(eo)l[.

Proofi Let SC(eO) be (X, C). By Lemma 1, hn(C) maps

X into Ilsba(eo)ll. By Lemma 2, the set constraint simplifi-

cation algorithm produces collection of constraints C’ in ex-

plicit form when input with C. Moreover, lrrz(C’) = lm(c).

313

input a collection C of set constraints;

rep eat

if X ~ apyJ@(X1, X2) and X1 ~ k.e both appear in C then

add X ~ rcm(k. e) to C;

add X. ~ X2 to C;

if X ~ case(~l, c(Wl,Wn) *Y2, W+Y3)

and Y1 ~ C(Z1, ..., Z.) both appear in C

and lrn(es@icit(C))(Z,) # {}, i = 1,.n, then

add X ~ YZ to C;

add W, ~ 2; to C, i= l., n;

if % ~ ca$e(yl, c(wl,wn) *y2,w*y3)
and y] ~ c’(2I, 2n) both appear in C, where c’ # c,

and lrrz(ezplicit(C))(Z,) # {}, i = l.. n, then

{} then

add X~yito C; ““ “ ‘-

add W~ c’(21,Z~) toC;

if X ~ ifnonempty(yl, Y2) appears in C and lm(ezplicit(C))(Y1

add X ~ YZ to C;

if X ~ X’ and X’ ~ ae both appear in C,

where ae is atomic and not a set variable, then

add X ~ ae to C;

until no step changes C;

output ez@c2t(C);

Figure 4: Set Constraint Simplification Algorithm

Hence lm(C’)(X) = lm(C)(X) = \ltrba(eO)\l, and so C’ pro-

vides an explicit representation of II sba(eo) II. The O(rz3)

bound can be established as follows. First, the construction

of constraints is linear in the size of e.. Second, at most

nz new constraints can be added by the simplification al-

gorithm, and the cost of “adding” each new constraint (i.e.

determining what other new constraints need to be added,

given this constraint is added) can be bounded by O(n). n

In addition, the algorithm trivially has an 0(n2) ‘spac~

bound. We remark that this algorithm not only provides a

way to compute slxz(eo), but it also computes the least set

environment that is safe wrt e..

5 Arraysr Continuations, Exceptions and Arithmetic

Thus far we have presented a formal development of the core

ideas of set based analysis. We now informally outline the

extensions we have employed for dealing with arrays, excep-

tions and continuations. As outlined in the introduction, the

set-based treatment of arrays ignores dependencies between

subscripts and values. That is, an array is treated as a set of

values such that when the array is updated the new value(s)

are added to this set, and when the array is accessed the

set of values is returned, More concretely, for each place in

the program where an array can be generated, we introduce

a special distinct constant ar with two associated set vari-

ables length(a~) and contents. We also introduce two

new set expressions, corztentsoj(se) and update(sel, se2). In

essence, the first denotes the union of the sets contents
such that ar is an element of se. The second is either (i)

the empty set if either se] or se2 is empty, (ii) the single-

ton set containing the unit value provided sel and sez are

non-empty and contents ~ sez for all ar in sel, or (iii)

is undefined otherwise. The first three rules in Figure 5 are

suggestive of how constraints are constructed for programs

involving arrays. In the first rule, ar is a new constant.

Continuations are also modeled by introducing a new

constant cent for each ccdlcc appearing in a program. Each

new constant has an associated set variable contents (cent).

In essence, this records the values that are thrown to the con-

tinuation. In effect, the constant cent passes into the term e

a reference to the program point at which the crdlcc occurred

(in fact it passes down the set variable corresponding to this

point). The set expression throw (sel, se2) is either (i) the

empty set provided that contents(cont) ~ se2 for each cent

in se], or (ii) undefined otherwise.

Exceptions are modeled by introducing a distinct new

set variable SXC to capture all of the exceptions that are

raised during program execution. We note exceptions could

be more accurately treated by introducing a new exception

variable for each expression. This would provide bet t er “sep-

aration” of the exceptions raised by different parts of a pro-

gram, but at the cost of introducing more constraints. We

are currently investigating this tradeoff.

The treatment of arithmetic is described in detail in [II].

The essential idea is to compute descriptions of how arith-

metic values are obtained. These descriptions are essentially

terms built from arithmetic operations and integers. [11]

also describes how the arithmetic part of the analysis can

be applied to the problem of removing array bounds checks.

Preliminary results indicate that this leads to useful spead-

ups. For example, when the set-based analysis implemen-

tation is applied to itsel~, we were able to infer that key

array updates and subscripts were guaranteed to be safe

8 In particular, they are a simplification of the actual rules in the

sense that Figure 3 simplifies Figure 6

9 We note that this implementation makes substantial use of arrays,

higher order functions (for example, functions are often stored in lists

and arrays) and except ions,

314

b el : (XI, Cl) b ez : (X2, C2)

b array(el, ez) : (~, {Y ~ ar, contents ~ sel, Iength(ar) ~ sez} U CI U C2)
(ARRAY)

bel :(X1, Cl) b ez : (&, C2)

b el sub ez : (Y, {Y ~ coratentsof(Xl)} U Cl U Cz)

b e, : (A’,, C,), i = 1..3

b zqxlate(el, ez, ea) : (Y, {Y 2 twiate(Xl, %2)} U CI U C2)

be:(%, C)

b callcc x.e : (Y, {Y ~ X, Y ~ contents(cont), X. ~ cent} UC)

b e] :(X1, CI) b ez : (X2, C2)

b throzo(e], ez) : (Y, {JJ ~ throw(X1 ,X2)} UC1 UC2)

be:(X, C)

b raise e : (Y, {EXC ~ X} U C)

b e] :(X1, Cl) b ez : (X2, Cz)

b el handle (kv.ez) : (Y, {Y ~ XI, Y ~ X2,X= ~ t’XC} uC1 UCZ)

Figure 5: Construction of Set Constraints for Arrays, Continuations and Exceptions

—exploiting this fact led to performance improvements of

about 6% - 13%, depending on the program analyzed).

6 Implementation

An implementation of set-based analysis for ML has been

developed over the last two years. The system is build on

top of the SML-NJ compiler. Starting with the LAMBDA
intermediate representation of a program, our system in-

crementally builds and solves corresponding set constraints.

Many of the set constraints that are generated are trivial,

and so an important part of the effort to make the analyzer
efficient was directed at ensuring that such constraints are

solved “on-the-fly” , and are never explicitly generated.
An important aspect of the implementation is “polyvari-

ance” (the analysis analogue of polymorphism). That is,

the implementation provides a mechanism to construct dif-

ferent “versions” of functions. In essence this is done by
constraint duplication. However, for efficiency reasons, we

wish to avoid multiple passes over the input LAMBDA ex-
pression, and instead we first convert the LAMBDA expres-
sion into a compact internal format, from which multiple
copies of constraints can be rapidly generated. A key aspect

of polyvariance is how to control the generation of different
versions of functions. One approach is to use the type in-

formation of a program (e.g. if a function is polymorphic,
then it is likely to be useful to treat it as a polyvariant func-

tion). However, a goal of our implementation was to provide
a generic analysis tool for functional programs, and so we

did not want to commit to a typed language. Instead we

chose a scheme in which the program is analyzed twice –

the first pass is a “monovariant” analysis, and the second

pass uses information from the first to control a polyvariant

analysis.
The following table presents some preliminary empirics

for the implementation. We use five programs. The first
program is the intmap structure from the SML-NJ compiler,

which implements a mapping from integers to integers. The
second models the game life, and is written in an applica-
tive (rather than imperative) style. The third is taken from

(SUBSCRIPT)

(UPDATE)

(CALLCC)

(THROW)

(RAISE)

(HAmLE)

a structure that implements an efficient form of byte array
copying that is part of the FOX project’s TCP/IP network

protocol software. The forth is the lexer generator from
the ml-lex/ml-yacc collection. The fifth is the core part of

the set-based analysis implement ation. All times are in sec-

onds on an PMAX 5000/200 with 64M and running Mach
and using version 0.93 of SML-NJ. For each benchmark, the
number of “equations” generated is given10 (this excludes

constraints that are solved on-the-fly). Phase I is the mono-
variant analysis. Phase II is the polyvariant analysis (which

uses information from phase I).

Ph ase I Ph ase II
time(s) eqns. time(s) eqns.

intmap (105 lines) 0.25 1053 0.30 1262

life (150 lines) 0.56 1461 2.19 12799

copy (177 lines) 0.23 1459 0.28 1484

lexgen (1170 lines) 2.38 6600 4.41 16674

solver (2765 lines) 6.69 17140

For some examples, the two phases have almost equaJ

cost, but in other cases the difference is substantial. This
reflects both the extent of polymorphism in the example

and the performance of the heuristics that inspect the in-
formation from the first phase and control polyvariance in

the second phase. The idea of these heuristics is to identify
those functions that will definitely not benefit from duplica-
tion (for example, there is no reaaon to duplicate functions

from unit to unit); all remaining functions are marked for
duplication. In particular, all functions that are identified

as polymorphic by the ML type system should be marked

for duplication (however, note that even non-polymorphic
functions can benefit from duplication).

The heuristic currently used is very simplistic and can
result in many unnecessary duplications (in fact this is the
reason that the results for phase II of the solver example

10The implementation collects all constraints with the same left-

hand-side variable together, and the resulting object is effectively an
equation

315

are not available at this time). We expect substantial im-
provement in the running time of polyvariant analysis as the
control of constraint duplication in further developed. Early
experience suggests that, for most programs, it should be
possible for phase II to run within a small constant factor
of the phase I analysis.

We remark that the control flow information computed
by the phase I analysis can be roughly compared to OCFA

in the terminology of [25]; the effect of phase II is go beyond

OCFA in a controlled way that avoids the combinatorial ex-

plosions of I CFA. An underlying philosophy of our system

is that the core part of an analysis should be a simple, in-
t uitive, efficient and have well understood behavior. Then,
the notion of polyvariance or polymorphism should be ad-

dressed by building on top of this core. By treating polyvari-
ante/polymorphism as an orthogonal concept rather than
“built-in” to the basic analysis, we achieve greater modular-
it y and flexibility y, as well as improved cent rol over the cost

of the analysis.

7 Conclusion

Starting with the simple intuition of treating program vari-

ables as sets, we have developed a powerful, general and
flexible analysis for higher-order call-by-value functional lan-

guages. The contributions of the paper lie in three areas.
First, we have given a very direct and appealing connec-
tion between a program’s set-based approximation (which
is what our algorithm computes), and its underlying oper-

ational semantics. Second, we have presented an algorithm
that combines (a) an accurate treatment of data-structures,
(b) modeling of side-effecting operations and (c) efficiency.
Third, we have described an implementation of this analy-

sis which provides evidence that the set-based analysis ap-
proach is practical. Applications of the implementation are

being persued in a number of different areas, including par-

tial evaluation [21] and array bounds checking [11].

Acknowledgments

Thanks to Alex Aiken, Olivier Danvy, Matthias Felleisen,
Bob Harper, Neil Jones, Peter Lee, Karoline Malmkjzer and
David Tarditi for comments and discussion about this work.

References

[1]

[2]

[3]

[4]

A. Aiken and E. Wimmers, “Solving Systems of Set

Constraints”, Proc. 7th IEEE Symp, on Logic in Com-

puter Science, Santa Cruz, pp. 329-340, June 1992.

A. Aiken and E. Wimmers, “Type Inclusion and Type

Inference”, Proc. 6th ACM Conf. on Functional Pro-
gramming and Computer- Architcxturv, Copenhagen,
pp. 31–41, June 1993.

A. Aiken, E. Wimmers and T. K. Lakshman, “Soft

Typing with Conditional Types” Proc. 21th ACM

Symp. on Principles of Programming Languages, Port-
land, OR, pp. 163-173, January 1994.

A. Appel, “Compiling with Continuations”, Cam-
bridge University Press, 1992.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. Bachmair, H. Ganzinger and U. Waldmann, “Set
Constraints are the Monadic Class”, Technical Re-

port MPI–I–92–240, Max-Planck-Institute for Com-
puter Science, December 1992.

E. Biagioni, R. Harper, P. Lee, and B. Milnes, “Sig-
natures for a network protocol stack: A systems ap-

plication of Standard ML”, Proc. 1994 ACM Conf. on
Lisp and Functional Programming, Orlando, Florida,

June 1994, to appear,

R. Cartwright and M. Fagan, “Soft Typing”, Proc.

1991 ACM Conf. on Programming Language Design
and Implementation, Toronto, pp. 278-292, June 1991.

C. Consel and O. Danvy, “Tutorial Notes on Par-

tial Evaluation”, Proc. 20th ACM Symp. on Principles
of Programming Languages, Charleston, pp. 493–5ol,
January 1993.

P. Cousot and R. Cousot, “Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Pro-

grams by Construction or Approximation of Fix-
points”, Proc. 4ih ACM Symp. on Pr-inczples of Pro-

gramming Languages, Los Angeles, pp. 238–252, Jan-

uary 1977.

N. Heintze, “Set-Based Program Analysis”, Ph.D. the-
sis, School of Computer Science, Carnegie Mellon Uni-

versity, October 1992.

N. Heintze, “Set-Based Program Analysis and Arith-

metic”, Technical Report, School of Computer Sci-

ence, Carnegie Mellon University, December 1993.

N. Heintze and J. Jaffar, “A Finite Presentation The-

orem for Approximating Logic Programs”, Proc. 17th

ACM Symp. on Principles of Programming Languages,

San Francisco, pp. 197-209, January 1990. (A full ver-

sion of this paper appears as IBM TechnicaJ Report

RC 16089 (# 71415), 66 pp., August 1990.)

N. Heintze and J. Jaffar, “A Decision Procedure for a

Class of Herbrand Set Constraints”, Proc. 5th IEEE
Symp. on Log~c m Computer Science, Philadelphia,
pp. 42–51, June 1990. (A full version of this paper ap-
pears as Carnegie Mellon University Technical Report

CMU-CS-9I-11O, 42 pp., February 1991.)

N. Heintze and J. Jaffar, “An Engine for Logic Pro-
th IEEE Symp. on Logic ‘ngram Analysis”, Proc. 7

Computer Science, Santa Cruz, pp. 318-328, June

1992.

F. Henglein, “Efficient Type Inference for Higher-

Order Binding-Time Analysis”, Proceedings 5*h ACM-
FPCA, Cambridge MA, LNCS 523, pp. 448–472, Au-
gust 1991.

T. Jensen and T. Mogensen, “A Backwards Analysis

for Compile-Time Garbage Collection”, Proc. 3rd Eu-

ropean Symp. on Programming, Copenhagen, LNCS
432, pp. 227-239, May 1990.

N. Jones, “Flow Analysis of Laz y Higher-Order Func-
tional Programs”, in Abstract Interpretation of Declar-
ative Languages, S. Abramsky and C. Hankin (Eds.),
Ellis Horwood, 1987.

316

X=keb(X, C)

Z E Az.e b (Y, {Y a he, ran(h.e) a X} U c)

Z 1- el b(%l, Ci) Z 1- ez b (X2, C2)

z 1- el ez D (Y, {Y a applV(Y’, X2), Y’ 2 ifnonemptv(2, xl)} U G U C2)

Z E ei P (A?ij C1), i = l..n

Z i- c(el,. ... em) b(y, {y~C(~l,&)} lJ cl”.. .Ucn)

Z 1- el b(%l, Cl) Z 1- ez b (X2, c2) Z t- es b(%, Cs)

2 1- c59e(el, c(Zl,..., zn)+ez,~+es) b(y, CUC1UC2UC3)

where C = {Y ~ case(Y’, C(~Z1, ..., &n) =+ 2%, xv + 23), Y’ ~ ifnonernpty(2, %1)}

ZEeb(X, C)

2 I- ji$~.e b (A?., {X= ~ ifnonernpty(z, %)} U C)

Figure 6: Construction of Set Constraints (complete version)

[18] N. Jones, C. Gomard and P. Sestoft, “Partial Evalua-

tion and Automatic Program Generation”, “Prentice-

Hall International”, 1993.

[19] N. Jones and S. Muchnick, “Flow Analysis and Op

timization of LISP-like Structures”, Proc. 6th ACM

Symp. on Principles of Programming Languages, San

Antonio, pp. 244-256, January 1979.

[20] N. Jones and S. Muchnick, “Complexity of Flow Anal-

ysis, Inductive Assertion Synthesis, and a Language
due to Dijkstra”, Proc. 21st IEEE-FOCS, Syracuse,

pp. 185-190, October 1980. (Also in, Program Flow
Analysis: Theorg and Applications, N. Jones and S.
Muchnick (Eds.), Prentice-Hall, 1981.)

[21] K, Maimkjrer, N. Heintze and O. Danvy, “ML PartisJ

Evaluation using Set-Based Analysis”, submitted for

publication.

[22] R. Milner, M. Tofte and R. Harper, “The Definition

of Standard ML”, MIT Press, 1990.

[23] T. Mogensen, “Separating Binding Times in Lan-

guage Specifications”, Proc. Functional Programming
and Computer Architecture, London, ACM, pp. 12-25,
September 1989.

[24] F. Nielson and H. Nielson, “Two-Level Functional
Languages”, Cambridge University Press, Vol 34,
Cambridge Tracts in Theoretical Computer Science,

1992.

[25] O. Shivers, “Control Flow Analysis in Scheme”, Proc.
1988 ACM Conf. on Programming Language Design
and Implementation, Atlanta, pp. 164–174, June 1988.

(vAR)

(ABS)

(APP)

(coNsT)

(cAs13)

(FIX)

[26] J. Pslsberg, Private Communication, November 1993.

[27] J. PaJsberg and M. Schwartzbach, “Safety Analysis
versus Type Inference for Partial Types” Informa-

tion Processing Letters, Vol 43, pp. 175-180, North-
Holland, September 1992.

[28] J. Palsberg and M. Schwartzbach, “Object-Oriented

Type Systems”, John Wiley & Sons, to appear, 1993.

[29] J. Reynolds, “Automatic Computation of Data Set
Definitions”, Information Processing 68, pp. 456-461,

North-Holland, 1969.

[30] A. Wright and R. Cartwright, “A PracticsJ Soft Type
System for Scheme”, Proc. 1994 ACM Conf. on Lisp
and Functional Programming, Orlando, Florida, June

1994, to appear.

Appendix: Construction of Set Constraints

Figure 6 presents the complete details of the constructions
of set constraints for a term. The main difference between

Figure 6 and Figure 3 is that the relation Z 1- e b (se, C)
recursively passes down a set variable which is empty if the
expression under consideration is never called, and is non-
empty otherwise. The key property of the relation .2? 1-
e b (se, C) is that if Z is empty then C is vacuously true,

and if 2 is nonempty, then se and C are equivalent to those
constructed using the simpler deductive system in Figure 3.
We now define SC(eo) as follows: if Z is a new set variable

and Z 1- e b(X, C), then SC(eO) is the pair (X, {Z ~ e} UC)
where e is some arbitrary se-value. Note that all se-values

are set expressions and that the choice of e is arbitrary -
its only purpose is to force the variable Z to be nonempty,

since otherwise the constraints C would be vacuously true.

317

