An Equational Framework for the Flow Analysis
of Higher Order Functional Programs

Dan Stefanescu*
Harvard University
Suffolk University

Abstract

We present a simple method for the general flow analysis
of high-order functional programs. The method computes
an abstraction of the program’s runtime environment via
a system of monotonic equations. As the environment can
grow unbounded, we exploit patterns in the program’s con-
trol structure (i.e., the call-tree) to determine some static
partition of the environment, and merge points in the en-
vironment belonging to the same equivalent-class. High or-
der functions are handled by embedding control information
into closures. The method is proven correct with respect to
a rewriting system based operational semantics. Various
implementation issues are also considered.

1 Introduction

This paper presents a simple technique for the static anal-
ysis of higher order functional programs. The main idea is
to represent the runtime environment of a functional pro-
gram as a mapping from unique dynamic labels, represent-
ing locations in the activation frames of functions, to values.
The abstraction method consists in choosing a a relation of
equivalence over the set of all dynamic labels, and using the
partition to generate a system of monotonic flow equations
whose solution provides the result of the analysis.

The result of the paper generalizes previous control-flow
analysis techniques (0CFA, 1CFA, etc.) within an equa-
tional framework in the style of the original Cousot and
Cousot approach [12]. It allows for approximate analysis
that is adaptive both to individual programs and to compile-
time resource constraints., The method is proven correct
with respect to a rewriting system based operational seman-
tics.

*Work supported by DARPA Contract Nr. F19628-92-C-0113
Author current address: 105 Aiken Computation Laboratory, Har-
vard University, 33 Oxford St, Cambridge, MA 02138 and 622
Fenton Building, Suffolk University, Boston MA 02114, E-mail:
dan@das harvard edu, dan@hyper.clas suffolk edu

TResearch performed at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Labora-
tory 1s provided in part by the Advanced Research Projects Agency
of the Department of Defense under the Office of Naval Research con-
tract N00014-92-J-1310. Author’s current address. NE43-253, MIT
Lab for Computer Science, 545 Technology square, Cambridge, MA
02139 E-mail: zhou@abp.lcs.mit edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
itle of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

LISP 94 - 6/94 Orlando, Florida USA
© 1994 ACM 0-89791-643-3/94/0006..$3.50

318

Yuli Zhou!

MIT Lab for Computer Science

1.1 Background

Traditional data flow analyses were developed for optimizing
compilers of imperative languages [1]. Such an analysis is
typically performed on flow-diagrams in which the nodes are
basic blocks and the arcs are the program’s control points.
Properties on the exit arcs of each node are related to those
associated with the entry arcs via data flow equations, and
the solution of the system of equations provides the result
of the analysis.

Cousot and Cousot ([12], see also [15, 16]) developed the
theory of abstract interpretations, which unified data flow
analysis under a general mathematical framework. Within
this framework, an environment is a mapping of variables in
the program to values, and a context is a mapping of control
arcs to environments. Abstract interpretation is thus aimed
at computing an abstract context, which approximates the
set of environments obtainable at each control arc. Points
in the abstract context are related via monotonic equations
over lattices, and the system of equations is related to the
static semantics of the program, which provides an exact
summary of the program’s contexts obtainable for a given
set of inputs. In this way a general proof of the correctness
of abstract interpretations was obtained.

Inter-procedural flow analysis, however, has the problem
of unbounded runtime environment in the presence of re-
cursive procedure calls. Two earlier solutions were given
in [13, 28], employing techniques to bound the size of the
abstract environment by merging points belonging to “simi-
lar” function calls. This is most obvious in the “call-strings”
approach, in which the flow variables are indexed by call-
strings that encode the invocation history of procedures.
Bounding the number of (abstract) call-strings thus has the
effect of bounding the size of the environment. Similar tech-
niques were developed for analysis of programs with recur-
sive data-structures. [22] introduced the use of “tokens”
to reduce the environment in a general and flexible way.
However, all these techniques were developed for first or-
der languages in which function call-sites can be determined
statically. More recently, Bourdoncle has generalized these
ideas into a framework of dynamic partitioning, which also
combines the technique of widening to deal with infinite ab-
stract domains [5, 6].

Abstract interpretation took a new turn when Mycroft
[26] adapted it to the strictness analysis of first order func-
tional programs. His work has since been generalized to
handle higher-order functions, data-structures and polymor-
phism [8, 20, 4]. A distinguishing characteristic of these
methods is that abstract interpretation is generally viewed

as “semantics in abstract domains”, which assigns abstract
values to expressions in the program. Naturally, functional
values grow exponentially with the number of arguments
and with levels of function abstraction, thus various tech-
niques for dealing with this explosion have been developed,
e.g., to compute only the “envelope” of the function graph
[21], only the minimal function graphs needed by the pro-
gram [23], or to represent function values compactly using
type expressions [25]. Even with these optimizations, the
practical utility of these methods appears to be limited due
to their computational complexity.

In functional languages such as Scheme and ML, where
functions are first class values, function call-sites are gener-
ally unknown. Shivers [29, 30] rightly identifies the prob-
lem with the lack of static control flow information, i.e., the
control flow arcs for functional calls cannot be determined
statically. His solution is therefore to perform control flow
analysis (CFA) as a pre-requisite for other, more problem
oriented, data flow analyses. Shivers’ CFA employs a tech-
nique akin to the call-strings approach which handles higher
order functions by embedding call-strings in closures.

Since closures are just a special kind of data-structures,
this coincides somewhat with another line of research in ab-
stract interpretation to compute properties of data-structures
(e.g. [17]). A common characteristic of these methods is
that the semantics of the program is first instrumented by
adding control information (e.g., labels), according to which
the abstraction is then defined.

1.2 Our Method

The flow analysis presented in this paper is based on a sim-
ple observation: given a functional program, its state during
execution is the runtime environment, consisting of a tree of
frames, with one frame per function invocation. Thus the
abstract environment computed by the flow analysis can be
bounded by first partitioning frames according to fixed pat-
terns in the call tree, and then by merging frames according
to their respective partitions. The static partition is just
the first step towards utilizing control flow information em-
bedded in the program, which also enables us to present the
analysis as an equational system.

Figure 1: An example showing a simple 2-partition that
merges frames according to its function, in this case f and
g.

From the equational point of view, if we identify loca-
tions in frames by flow variables, then variables are related
by a system of equations, which are monotonic since these
locations are not updated. The only problem is that the
system grows dynamically without bound as computation
progresses. Fortunately, the fact that frames are merged
also translates into a fixed number of flow variables, thus a
finite, static system of equations.

319

We start with a functional kernel language, and define
a rewriting system based semantics which makes the run-
time environment explicit by using labels instead of lexical
scoping and generates a flat representation of the history of
the computation. This representation allows us to relate the
runtime environment to the system of flow equations via a
partition induced by a equivalence relation expressed on the
labels, thus enabling a simple correctness proof.

The theoretical contribution of this paper is the presenta-
tion of a general framework for flow analysis in higher order
functional settings together with a simple proof of correct-
ness. Although the idea of partitioning program runtime
environment has appeared in previous works, we feel that
it has yet to be presented in a pure form together with the
handling of higher order functions. Data-structures are not
considered in this paper but we believe an extension to in-
clude them should not be difficult. On the other hand, we
do not consider partitioning utilizing semantic information
as in [5, 6], in this respect we are closer in spirit to control
flow analysis. Most of the known works on control flow anal-
ysis are presented in terms of special cases corresponding to
very simple partitions, e.g. 0CFA (mono-variant analysis)
(2, 27, 30, 32], or 1CFA [30]. Recently [11] presented a poly-
variant analysis which detailed a 1CFA-like approach.

The practical significance of our method lies in the fact
that, unlike most previous works, it is presented in a simple
equational framework. Since the equations distribute the
flow constraints over the source program, the implementa-
tion of the method is more amenable to various optimiza-
tions that exploit data dependencies among the equations
(see [14]), thus avoiding the repetitive work to compute un-
changed quantities. Efficient implementiations can be devel-
oped using an attribute system together with incremental
computations (see [9]), which bridge the gap between the-
oretical methods and practical applications. The closest to
our presentation style is a recent work ([32]) by Wand and
Steckler which computes 0CFA by finding the minimum so-
lution of a set of constraints generated from the parsed tree
of the analyzed expression.

The rest of the paper is organized as follows: section
2 defines a simple functional language, whose operational
semantics is detailed in section 3. In section 4, its static
semantics is defined. Section 5 develops the equations for
general flow analysis whose proof of soundness can be found
in [31]. Section 6 discusses practical considerations for the
application of our method in order to control the accuracy
and the cost of the analysis. The paper closes with conclu-
sions and directions for future work.

2 A Functional Kernel Language

We shall present the analysis on a small functional kernel
language (FKL), which can be regarded as a textunal repre-
sentation of the graph of lambda expressions!. In FKL, all
operators are labeled (a, b, ¢, ...); All lambda expressions
are given a name (f, g, hk,...) and lifted to the top level. A
program in FKL is a set of function definitions plus a main
expression (figure 2). Within a function definition, « is the
(only) formal variable, and y1, ..., v are the free variables
of the body e. An expression is a set of bindings {s1,..., sn}

lAltemahvely, one can start from a typical minimal function lan-
guage, eg. ¢ = k| x| eo e1 | Az e, and then define a compilation
function into FKL as in [31]

with a designated result label ¢. A binding s gives a label
to each primitive operation in the program.

P = ewhere {F, ..., F}}
F = f=lambda(z |y ... yi)e
e u= *s1;...; 8
s u= a=k
| c=apply ab
| a={closure f, y1 ... y)

Figure 2: Syntax of FKL

Example 1 In the following we show a FKL program (a)
together with its equivalent in sugared lambda calculus (b).
The A-expression can be converted to the FKL program by
creating a binding for each label, replacing A’s by closures
and moving A-definitions to the top level.

®{a1 = apply c1 ¢3;
c1 = (closure gf, };
¢s = {closure x{, }}
where {gf =lambda(g |)*?{az = apply as a4;

as = apply g c2;

ca = (closure y{, };

as = apply g vi;
=0 }

xf =lambda(z |)*{}; 1
yf = lambda.(y |)y{} }

(a)

letrec ¢1 = A8 g.((g ¢c2)*3(g 0°)%+)%2;
c2 = Ay.y;
ez = Moz
iIl (Cl Cs,)a1

(b)

Notation We define some operators that will become use-
ful shortly. For each binding ¢ = apply a b, let op(c) = a
and arg(c) = b. For each function f = lambda(z|...)*{...},
let res(f) = a.

3 Dynamic Semantics

We shall model the runtime behavior of FKL programs as
a rewriting system similar to that introduced in [3], except
that we use labels instead of lexical scoping to deal with ex-
pansion of function calls. First, we need to extend the basic
syntax introduced in figure 2 to handle dynamic programs
as the intermediate states during the rewriting process. The
new syntax is shown in figure 3.

B

8

I
R
—_~—

3

.5 8n)

1;
k
{closure f, a1 ... ai)
apply o 8

o

e

W= W R

Figure 3: Syntax of dynamic programs

A dynamic label has the form «.a, where o is a unique
scope identifier, and a is a static label within that scope. In
other words, « is just the activation frame of some function

320

invocation, and a a slot within that frame. o can be con-
veniently generated as the call-string of that function, i.e.,
a string of static labels a;...a: representing the sequence
of function calls leading to that particular frame. Dynamic
labels are thus strings of static labels.

Let «,f,v denote dynamic labels. Note that given a
program P ::= B where {Fy; ...; F.}, only the top level
expression B changes during rewriting, thus we shall take
the dynamic program to be just the toplevel bindings B,
leaving the program source code in the background. As
shown in figure 3, a dynamic program is a flat set of dynamic
bindings. The syntax for dynamic bindings is similar to that
of static bindings in which static labels have been replaced
by dynamic labels.

A binding of the form v = apply o 8 is called an apply
binding, where v will be called a call-site of f if o is bound
to a closure generated for function f. A binding of the form
o« = v, where v is either a constant or a closure, will be called
a value binding. Binding of the form § = « are absent from
the source programs. These are called copy bindings and
are neceded just for sending arguments and receiving result
in the expansion of function calls.

Given an initial program Bo, a dynamic execution of By
Is any rewriting sequence

Bo— ... — Bn — ...,

where the individual rewriting steps in the sequence are pre-
scribed by the conditional rewrite rules shown in figure 4.

APPLY
a = {closure f, 1 ... B},
f=1lambda (z|y1 ... w) “{s1; ...; 8}
y=applya f — va=p
Ty =B vy =P
813 +ee3 S5
¥ =.c
PROPAGATE
a=uy
IB = Y —— ﬁ =9

Figure 4: Dynamic semantics of FKL.

In this rewriting system, a redex for a dynamic program
B is ejther an apply or a copy binding. Before rewriting
can occur, however, the conditions specified on the rule’s
numerator must be satisfied. These conditions are simply
patterns for bindings and they are satisfied if they can be
matched against some bindings in the program. Whenever
the match is successful, the redex binding can be rewritten
according to the denominator of the rewriting rule.

There are in fact just two rewriting rules. Rule AP-
PLY describes what happens during a function application:
a copy of the functions body is pasted in, along with the
necessary copy bindings for sending argument, free variable
values, and for returning result. In order for the scoping to
be correct, static labels in the function’s body are replaced
by dynamic labels appropriate for the current invocation.
This is defined by the following:

~v.a = k, ifs,=a=k
o = v.c=apply y.av.b, if s,=c=applyad
L v.a = (closure f, v.y1 ... v.y1},
if s, = a = (closure f, y1 ... W)

Rule PROPAGATE, on the other hand, serves to propa-
gate values along the copy bindings, simulating the effect of
sending arguments and returning results.

Example 2 The following shows a possible rewriting se-
quence for the program in example 1. For clarity, the re-
dexes and their matching conditions are shown underlined;
the newly introduces bindings are marked.

“1{al =apply c1¢c3; —
c; = {closure gf,);
cs = {closure xf, }}

“{"a:1.9 = cs; —
*a.a2 = apply a;.a3 a;.a4;
*a.a3 = apply a1.9 a1.¢2;

*a1.c2 = (closure yf,);
*ai.a4 = apply a1.9 a1.v1;
*ay.v1 = 0;

*a1 = a1.42;

c1 = {closure gf,);
cs = (closure xf, }}

1{ *a,.g = {closure xf, }; —
ai.a2 = apply ai.a3 a1.a4;
ay.a3 = apply a;.g a1.c¢2;
ay.c2 = {closure yf,);
ai.a4 = apply a1.g a1.v1;
a1.v; = 0
a; = a1.az,
c1 = {closure gf,);
cs = (closure x{, }}

In order to define the result of computations, we follow
a commonly used technique to define a partial information
content ordering on dynamic programs. Let D) be the set of
primitive constants. Given a program P, let LABELS be the
set of static labels occurring in P. We shall assume static
labels to be unique within a program. LABELsS* then denote
the set of dynamic labels.

Each dynamic program B can be seen as defining a map-
ping B : LABELS* — V. The value domain V is defined
by

V = D + CLOSURES,

CLosURES = {{closure f, a1 ... ai1) | @, € LABELsS"}
where f ranges over function symbols in the program. Intu-
itively, we can regard LABELS* — V to be a store indexed
by the dynamic labels, and each dynamic program B as a
state of the store during computation. Moreover, the store is
partitioned into frames, where each dynamic label a.a iden-
tifies a frame location. With this analogy in mind, we now
define:

_) v fa=v€Band vis a value
B(o) = { 1 otherwise

and
BCB if VYae LaBeLs® B(a)C B'(a).

wherez Cy, z,ye€V,ifz=1Lorz=uy.

If B — B’, then clearly B C B’. Thus the progress of
computation only increases the information content in the
store. It is also the case that all intermediate computation
states form a directed set according to this partial ordering

(this is essentially the confluence property of FKL, but we
shall not be concerned with proving the correctness of this
statement, which has little effect on the analysis presented
later in this paper), thus a limit state can be meaningfully
defined. Let

Comp(B) =|_J{B'| B—" B'}.
We shall call Comp(B) the computation function of B.

4 Static Semantics

Abstract analysis of a program will seldom be useful unless
it is performed for all possible runs of the program w.r.t. a
set of inputs. In other words, the source program P under
analysis will usually have free variables which we assume to
take non-closure values. The static semantics defines the
collective result of running P on all possible bindings of the
free variables.

Let z1, ..., zm be the free variables of B, where each z,
is constrained to take inputs from V, C V (notation z, : V).

Let
9V = 2D+CLOSUR.ES — 9D 2CLOSURES

be the power set of values. The static semantics is then
defined by the static computation function Comp(B) where,
for all dynamic labels o we have:

Comp(B)(a) = |_J{Comp(B[v1/z1,. .., vm/zm])(a)]v: € Vi}
The static semantics provides an exact characterization of
the runtime environments of B, but is almost always infinite,
thus not computable in a practical sense. Using flow anal-

ysis, we wish to obtain a finite approximation to C’En\qp(B)
that is computable at compile time.

5 General Flow Analysis

Let II = {01, ..., 05} be a partition of LABELS". Let [a]
denote the equivalence class of o derived from the partition,
i.e., the o s.t. &« € 0. We require the partition to generate a
right congruence relation ([19]), i.e. to satisfy the following
condition

Va,B,c [a] = [f] = [a-c] = [B.c].

Define succ : II x LaBELS — II s.t. suce([a],¢) = [a.c].
The previous condition guarantees succ to be well-defined.
Let ¢ € TI. Intuitively, o is an abstract frame. The
entity o.c, where ¢ is a static label, is then a cell in that
frame. Moreover, if ¢ = apply e b is a binding in the source
program, then o.c is an abstract call-site for the functions
that become bound at o.a. Furthermore, succ(o,¢) repre-
sents the frame of the callee, which receives its input from,
and sends its result to, the caller frames. Note that there
could be multiple caller frames. This situation is different
from the dynamic semantics, where each activation has a
unique caller. In other words, the abstract frames form a
graph rather than a tree, the graph may even be cyclic.

Example 3 In the following we show two practical parti-
tions.

1. Let Hp = {LABELS"}. This partition corresponding to
the OCFA analysis as described in [30].

321

2. Let II; = {{e}} U {[e] | @« € LaBELs}, where € is the
empty string, and [a] is the set of labels in LABELS”
that end in a. Clearly, succ(o,¢) = [c], thus the par-
tition is well-formed. The corresponding analysis is
equivalent to 1CFA as described in [30].

5.1 Abstract Domains

For the general flow analysis, abstract values are constructed
from the partition of frames. Let II be such a partition, the
abstract domain for closures is define as:

CLOSURES = 2{/- | o€1}

The corresponding abstract domain for values is
V = D x CLOSURES,

where D is some abstract domain of D, assumed to be a
finite lattice. Clearly, V is also a finite lattice with the
natural ordering induced from those of its two components.

We note that the above representation for abstract clo-
sures, namely fo, is really an abbreviation of the abstract
closure {(closure f, .1 ... 6.yn). Such an abstraction for clo-
sures means that closures are only distinguished from where
they occur in the program’s call-tree, rather than by their
semantic identity.

For the abstraction to be mea.mngful we need to relate
elements of V to those of 2", i.e., abstract values are meant
to approximate sets of concrete values. This amounts to
establishing a (alois connection [12] between the two do-

mains, 1.e., a pair of order preserving maps Abs : 2V — V

and Conc : V — 2V
Conc(Abs(z)) C z, and Abs(Conc(v)) =70 (1)

In our case, assume D is given with a predefined Galois
connection (with 2°), and let abs: V — V s.t.

abs(k) = (absp (k), 0) = (k, 0),
abs({closure f, v.31 ... v.y1)) =
Then Abs and Conc can be defined as

U abs(v),

vEx

(L5 {fim})-

Abs(z) = Conc(7) = {v] abs(v) C 7}.

It is straightforward to verify that condition (1) is satisfied.

5.2 General Flow Equations

Given source program P and a partition II, Let &: II x
LABELS — V be a vector of flow variables (we shall write
.., instead of $(o,a) for the vector’s elements). The sys-
tem E of general flow equations is derived as follows:

o For each constant binding a = %, include the equations

®, . = (k,0); (2)
e For each closure binding a = (closure f, ...), include
the equations
D0 = (L, {fo}); ®3)
o For each free variable z : U, include the equations
D, = Abs(U); 4)

e For each function definition f = lambda (z]y] ... y})e,

include the equations

bz = U{@G:.a,g(g) | succ(o’,c) = o,
(-L’ {f6}> .g (I)a" op(c)}) (5)
Doy, = |UH{®sy, | succ(o’,c) =0,
<-L’ {f5}> C Py op(c)}; (6)

e For each application ¢ = apply a b, include the equa-
tions

Qo= U{ésucc(a’,c).res(f) l (J-y {f5}> - q)o’ﬂ'}' (7)

Of the previous equations, (2) — (4) are relatively obvi-
ous. Equations (5) and (6) reflect how the flow of formal and
free variables are merged. In particular, the formal variable
o.z gets its flow from the arguments at all call-sites of the
function (5), and a free variable 0.y, gets its flow from inside
the closures (6), the latter being due to the fact that free
variables are bound where the closures are generated. Equa-
tion (7) means that the result of an application includes all
the results of the functions called at that site.

Let us rewrite the system of equations £ as & = F(),
where, clearly, F' is a monotonic operator. Define

®°=(L,...,1), and @"=F(@"Y), a=12...,
then the system of equations has a least solution ®%° =

n__o ®". Assuming the abstract domains to be finite?, this
himit can be reached at some finite number of iterations.

5.3 Correctness of Flow Analysis

The abstraction of Cgr;p is done in two dimensions. In one,
the power set of the value domain 2V is abstracted to a do-
main (V), as described in section 5.1; In the other, dynamic
labels are abstracted into a set of abstract frame locations,
represented by II x LABELS. Given some static semantics
B : LaBELs® —s 2V , its corresponding abstraction can be

defined as ABS(B) : I x LABELS — V s.t.

ABS(B)(0, a) U Abs(B(a.a)).

As we mentioned before, the correctness criteria for gen-
eral flow analysis is that ®° should approximate the static

semantics Cgr;p(B), which can be stated as the following:

Theorem 1 (Correctness of General Flow Analysis)
Let P = B where ... be a program with free variables
21, .., 25, ® = F(®) be the system of general flow anal-
ysis equations associated with P. The general flow analysis
18 sound, i.e.

ABS(Comp(B))(c,a) C (0, a)

2This restriction 1s not strictly necessary, as convergence can be
guaranteed using techniques of widening [12, 7] even when the ab-
stract domain 1s infinite.

322

Bioi = { ..;aa={closure f, §y1 ... b.gn);...;.c=apply a.aa.b;...}
APPLY |
B, = {..vd=p;..}
!
1
Boy = {.8=v;...;vd=0;...}
PROPAGATE |
B, = {.vd=v;..}

Figure 5: This diagram traces the history of the value binding to an original copy binding introduced via APPLY.

Proof Using the definitions of ABS, Abs and Comp we
obtain the following derivation:

ABS(Comp(B))(s,a) = | | Abs(Comp(B)(a.a))

[a]=c

= U U abs(Comp(Blvi/z1,...,vm/zm])(a.a))

[al=0 v, €V,

Let Bo = BU{z1 = ki1;...;2, = k,} be any closed
instance of B and let By — B,. Then, by the definition
of Comp, it is sufficient to show that abs(By(a,a)) C 71!

[al.a
for all n, o and «, as depicted in the following diagram:

ot £, ... K et E|
By —— - —— B,

In other words, the soundness for the general flow equa-
tions follows if, for all ¥ and d:

vd=v € B, = abs(v) C @{‘7“;;. (8)

If condition (8) is satisfied, we say ®"*! is safe for Bn. To
prove the condition we proceed by induction on n.

¢ (Base case) @' is safe for By: this is straightforward
since the only value bindings in By are those in the source
program.

¢ (Induction step) Assuming that condition (8) holds for
integers < m, we show that it also holds for n. To this end
let

By —...—=s Bn_1 — B,.

We shall only be interested in value bindings created by the
last rewriting step, since the other ones are already covered
by the induction hypothesis. There are two cases to con-
sider:

1. v.d = v is introduced by application of the APPLY
rule. In this case, d = v has to be in the original
program, thus v.d = v is included in ®' C ®"*!.

2. v.d = v is introduced by application of the PROPA-
GATE rule. In this case, v.d = v must be rewritten
from redex 4.d = § and there is some application of the
APPLY rule that introduced the latter copy binding.
Assume the copy binding is introduced in rewriting
step ¢, where the function involved is defined as

f=lambda (z|y; ... u)) °{...}.

The situation is somewhat complicated, and we illus-
trate it in figure 5.

The copy binding ¥.d = § can be one of the following
three kind, serving different roles. These are treated
in turn.

(a) (sending argument) ¥ = a.c, d = 7 and § = a.b.
By induction hypothesis, ®™ is safe for B"*, thus
for all B,, 1 < n. We have

fie) € ®a).0 and abs(v) C P[4, (9)

i.e., both the closure and the value bindings are
included in ®".

Since suce([a], c) = [7], @ = op(c) and b = arg(c),
from equation (G4.a) and (9) we derive

+1 +1
szy].d - ?a cz

2 éF‘a]l? .:_> abs(v).

Therefore v.d = v is included in ®™**.

(b) (passing free variable value) v = a.c, d = y, and
B = 8.y,. By the induction hypothesis,

abs(v) C ®fy .- (10)

This case can be verified in the same way as for
the previous one, from equations (G4.b) and (10).

(¢) (returning result) v.d = a.c and f = a.c.e. By
the induction hypothesis,

abs(v) C @, .- (11)

Recall that [o.c] = suce([e], ¢) and e = res(f). In
view of equation (G5), (11) becomes

abs('u) c <p:ucc([cz],c).res(‘f) c QF;]JC = @rj]-ti‘

Thus v.d = v is included in "7,

From (a), (b) and (c), we conclude that ®"*! is safe
for Bn, for all integer n. o

Note, however, that the correctness condition is a “one-
way” assertion: it says nothing about how precise the anal-
ysis is. In particular, the trivial analysis that assigns the
largest possible value to every o and a is correct, but is oth-
erwise quite useless. Unfortunately, it is extremely hard, if
ever possible, to characterize the precision of the analysis in
any quantitative way. In practice, however, this does not
seem to be a serious problem.

323

Example 4 Consider the expression in example 1 and its
associated FKL program. The evaluation of this expression,
i.e. the concrete flow @, is 0.

Suppose that we choose the 0CFA analysis in which inte-
ger constants are abstracted to token int, a typical approach
in current systems. Then using the partition IIp in example
3.1 we generate the equations shown in figure 6.

®, = (int,@)

ch = <J‘7 {gf})

@c; = <L5 {yf}>

O, = (L, {=f})

3, = UAParg(an I (L,{97}) € @op(ay}

@y = U'{(Parg(-L {yf}> g ‘I’ (a,)}

b, = U‘{éarg(a;) I ("L {:Ef}) g @ p(a)}

@a, - U Qres -‘L {f}) C ‘bop(a) f € {gf’Xf’yf}}

Figure 6: OCFA equations.
1,2,3,4.

In the equations above, ¢ =

Other than &, = (L, {xf}), all the non-immediate flows
in the least fixpoint solution of this system are equal to
{{int, {yf}). Thus, since ®o, = ({int, {yf}), the 0CFA analy-
sis produced flows which are strictly more conservative than
the exact ones.

Choosing to use more resources, we try next the 1CFA
analysis (see example 3.2) which distinguishes between calls
of a function at different sites. We derive the equations
shown in figure 7.

Doy, = (int,h)
ocy = <-L) {gfo,}>

Doy = (J_,{yfa})

Py = (L, {xfo})

q)[a,]Ag = Uo, CDU arg(a,) I <L){gf<§}> - Qa.op(a,)}
ey = Ua-{q)a arg(a,) | (L, {yfs}) C <I>a-.op(a,)}
[z = Ug{q)marg(a) | (J-’{Xf5}> c o, 0p(a,)}
0.0, = U{é[anl.rw(f i <-L {f5}> c 9, op(a,)s

7 € {gf,x{, yi}}

Figure 7: 1CFA equations where 1 = 1,2,3,4 and o ranges
over all classes of equivalence of partition II;

The least fixpoint of this system of equations contains
the following nontrivial flows:

Poay = Poay = Poiay = Play)y = Plag)s = (int,),
@o‘ az = Q["'a] r = <_L, {yf[al]}>, and

q)[%] g= U Doy

Notice that ®., = (int,#) = abs(0), thus 1CFA analysis
performs better than 0CFA, in fact as well as possible.

6 Practical Considerations

In this section we briefly discuss some optimizations that can
lead to significant performance increase in practical imple-
mentation of the flow analysis as described in the previous
section.

6.1 Incremental Computation

Let m = |II| and ! = |LABELS|. Recall the definition of the
set of general flow equations from the previous section. We
derived one equation for each abstract frame location o¢.a,
where ¢ € 1l and a € LABELS. Thus the number of flow
equations is m x .

It is possible that most of the equations need never be
generated (e.g., equations for o.c, where ¢ occurs in function
definition for f but ¢ never becomes a call-site of f), since
they are not meaningful flows and do not contribute to the
final solution.

However, it is generally not possible to determine which
equations are actually needed before the analysis is run. In-
deed, the equations corresponding to o.c, where ¢ occurs in
the body of a function definition for f, are needed only if ¢
becomes an abstract call-site of f. Thus for the sake of effi-
ciency in implementations of flow analysis, the set of flow
equations should be generated incrementally on demand,
i.e., when new call-sites are discovered.

Another place where incremental computation is likely to
increase performance, is within the iteration of the vector of
flow variables ®*'. Since the sequence is monotonic, at stage
1 we only need to compute the differential from the previous
stage ® — ®'~', In addition, iteration should stop as soon
as the dlﬂerentlal becomes empty.

Going one step further, one should not naively com-
pute ®' &% ... in that order, but should exploit the data-
dependency among individual flow variables. In general, it
is always better to follow the direction of dataflow, i.e., if
D, , affects P, , then one should delay the evaluation of
the latter until the former has saturated. This is not always
possible, since there may be cyclic dependencies. In case
there are cyclic dependencies, one should treat a cyclic com-
ponent of the dependency graph as a big flow variable, and
try to delay the evaluation of any flow variable dependent on
variables in that component until all variables in the com-
ponent have reached saturation. Recently([7]), Bourdoncle
introduced a data dependency based formal methodology for
describing chaotic iteration strategies for systems of fixpoint
equations as well as effective approaches for generating such
strategies.

6.2 Partitioning of Call Sites

Flow analysis as presented in this paper is inherently syntac-
tic. This is especially so in its handling of functions. We do
not compute an abstract map for functions, which encodes
all its input/output behavior; rather we distinguish function
call sites, and compute a new set of flows corresponding to
each abstract function call. The number of different flows we
compute are fixed by the size of the partition, thus one may
trade-off complexity vs. accuracy of analysis by choosing
different partitions.

In general, more accurate flow analysis may be obtained
by finer partitioning of call-sites. Consider a program con-
taining a single function f, with potential call-sites illus-
trated by the following schema (we assume f can be called
at any one of the four call-site):

..y

a=apply ...;
b=apply ...;
c=apply ..

wh;s'r;a{leambda(zl) ..;d=apply ...;...}

324

If we perform the equivalent of 1CFA as defined in ex-
ample 2, the following partition will be defined, providing 5
abstract frames:

{e},

[¢] = {dynamic labels ending in a, }
[6] = {dynamic labels ending in b, }
[c] = {dynamic labels ending in ¢, }
[¢] = {dynamic labels ending in d.}

It is easy to find out the flow of arguments and results, as
illustrated in figure 8 (A) (note: call-site ¢.a sends argument
to frame o' if succ(o,a) = o’; Likewise 0.0 receives results
from o’).

'V N\ {}

(a) [lb] fe] ,V lm
*d\J i/d m (11)] rcfd
{d] {ad+} {bd+) {cd+}

O OO ©
(A) (B)

Figure 8: Two sample partitions, where arcs indicate the
flow of arguments.

The problem with partition (A) is that too many frames
are sending arguments to frame [d]. Clearly, a good parti-
tion should try to minimize the number of senders for each
abstract frame o, thus less flows get merged. In order to
examine the sitnation in more detail, let us first introduce
some notation.

Given a program P, we define its call-graph to be a la-
beled graph. The nodes of the graph are the function sym-
bols in P. There is an arc f — ¢ if f may call g at call-site
a. For example, the program we are considering has the call
graph shown in figure 9.

(13
D)

Figure 9: A sample call graph, showing one function f that
can be called at call-sites a, b and ¢ within the main expres-
sion, with another call-site d within its body.

Clearly, the set of dynamic frames is only a subset of the
paths generated from the call-graph. The call-graph pro-
vides us with clues as to how to obtain a better partition
the set of dynamic frames into a finite set of abstract frames.
For example, partition (B) shown in figure 8 has the follow-
ing abstract frames (we represent each equivalent class in
the partition as a regular expression, where others contains
the rest of the call-strings):

{e,a,b,0,ad% bdT, oedt others)

which has the potential of providing a finer analysis.

As we pointed out earlier, it is generally not possible
to obtain an accurate call-graph before any analysis is per-
formed. Thus the initial call-graph has to be conservative
and assume the worst: essentially any call-site where the
operator is unknown can be the call-site of any function.
After the analysis, however, we will generally have a much
better approximation of the call-graph. In view of this, flow
analysis can be iterated to achieve better precision. Tak-
ing efficiency into consideration, it may be a good idea to
perform simple flow analysis first just to obtain a better call-
graph, then to perform the general flow analysis tailored for
the particular values that one wish to capture.

7 Conclusions and Further Work

We have presented a framework for doing flow analysis for
higher-order functions by solving a system of monotonic flow
equations. The nature of the abstraction process is to define
a partition of the program’s runtime environment accord-
ing to fixed patterns in the program’s call-tree, and then to
merge points belonging to the same class in the partition.
This enabled us to present the analysis in the equational
framework of [12], while still being able to handle functions
as first class values.

The practical motivation behind this work is the need to
control the computational resources required for performing
flow analysis on functional values, which is known to explode
with higher order functions([24]). As shown in the previous
section, by choosing appropriate partitions, one can control
the accuracy and the cost of the analysis according to the
problem to be solved.

The contribution of our paper lies in clarifying the ab-
straction of program control points, thereby setting the foun-
dation of a general framework for flow analysis. Further-
more, this framework is presented in a simple equational
setting, which exposes optimization opportunities for im-
plementation.

Future work can be carried out in three directions: 1)
Replacing FKL to a kernel of a true functional language.
This primarily means adding data structures. Since func-
tional closure is a special kind of data structure, we expect
that they can be handled similarly. 2) Handle imperative
language constructs. We believe this is possible by adding
more control points, i.e., by indexing flow variables by la-
bels in the program, thus making it possible to define the
program state at every control point. 3) Considering the
practical aspect of the method. Clearly, the usefulness of
any static analysis method can only be validated by effi-
cient implementations for real compiler optimization prob-
lems. Implementations of our method are amenable to use of
incremental computation, which optimizes the fixpoint cal-
culation in three aspects: generating equations on demand,
computing only differentials during each iteration step, fol-
lowing data dependencies among the flow variables([7]} etc.
Preliminary work in this area is reported in [9].

References

[1] Alfred V. Aho and Ravi Sethi and Jeffrey D. Ullman.
Compilers: Principles, Techniques and Tools. Addison-
Wesley Publishing Company, 1987.

[2] Andere Bondorf Automatic Autsprsjection of Higher
Order Recursive Equations Proc. ESOP’90, Springer
Verlag, 1990

325

[3] Zena M. Ariola and Arvind A Syntactic Approach to

[13

[14

]

]

[l

Program Transformations. Proc. of the Symposium on
Partial Evaluation and Semantic-Based Program Ma-
nipulation PEPM’91. SIGPLAN Notices, Vol 26 No. 9,
116-129.

Gebreselassie Baraki. A Note on Abstract Interpreta-
tion of Polymorphic Functions. 5th ACM Conference
on Functional Languages and Computer Architecture.
Lecture Notes in Computer Science Vol 523, August
1991.

Francois Bourdoncle Interprocedural Abstract Interpre-
tation of Block Structured Languages with Nested Pro-
cedures, Aliasing and Recurswity. Proc. International
Workshop PLILP’90. Lecture Notes in Computer Sci-
ence Vol. 456, Springer-Verlag.

Francois Bourdoncle Abstract Interpretation by Dy-
namic Partitioning. J. Functional Programming 2 (4):
407-435, October 1992.

Francois Bourdoncle Efficient chaotic iteration strate-
gies with widenings Proceedings of the International
Conference on Formal Methods in Programming and
their Applications, Lecture Notes in Computer Science
735, Springer Verlag, 1993

G. Burns and C. Hankin and S. Abramsky. Strict-
ness Analysis for Higher-Order Functions. In Science
of Computer Programming, 7:249-278, 1986.

T. Cheatham, H. Gao, and D. Stefanescu A Suite of
Analysis Tools Based on a General Purpose Abstract In-
terpreter, Proceedings of the International Conference
on Compiler Construction, Edinburgh, April 1994

Thomas E. Cheatham, Jr. and Dan Stefanescu A
Suite of Optimizers Based on Abstract Interpretation,
PEPM’92, San Francisco, June 1992

Charles Consel Polyvariant Binding-Time Analysis For
Applicative Languages, PEPM’93, Copenhagen, June
1993

Patrick Cousot and Radhia Cousot Abstract interpreta-
tion: a unified lattice model for static analysis of pro-
grams by construction of approzimate fizpoints, Confer-
ence Record of the Fourth ACM Symposium on Princi-
ples of Programming Languages, pages 238-252, 1977.

Patrick Cousot and Radhia Cousot Static determi-
nation of dynamic properties of recursive procedures
IFIP Conference on Formal Description of Program-
ming Concepts, vol 1, pages 237-277, Saint Andrews,
1977

Patrick Cousot Asynchronous iterative methods for
solving a fized point system of monatone equatione in a
complete lattice, Rapport de Recherche No. 88, Labo-
ratoire IMAG, Grenoble, Sept. 1977.

Patrick Cousot and Radhia Cousot Systematic design of
program analysis frameworks Conference Record of the
Sixth ACM Symposium on Principles of Programming
Languages, San Antonio, 1979

326

(16]

(17]

(19]

[20]

[21]

(22]

[23]

[24]

25]

[26]

(27]

(28]

[29]

Patrick Cousot Semantic foundations of program anal-
ysis In S.S.Muchnick and N.D.Jones, editors, Program
Flow Analysis: Theory and Applications, chapter 10,
pg. 303-342, Prentice-Hall, 1981

Alain Deutsch. On Determining Lifetime and Aliasing
of Dynamsically Allocated Data in Higher-Order Func-
tional Applications. Proc. 17th Annual ACM Symp. on
Principles of Programming Languages, 157-168, San
Francisco, Jan. 1990.

Alain Deutsch. A Storeless Model of Aliasing and Its
Abstractions Using Finite Representations of Right-
Regular Equivalence Relations Proceedings of the 1992

International Conference on Computer Languages, 2-
13, Oakland, California, April, 1992.

Samuel Eilenberg Automata, Languages and Machines,
volume A, Academic Press, 1974

John Hughes. Abstract Interpretation of First-order
Polymorphic Functions. Technical Report 89/R4, Uni-
versity of Glasgow, Dept. of Computing Science, 1988.

S. Hunt and C. Hankin. Fized Points and Frontiers: A
New Perspective. J. of Functional Programming, 1:91~
120, 1991.

Neil Jones and Steven Muchnick A Flexzible Approach to
Intraprocedural Data Flow Analysis and Programs with
Recursive Data Structures, Conference Record of the
Ninth ACM Symposium on Principles of Programming
Languages, pages 66-74, 1982,

Neil Jones and Alan Mycroft Data Flow Analysis of Ap-
plicative Programs Using Minimal Functions Graphs:
Abridged Version, Conference Record of the Thirteenth
ACM Symposium on Principles of Programming Lan-
guages, pages 296-306, 1986.

Atty Kanamori and Daniel Weise An Empirical
study of an Abstract Interpretation of Scheme Pro-

grams, Technical Report, Stanford University, April
1992.
T. Koo and P. Mishra. Strictness Analysis: A New Per-

spective Based on Type Inference. Proc. of the ACM
Conference on Functional Programming Languages and
Computer Architecture, 260-272, 1989.

Alan Mycroft Abstract Interpretations and Optimizing
Transformations for Applicative Programs, Ph.D. The-
sis, University of Edinburgh, Scotland, 1981.

Jens Palsberg and Michael 1. Schwartzbach Binding
Time Analysis: Abstract Interpretation versus Type In-
ference, Technical Report, Aarhus University, 1992.

M. Sharir and A. Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In: Muchnick and Jones
(eds), Program Flow Analysis, Theory and Applica-
tions. Prentice-Hall, 189-233, 1981.

Olin Shivers Control Flow Analysis in Scheme ACM
SIGPLAN ’88 Conference on Programming Language
Design and Implementation, Atlanta GA, June 22-24,
1988.

(30]

[31]

(32]

Olin Shivers Control Flow Analysis of Higher Order
Languages or Taming Lambda, Technical Report CMU-
CS-91-145, Carnegie Mellon University, May 1991.

Dan Stefanescu and Yuli Zhou An Equational Frame-
work for the Abstract Flow Analysis of Functional Pro-
grams, Technical Report, Harvard University, January
1993.

Mitchell Wand and Paul Steckler Selective and
Lightweight Closure Conversion,Conference Record of
the 21st ACM Symposium on Principles of Program-
ming Languages, pages 435-445, 1994.

327

