
Signatures for a Network Protocol Stack:

A Systems Application of Standard ML*

Edoardo Biagioni Robert Harper

Abstract

Advanced programming languages such as Standard ML

have rarely been used for systems programming tasks such as

operating systems and network communications. In order to

understand more fully the requirements ofsystems program-

ming, we have implemented asuiteofindustry-standardnet-

work communication protocolsin a completely type-safe ex-

tension of Standard ML. While theimplementation has only

recently become operational, we already observe acceptable

communications throughput. We make careful use of the

Standard ML modules system, with the core component of

the implementation being a signature which is generic to

all communications protocols. This generic protocol is then

specialized for specific protocols, and these are implemented

by functors parameterized by generic protocols. This leads

naturally to a layered system structure and also provides an

important and useful “mix-and-match” capability in com-

posing protocols into complex networking systems.

We have found the advanced features of Standard ML,

in particular the modules system, static typing, and higher-

order functions, to be extremely useful in building complex

communications systems. Thetype compatibility of the var-

ious components of a system is guaranteed by the compiler.

Furthermore, we find it significant that most of the infor-

mation needed to understand the structure and interactions

in our code can be obtained from a study of the signatures

alone. Perhaps most important is that we have been able to

use the expressive power of Standard ML modules to give

concrete expression to previously ad hoc system-structuring

concepts developed by other researchers in the field of net-

work communications. For language designers and imple-

mentors, our experience has also pointed out specific areas

for further work that may lead to advanced languages that

are useful for systems programming.

*This research was sponsored by the Defense Advanced Research
Projects Agency, CSTO, under the title “The Fox Project: Advanced
Development of Systems Software”, ARPA Order No. S313, issued by
ESD/AVS under Contract No. F196228-91-C-0168.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Peter Lee

1 Introduction

Brian G, Milnes

The implementation of network communication protocols

is a complex task requiring careful design to achieve high

performance and reliability. An efficient implementation

must exhibit both high throughput (transmission capacity

per unit time) and low latency (time per transmission). It

must achieve these goals while ensuring that data transmis-

sion functions reliably over unreliable media. In addition to

the intrinsic complexity of the task, the problem of imple-

menting a network protocol is compounded by the need to

interface with hardware device drivers and to offer a stan-

dard interface to higher-level clients. These demands stress

conventional software engineering methodology to the point

that network protocols are often regarded as prime exam-

ples of the need to violate principles of structure and safety.

To achieve efficiency and express low-level operations, many

implementations use programming languages such as C or

C++ that support low-level operations and let the program-

mer violate abstraction bound aries. Ad hoc techniaues are

used to compensate for the lack of linguistic support for

program structuring, multi-threading, and storage manage-

ment. The resulting programs are generally difficult to mod-

ify and maintain.

The purpose of the Fox Project is to investigate whether

this unfortunate state of affairs is essential. In particular the

project is investigating the suitability of modern program-

ming languages based on rigorous semantic foundations for

systems programming applications such as the implementa-

tion of network protocols. The overall goals of the project

are to advance the design of programming languages by us-

ing them to solve systems programming problems and to

advance the art of systems programming through the use

of programming languages that support modularity, type

checking, and higher-order functions.

This paper describes an implementation of the standard

TCP/IP protocol stack in an extension of the Standard ML

(SML) language. In structuring our implementation, we

have made careful use of the Standard ML modules system.

We define a generic signature for all protocols and specialize

this for specific protocols. Functors that implement various

protocols may then be parameterized by generic protocols,

thereby providing a “mix-and-match” capability in compos-

ing protocols into complex networking systems. The type

compatibility of the various components of a network sys-

tem is checked by the compiler. We find it significant that

most of the information needed to understand the structure

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791-643-3/94/0006..$3.50

and interactions in our code can be obtained from a study

55

of the signatures alone.

The system we have built uses the SML module lan-

guage to express design abstractions. These abstractions

have been described informally by other researchers in the

networking field but have never been concretely expressed

in implementations due to the lack of appropriate support

in the programming languages used.

In addition to modules, SML has safety guarantees about

type and storage use that assist in the development and

maintenance processes by eliminating type errors and stor-

age use errors.

We have extended the SML language to make it easier

toexpress low-level operations and to make it easier for the

compiler to produce efficient code for these operations. The

extensions we use include first-class continuations, byte ar-

rays, 8-bit, 16-bit, and 32-bit values and operations, and

functions to access the system and the hardware.

Section z summarizes the terminology and concepts used

to describe the design and implementation ofnetworkcom-

munications software. Section 3 recasts these concepts in

terms of ML language structures and presents our signatures

and the high-level design choices that they reflect. Section 4

reports on the experience we have had with our initial sys-

tem, and Section 5 concludes by summarizing our results

and looking ahead.

2 Network Communications Systems

The terminology used for network communications systems

often depends on the specific type of system being discussed,

and is not always used consistently. To fix terminology we

define the terms layer, protocol, protocol stack, hdance, and

peer.

A network communications system can be viewed as an

implementation of an abstract machine. Application pro-

grams (clients) communicate through an interface repre-

sented by this abstract machine. A client may use this in-

terface as a building block in building further abstractions.

The term layer refers to a network abstraction.

In keeping with conventional usage, we use protocol to
refer to an implementation of a layer, that is, an algorithm

that realizes a network abstraction. A protocoi stack is an

ordered collection of protocols layered on top of each other,

each protocol implementing its abstraction in terms of the

abstraction upon which it is layered.

An instance of a protocol is the execution of a protocol

on a particular system. There could potentially be several

instances of the same protocol within the same system at the

same time. In practice the state of an instance can be used

to represent the instance, so that code can be shared among

instances. The peer of a given instance A is the instance B

with which A is communicating. Whenever A communicates

with itself, A is its own peer. Typically, peers run on separate

machines (hosts) connected on a network.

A well-known example is TCP/IP, which consists of three
layers. The 1P layer supports unreliable transmission of data

using hardware-independent addressing. The TCP layer

supports reliable delivery of correctl data. TCP is built on

top of 1P. 1P itself is layered on top of hardware-specific pro-

tocols such as Ethernet or ATM. Data handed by TCP to

1P may or may not be delivered to the intended destination,

may be corrupted, or may be delivered multiple times. TCP

1The correctness IS probabihstlc, and Incorrect data can, with very
low probability, be delivered by a correct implementation of TCP

attaches a unique identifier and check bits to each message

sent, and exchanges messages with its peers to retransmit

any messages that have been lost or corrupted.

We say that an implementation of a network communi-

cation system is well-structured if

●

●

●

it has a distinct protocol for each layer

all the peers of each instance of a protocol are other

instances of the same protocol,

the layered structure is realized using modules and ex-

plicit interfaces.

It is a simple observation that many implementations

of network communication systems are not well-structured

according to our definition. One reason for this situation is

that network software is usually implemented in C, which

fails to support modules with clean interfaces.

Another reason for the poor structure of many implemen-

tations is the lack of modularity of the TCP and 1P proto-

cols. Specifically, the TCP protocol expects to make use of

data structures internal to 1P. This leads to an instance

of the TCP protocol receiving information from the peer of

the 1P protocol, which violates the principles of good struc-

ture. Protocols defined within the 1S0 reference model [5]

are generally more modular.

Another explanation for the lack of structure within im-

plementations is that some optimizations are only possible

if layer boundaries are violated. For example, a clean, but

inefficient, implementation of a layered protocol would copy

the data and perform a context switch every time the data

had to cross the boundary between two layers. A more opti-

mized implementation would only copy the data when abso-

lutely necessary, and avoid context switches between layers

by using the same thread of control (where possible) to ex-

ecute the code for all the layers. Taking this to an extreme,

all the boundaries between layers are removed. This merg-

ing of layers is similar to the loop fusion done by Fortran

compilers and to the deforestation techniques used by func-

tional language compilers. It reduces intermediate storage

and the operations required to store and retrieve the data,

and therefore saves time and space. Unlike these compila-

tion techniques, the layers of communication software are

typically merged by hand and optimized at the source code

level, in a technique called Integrated Layer Processing or

ILP[2]. The disadvantage of using ILP at the source code

level is that it completely destroys the modular structure of

the protocol implementatiorr.2

One recent and notable exception to these poorly struc-

tured network implementations is the software produced by

the x-kernel project [9], which has developed implementa-

tions of protocol stacks that are well-structured and highly

modular. In the x-kernel, all layers declare an interface con-

taining the same set of procedures each with the same set

of arguments. This structure of procedures and its calling

convention is called the rneta-protocot. As a result, a pro-

tocol need not know which other layer it is layered on, and

protocols can be layered almost arbitrarily to build custom

protocol stacks that achieve the different performance trade-

offs required by different applications.

The x-kernel does not use ILP. As pointed out by Clark

and others [4], many of the costs of traditional protocol im-

plementations are not due to layering, and can instead be

2Abbott and Peterson [1] have addressed this by developing a spe-
cialized language for protocol data processing

56

Application

TCPw1P

Ethernet

device driver

device/OS

Figure 1: A Standard Protocol Stacks.

traced to avoidable inefficiencies in the layered implemen-

tations. By concentrating on avoiding unnecessary context

switches and data copying, the x-kernel achieves efficient

data transmission and reception while retaining aclean de-

sign whose structure is the same as that of the protocol

stack [9]. This shows that while integrated layer process-

ing may improve performance, a well-structured design can

achieve good performance even without ILP.

Our work has been inspired by and has taken many ideas

from the design of the x-kernel. Unlike the x-kernel, we have

developed formal interfaces for our protocols and given them

concrete expression in SML. In fact we believe that the x-

kernel ideas can only be given full expression in a language

like SML. The next section explains the general principles

we followed in developing the formal interfaces and the de-

tails of the interfaces, and explain how the interfaces fit in

our implementation of the TCP/IP protocol suite.

3 Structuring Communication Systems in Standard ML

We have developed a well-structured implementation of

a simplified version of the TCP/IP protocol suite3 in a lan-

guage based on Standard ML. We refer to our implementa-

tion as the Fox Net. This section gives an overview of the

Fox Net, omitting details in the interest of describing the

overall structure and how it is realized in SML.

In our overview we present SML signatur-es, structures,

and ~zmctors. An SML signature specifies the interface of a

module. A module may implement multiple, different sig-

natures. A signature may be thought of as a collection of

conditions a candidate implementation of the interface must

satisfy. An implementation of an interface specified by a sig-

nature is an SML structure that must have a concrete type

for every type specified by the signature and a value for ev-

ery value specified by the signature. A functor is essentially

a parameterized structure whose parameters are structures.

A functor, when applied to actual arguments, computes a

new structure. We refer to this as the instantiation of a

functor. A functor may be instantiated multiple times, with

the same or different parameters, each time producing a

new structure. Functor instantiation can involve execution

of arbitrary code to build the resulting structure. This may

be exploited in a number of ways, including code selection

based on instantiation-time flags [6] and optimizations based

on pre-computing those values that are computable at in-

stantiation time.

3 Our simplified Implementation would be a full TCP/IP If it im-

plemented 1P optzons These are part of the standard, but are not

requmed for normal operation, and we do not support them yet

3.1 Protocol Building Blocks

The individual protocols in a protocol stack are implemented

by a collection of functors that define a layer in terms of the

layer below it. Here, we start with a simplified example

in which each functor has only one parameter. This code

builds a stack containing TCP, 1P, Ethernet, and a device

interface.

functor Tcp(structure Lower: PROTOCOL):

TCP-PROTOCOL = . . .

functor Ip (structure Lower: PROTOCOL):

1P-PROTOCOL =.. .

functor Eth (structure Lower:PROTOCOL):

ETHIROTOCOL =...

functor EthDevice () :DEVICEYROTOCOL=. . .

structure Device.Instance = EthDevice ()

structure EthJnstance =

Eth (structure Lower = Device-Instance)

structure Ip.Instance =

Ip (structure Lower = Eth.instance)

structure Tcp-Instsnce =

Tcp (structure Lower = Ip-.Instence)

val connection=TcpJnstance .active.open(. ..)

This code produces the standard protocol stack shown in

Figure 1.

Each of the protocol functors is parameterized by a struc-

ture which must satisfy the PROTOCOL signature. This pa-

rameter represents the lower layer protocol. At the same

time, each individual functor has an interface defined by

a different signature, such as IP-PROTOCOL or TCPIROTOCOL,

These specific signatures define the interface for one particu-

larprotocol andare defined as enrichments ofthe PROTOCOL

signature. The PROTOCOL signature is generic and defines

the minimal set of features that every protocol should sat-

isfy, and is therefore analogous to the meta-protocol of the

x-kernel. Since PROTOCOL is used to constrain the parameter,

only the types and values specified in PROTOCOL are available

toeachfunctor from the actual protocol that is supplied as

a parameter.

The signatures of the individuals protocols in a stack are

derived from the generic signature using a form of specifica-

tioninheritance expressedby theSML include construct:

signature PROTOCOL = sig . . . end

signature TCP-PROTOCOL = sig

. . .

include PROTOCOL

sharing type . . .

. . .

end

By including the generic signature in their definition,

each ofthe specific signatures inherits all the types and val-

ues declared in the PROTOCOL signature. Sharing constraints

bind the types declared in PROTOCOL to types that arede-

clared in the specialized signature. Because the special-

izedsignatures inherit all the types and values of PROTOCOL,

they are enriched descendants of the same signature. Any

functor that satisfies a specialized signature also satisfies

the PROTOCOL signature, and any instantiation ofsuchafunc-
tor can be used as a parameter to other protocol functors.

57

Application

TCP

Ethernet
J

device driver
I

device/OS

Figure 2: A Non-Standard Protocol Stacks.

To illustrate the modularity afforded by the use of func-

tors to define protocols, we can build a non-standard proto-

col stack with TCP running directly over Ethernet.

structure Tcp.Over-.Ethernet =

Tcp (structure Lower = Eth-Instance)

This is a special-purpose protocol that reliably sends

packets of any length, but only between hosts attached to

the same Ethernet. The protocol stack is shown in Fig-

ure 2. With such a protocol, it might be desirable to turn

off TCP checksums, which are expensive to compute and

not as strong as the Ethernet Cyclic Redundancy Check.4

Byadding to the TCPfunctora new parameter that speci-

fies whether checksums should be computed, we can specify

different behavior for different instances of TCP.

functor Tcp (structure Lower: PROTOCOL

val compute_checksums: bool):

TCPYROTOGOL = . . .

structure Tcp_Instance =

Tcp (structure Lower = Ip-Instance

val compute_checksums = true)

structure Tcp_Over-Ethernet =

Tcp (structure Lower = Ethernet_Instance

val compute.checksums = false)

In practice, each functor hasseveral such parameters.

Through the use of functors we have constructed truly

modular building blocks that may be “glued” together by

instantiation of these functors. Since the interface to the

lower-level protocol is constrained to the generic protocol

signature, we now have the components of a modular im-

plementation of the TCP/IP network protocol. These corn-

ponents can be used as building blocks to build other in-

teresting protocols. The example of a non-checksumming

TCP over Ethernet describes a protocol stack that is poten-

tially much faster than the regular TCP/IP and therefore

attractive for applications that only need to communicate

across a single Ethernet. This protocol can be built by re-

using the TCP/IP code without changing either the TCP
or the Ethernet code. With these software building blocks

we thus achieve a high degree of code re-use, an important

software engineering goal, without sacrificing modularity or

type safety.

We can use functors to build what the x-kernel project

calls micro-protocols, small protocols which can be added to

4That 1s, the probability of random blt errors going undetected m

higher when using only the TCP checksum than when using only the

Ethernet CRC.

a stack to achieve particular goals. For example, we might

have a micro-protocol whose function is to checksum out-

going data and discard incoming segments with incorrect

checksum. Another micro-protocol might sequence data by

attaching a sequence number to each outgoing segment and

delivering incoming segments to the higher layer in the or-

derspecifred by the sequence number. Compositions ofsuch

micro-protocols could be used to build protocols with the

functionalist y of monolithic protocols such as TCP or 1P.

3.2 The PROTOCOL Signature in Detail

The TCP/IP protocol stack implementation sketched in the

previous section uses the PRCITOCOL signature to define the

generic interface between layers: the PROTOCOL signature is

thus the key to freely composable protocols. Since thecom-

piler enforces strict adherence to the requirements expressed

in a signature, all protocols must match the PROTOCOL sig-

nature. Furthermore, the specific protocol signatures are all

derived from the generic signature using a form of specifi-

cation inheritance. The design of the PROTOCOL signature

therefore plays a central role in the overall architecture of

the implementation.

Thedefinition of the PROTOCOL signature is given in Fig-

ure 3. This signature is closed, meaning that it does not

refer to any external types or modules other than those in

the language definition. In particular the types are uncon-

strained in the PROTOCOL signature, allowing agiven protocol

implement ationto choose their definitions as appropriate for

that protocol. The signature of a specific protocol, such as

IPIROTOCOLj will usually specify or constrain these types,

for example by defining a specific notion of address suitable

for 1P implementations. In addition to declaring a num-

ber ofunspecified types, the PROTOCOL signature defines the

types of the arguments and results of the operations com-

mon to all protocols so that other protocols may use them

without relying on any specific implementation. This is cru-

cial to achieving amodular protocol stack, and fundamental

to structured system design.

Research in implementations of networking protocols has

produced useful principles to guide the design of good imple-

mentations. One of these is that copying the data unneces-

sarily can be one of the most time-consuming operations op-

erations, and therefore avoiding unnecessary copying is one

of the most important achievements of a good design. An-

other principles that the control flow of a program should

match the data flow, so for example the receive operation,

which delivers data from a lower layer to a higher layer,

should be implemented as a so-called upcall from the lower

to the higher layer [3].

With these remarks in mind, we now turn to a more

detailed description of the PROTOCOL signature.

The type address is used to identify a peer of the proto-

col (or application) layered above the protocol represented

by this signature. An address-pattern is a specification of
a set of possible peers from which a connection request will

be accepted. A connection is a handle for sending data and

closing or aborting a connection.

The type of incoming messages is the same across all

Fox Net protocols, and bound to the abstract data type

Receive-Packet. T. This abstract data type provides modu-

lar and efficient access to the data and to the message head-

ers and trailers while avoiding unnecessary copying. The

same is true for SendIacket. T, to which the type of outgo-

ing messages is bound.

58

signature PROTOCOL = sig

eqtype address

eqtype address-pattern

eqtype connection

type incomingmessage

type outgoingmessage

val initialize: unit -> int

val finalize: unit -> int

val active-open: address * (connection –> irrcomingmessage –> unit) -> connection

val passive-open: address-pattern * (connection -> incomingmressage -> unit)

-> (connection * addrees)

val close: connection -> unit

val abort: connection -> unit

val send: connection -> outgoingmessage -> unit

type control

type info

val control: control -> unit

val query: unit -> info

exception Initialization-Failed of string

exception ProtocolJ?ot_Initialized of string

exception Invalid-Connection of connection * address option * string

exception BadAddress of address * string

exception Open_Failed of address * string

exception Packet-Size of int

end (* sig *)

Figure3: Signature PROTOCOL

A protocol may need to acquire system resources before

it can operate. The lowest layer of the Fox Net, for ex-

ample, must acquire resources from the operating system5

so that it can communicate with the device driver.6 These

resources must be explicit 1y released once the application

no longer needs them, because the resources include hard-

ware devices or operating system resources that will not

be released by the SML garbage collector. The finalize

call releases all resources held by the protocol and the cor-

responding initialize call allocates the resources. Both

functions may be called multiple times, but resources are

only allocated on the first initialize and released on the

matching finalize. The count ofunmatched initialize calls

is returned by both functions.

A connection can be opened either by active-openor

passive-open. Both of these functions take as one of their

arguments apacket handler function that willbe called when

a packet is received. The connection value returned by

either of the open calls can be used to send any number of

packets, and finally to closeor abort the connection. The

difference between close and abort is that the latter will

terminate even if the peer is no longer reachable.

A protocol always has a send function, but needs no

receive: as data to be sent is given to the protocol when

5 Our]mplementatlon is budt on top of the Mach 30 operating

system [10]

6At the moment, the lowest level of our system communicates with
the dewce driver which resides In the Mxh micro-kernel. Our system

resides entirely In user space.

the higher layer protocol calls send, so data to be received

is given to the protocol when the lower layer protocol calls

the handler that was given as a parameter to one of the

open functions. This handler call is an upcall [3] since the

lower layer protocol calls a function from a higher layer,

Using upcalls for receive helps achieve high performance by

allowing the transfer of packets from the bottom to the top

of the stack with no context switches. We note that higher-

order functions are a clean and easy way of implementing

Upcalls.

The control function implements operations specific to

each protocol, and query delivers protocol-dependent infor-

mation. For example, 1P must be configured to use a spe-

cific address as a default gateway, whereas TCP needs to be

told when a packet has been consumed and more packets

can be accepted from the network. Likewise, each proto-

col has information it can return, information that may be

different from that of every other protocol. By binding the

generic control andinfo typesto appropriate specific types

in the specific signatures, we specify a different set of oper-

ations for each protocol; for example the 1P control type

allows the specification of a default gateway address. If a

protocol-specific operation or protocol-specific information

is needed by a higher-level protocol, as is the case for the

elements of the IP header that must reincluded inthe TCP

checksum, we can pass an encapsulation of that function as

one of the parameters to the higher-level protocol functor;
in the case of TCP we pass a function which computes the

checksum of the required elements of the 1P header. When

59

signature 1P-PROTOCOL = sig

datatype ip.address =

Address of {ip: ubyte4, proto: ubytei}

datatype ip_address.pattern =

Pattern of {protocol: ubytel, source-ip: ubyte4 option}

datatype ip.control =. .

datatype

SetDefault-Gateway of {gateway: ubyte4}

SetSpecific_Gateway of {destination: ubyte4, gateway: ubyte4}

Set-InterfaceAddress of string * ubyte4

Di.sable_Interface of string

ip-info =

Info of {max_packet_size: ip_address -> lnt,

interfaces: (string * ubyte4 option),

local-address: ubyte4 -> (string * ubyte4),

packets-sent: int,

packets-received: int,

packets-discarded: int}

include PROTOCOL

sharing type address = ip-address

and type address-pattern = ip..address.patterm

and type imcoming~essage = Receivelacket.T

and type outgoing-message = Send-Packet.T

and type control = ip.-control

and type info = ip_info

end (* sig *)

Figure4: Signature for the IP Protocol Layer

building custom protocols, only the encapsulation of the

lower-level protocol function as parameters to the higher-

level functor needs to be re-implemented.

All of the functions are designed to return to their caller

in the course of normal operations. When an unusual event

is detected, an exception is raised. The PROTOCOL signature

defines sixgeneric exceptions that may beraised byany pro-

tocol implementation. Protocol implementations only raise

exceptions from this group.

3.3 A Specific Protocol Signature

AS mentioned earlier, the signatures of specific protocols are

derived from the generic protocol signature by constraining

the implementations ofthe typesin the PROTOCOL signature

using sharing specifications, and by specifying additional

operations (if any) specific to that protocol. As an exam-

ple, consider the signature of the 1P protocol, given in Fig-

ure 4. This signature binds the type address to the 1P

address type, correspondingly for address_pattern, binds

control and info to corresponding types meaningful for
1P, and binds incomingmessage and outgoingmessage to

the types Receivelacket.T and Sendlacket.T that were

describedin the previous section.

The 1P address and address pattern types are declared as

record-valued datatypes: thedatatype declaration makes the

types unique foreach structure matching this signature, and

the records make the structured values self-documenting.

We use record-valued datatypes extensively in our signa-

tures.

The IP protocol definition [8]specifies a4-bytelPnurn-

ber which identifies a host, and a l-byte field which identifies

the particular layer above IP to which packets will be given.

Our IP address type specifies both values, since this combi-

nation uniquely identifies the peer of the protocol that uses

this instance of 1P to send data.

The 1P address pattern always has a field to identify the

layer above 1P, andoptionally specifies the remote host by

its 1P number. This flexibility is used to wait passively for

packets fora specific protocol, with thepackets being either

from aspecific remote host or from any host. Once a packet

matching the pattern is received, the passive open completes

and the packet is delivered to the specified handler.

The control type offers four control operations. Twoal-

lowtheenabling anddisabling ofa specific interface. Were-

quire the local address for the interface to be specified when

enabling an interface. The other two control operations al-

low the specification of a gateway (also known as router)

for 1P packets that must be forwarded to other networks.

The gateway can be set either for all packets that cannot

otherwise be routed, or specifically for a particular desti-
nation address. This control operation can be used when

a corresponding ICMP r-edwect packet7 is received from a

gateway.

The info type returns a variety of information used both

by the layers above 1P and for monitoring the system. In

the first category are the maximum packet size and the local

address, which are used by TCP and UDP (via functor pa-

71CMP is the Internet Control Message Protocol, which lets 1P

systems communicate to each other mformatlon about the network.

60

rameters; Ethernet has corresponding functions, which can

beusedfor Tcp.Over_Ethermet). Theother values returned

are useful for monitoring the system. Some of these values

are functions since in general it would be either too expen-

sive or outright impossible for every call to query to compute

all the values that may be of interest. Instead we return a

function: this delays evaluation, thereby allowing the caller

to ask for exactly the required data at the time it is needed.

4 Evaluation

We have completed an initial implementation of the TCP/IP

protocol stack in ML. This includes implementations of

the TCP, UDP, 1P, ARP, and Ethernet protocols, and of

an Ethernet device interface. The device interface uses the

machnrsg call in the Mach 3.0 micro-kernel to send and re-

ceive packets. The implementation is coded in a type-safe

extension of Standard ML with functions to access math-nrsg

and with efficient support for manipulation of 32-bit data.

We have tested and run the entire protocol stack, and

it successfully communicates both with other instances of

itself and with the standard implementations available under

Mach and SunOS.

In this section we compare the Fox Net implementation

of the TCP/IP protocol stack to that of the x-kernel version

3.2, released in February 1993.

Layer

Device Eth 1P UDP TCP Total

Signatures 1 1 6 1 8 17

Functors 3 2 8 2 9 24

Total 4 3 14 3 17 41

Table 1: Number of Modules in each Layer

Figure 1 shows the number of signatures and functors

defined in our protocol implementation. This gives an idea

of the complexity of the implementation and the extent to

which we have exploited the modules system. The number

of structures created depends on the exact protocol stack

that is being built.

The complexity of the implementation can also be seen

by comparing the number of files in the Fox Net and x-kernel

protocol implementations, shown in Table 2. In this table,

the numbers for 1P also include the ARP protocol, and for

the x-kernel also the vchan protocol. The Fox Net protocol

implementations altogether have about 7, 000 non-comment,

non-blank lines of code whereas the x-kernel protocol imple-

mentations have about 8,400, again showing approximate

equality in the complexity of the two systems.

Device Eth 1P UDP TCP Total

Fox Net 3 3 14 3 17 40
x-kernel 2 2 20 4 21 49

Table 2: Number of Files in each Layer

The figures in Table 3 give the size of .0 files in the x-

kernel, and the count of bytes of executable code and static

data for the Fox Net. It should be noted that the Fox Net

sizes include a significant amount of debugging code.

Device Et h 1P UDP TCP Tot al

Fox Net 82 16 200 46 282 626
x-kernel 11 10 66 14 73 174

Table 3: KBytes of Object Code

4.1 Performance

The performance of a protocol implementation is generally

measured by both latency and throughput. Latency is the

time between sending a packet and its reception by the peer,

and is measured in seconds. Throughput is the amount of

data that can be sent to a peer in a given time, and is

measured in bits per second.

In our experiments, the performance is measured on an

isolated 10 Mb/s ethernet network between pairs of identical

64MB DECstation 125s (with 25 MHz MIPS/R3000 CPU’s)

running Mach 3.0 version MK 83+ NETFIX. For these pre-

liminary numbers (the protocols are still under develop-

ment) the machines were running in multi-user mode and

ran the Andrew File System, but were otherwise unloaded.

Measuring latency directly would require either instan-

taneous communication between the peers or synchronized

clocks. Instead of measuring the latency directly, we mea-

sure round-trip time by having a protocol instance send a

small packet to its peer which responds as quickly as pos-

sible by sending a return packet; the time between sending

the packet and receiving the response is the round-trip time,

which is twice the latency. The round-trip time for each pro-

tocol in the Fox Net and the x-kernel is shown in Table 4.

Table 4: Measured Round-Trip Time of Protocol Stacks.

Directly measuring throughput of an unreliable protocol

such as 1P or UDP is only feasible if the receiver is at least

as fast as the sender. We have chosen instead to measure

throughput using a simple flow control strategy in which

confirmation messages are transmitted by the receiver back

to the sender to signal that all transmitted data has been

received and more data can be sent.

Throughput in general is known to be affected by the

size p of packets sent as well as by whether the packets

are ~ragrnented to fit large segments in smaller hardware

packets; with our flow control scheme throughput is also

affect ed by n, the number of bytes before a confirmation

message is sent. The TCP protocol has its own flow control

and segmentation mechanisms, and its performance is less

dependent on n or p than on the size w of the TCP rumdoru

parameter, which plays a role similar to n.

In the x-kernel, fragmenting a large packet is faster than

sending smaller unfragmented packets, whereas in the cur-

rent implementation of the Fox Net the opposite is true.

Because of these factors there can be no single number

representing the throughput of a protocol, and no implemen-

tation is likely to be “faster” than any other implementation

for all values of n, p, and w. We have chosen to report the

61

performance of our system with n = 24,576, since this is

the size of the network data buffers reserved by the version

of the Mach operating system that we use, and allows us to

operate reliably even if the receiver is slow. We have chosen

to present performance both with large fragmented packets,

p = 24, 576, and with the largest packets that can be sent

without fragmenting, usingp = 1472 for UDP andp = 1480

for 1P. For TCP we have arbitrarily chosen a window size

w = 4,096, which is the window size used by default on

many systems in common use.

All our throughput tests measure the real time needed

to send approximately 2 million bytes of data. The results

are shown in Table 5.

Speed (Mb/s)

1P I 1P -frag UDP I UDP -frag TCP

Fox Net 2.3 1.3 I 2.1 1.4 I 0.3

x-kernel I 2.2 I 4.4 I 2.0 4.3 I 2.4 I

Table 5: Measured Throughput of Protocol Stacks.

Table 4 shows the latency of the Fox Net to be between

six and ten times greater than for the x-kernel. Table 5

shows that the throughput of the Fox Net is equal to the x-

kernel for unfragmented 1P and UDP, but up to eight times

less for TCP. Since the latency is measured with small pack-

ets and the throughput with large packets, this suggests that

our per-packet costs are relatively higher than those of the

x-kernel, whereas our per-byte costs, which usually domi-

nate when sending large packets, are comparable to those of

the x-kernel except when fragmenting data.

The throughput figures tell us the x-kernel is faster when

fragmenting than when sending packets without fragmenta-

tion; since it takes more work to fragment and reassemble

a packet than not to, it is fair to assume that the x-kernel

fragmentation code is especially optimized, which is not true

for the Fox Net. Optimizing the Fox Net code to the same

degree as the x-kernel might yield comparable throughput.

The throughput and latency figures both show the Fox

Net implementation of TCP to be substantially slower than

the x-kernel implementation. The latter is derived from the

BSD implementation available in most versions of Unix, and

is a highly-tuned implementation of a complex protocol; it

is therefore not surDrisin~ that it is substantiallv faster than.
our implementation, wh~ch was entirely written by one of

the authors in less than a year.

Because there are ample “opportunities for optimiza.

tion” 8 still ahead of us, we regard these performance figures

as preliminary. It is however satisfactory to note that the

throughput of our 1P and UDP protocol implementations is

already in the same order of magnitude as that of production

implementations that are in common use.

4.2 Programming Language

The features of SML that helped us in our work include

the module system, static type checking and type infer-

ence, higher-order functions, and automatic memory man-

agement. Perhaps because we are building systems which

8To borrow a phrase from a well-known systems researcher.

are designed to be implemented using monomorphic lan-

guages, one feature we have not used extensively is poly-

morphism.

Modules are crucial for structuring the system, and func-

tors in particular permit parameterization of system compo-

nents, which greatly improves code re-use. Specifically, we

have shown in this paper how signatures and functors may

be used to express directly the x-kernel notions of meta-

protocol and micro-protocol.

Higher-order functions are also used heavily. For exam-

ple, in a protocol, send is a higher-order function that yields

a procedure of type outgo ingmessage -> unit when given

a connection as an argument. The use of a functional re-

sult allows us to arrange for send to compute a specialized

message-sending procedure that takes advantage of specific

characteristics of the connection. Thus, that part of the cost

of sending messages that is specific to the connection may

be amortized over multiple message-sends. Another example

of the use of higher-order functions is seen in active-open,

which takes a functional argument representing the standard

notion of an upcall. Lower-level protocols can use the upcall

function to handle incoming messages, thereby eliminating

many of the costs of data copying and context switching

that might otherwise occur as messages proceed from layer

to layer.

Automatic memory management has helped us avoid

many painful bugs and achieve high performance. However,

extended pauses adversely affect the performance of a proto-

col which is expected to react to an incoming message within

milliseconds. Furthermore, we observe that such pauses can

cause packets in an unreliable protocol to be dropped. Thus,

we plan to replace the current stop-and-copy garbage col-

lector with an incremental garbage collector that will cause

fewer extended pauses.

The Fox Net does make use of polymorphism, for ex-

ample in the signature and implementation of utility mod-

ules which are used at different types. However, neither

the PROTOCOL signature nor the specific signatures have any

polymorphic types. It is possible that as we continue to

study the problem we will isolate more patterns of control

that are common in networking code, and that we will ab-

stract these patterns using polymorphism.

Our FoxML extension to Standard ML has some new

types and operations on those types. The new types are

byte arrays, 8-bit, 16-bit, and 32-bit unsigned integers, and

continuations. Signatures for these types are in Appendix A.

Byte arrays are used to store data in memory contigu-

ously, This allows simple control over the layout of data in

memory, to the extent that data can be encoded as bytes,

and helps achieve seamless communication with parts of the

system that are not written in SML, specifically the operat-

ing system and the hardware devices. Both of these expect

data to be presented with a specific layout in memory, and

byte arrays help us store the data in the proper format. It

should be noted that byte arrays only allow for the simplest

non-nested layouts, and we have in fact needed to use one

unsafe operation to implement the nested data structure re-

quired by Mach. We are actively working to address this

problem, and in the future we expect to be able to safely

control memory layout for data structures.

Unsigned integers of different sizes are useful both to

implement specific operations and to store fields of specific

size. An example of the former is the TCP sequence num-

ber field, the computation of which requires 32-bit modulo

62

arithmetic. An example of the latter is the 1P protocol field,

which can take values between O and 255 and always has one

byte reserved for it in data structures. We are able to store

these unsigned integers into byte arrays and retrieve them

from byte arrays. To achieve good performance we have

restricted the byte array indexing operations to work only

with indices that are multiples of the size of the value. In

general, we have been able to confirm the experience of oth-

ers that careful control of data representations and layout is

crucial in realistic systems programming.

Continuations are created by callcc and invoked by

throw [7]. We have used continuations to write, entirely in

FoxML, a coroutine package that implements all the multi-

threading required by our current implementation. Like-

wise, we have been able to implement a simple timer pack-

age using only FoxML. Since the TCP protocol is designed

to be implemented using a number of timers and threads,

being able to implement the coroutine and timer packages

in FoxML has given us the benefit of custom threads and

timer packages without having to debug a threads package

written in an unsafe language.

Though our software is by no means bug-free, there are

classes of bugs that are common in large software systems

that we have not seen. most simificantlv undetected mem-

ory usage errors. We’ do not ~uffer fr~m null pointer de-

referencing, incorrect allocation, incorrect de- allocation, or

from undetected access outside of an array. It is well known

that these are some of the most common and insidious of er-

rors. In fact we have been able to find multiple such bugs in

the SML runtime system and in the Mach 3,0 micro-kernel,

both written in C. We attribute this not to exceptionally

careful design on our part, but to the emphasis on type

safety in SML.

With three people working full-time on the software, we

have observed that in most cases when an interface changes,

its signature will change and the compiler will report any

module that depends on the interface and has not been up-

dated. It is not an unusual experience for us to have multiple

people significantly change a number of modules, test them

individually, fix any incompatibilities unearthed by the com-

piler, compile them, and have everything run flawlessly the

first time. Such behavior is not normally observed with pro-

grams written in other languages.

5 Concluding Remarks

We have designed and built a modular implementation of a

standard and widely used network communications protocol.

The division of the system into independent modules with a

well-defined interface between protocols ensures that proto-

cols can be composed into a variety of protocol stacks with-

out sacrificing type safety. The design hinges on a generic

protocol signature that contains exactly those types and val-

ues that we expect every protocol implementation to sup-

port. This signature is enriched and specialized to produce

the specific signatures for the individual protocols. Protocol

implementations that satisfy a specific signature also satisfy

the generic signature. Our protocol implementations are pa-

rametrized to run on top of any protocol that satisfies the

generic signature, and can therefore be easily composed to

form different special-purpose protocols.
Our design makes heavy use of higher-order functions

and the modules system of SML. In fact, we have found

that many of the standard techniques for structuring oper-

ating systems and network communication systems can be

expressed directly and elegantly in SML. Thus, in contrast

to C, we have been able to explain system-structuring tech-

niques in concrete terms (that is, expressing them as SML

code), as opposed to relying on the abstract and usually ad

hoc descriptions typical of the systems-programming litera-

ture.

In the near future, we plan to improve the performance

of our system through profiling, identifying bottlenecks, op-

timizing our code, and improving the compiler. We also

plan to continue improving the language to allow clean, ef-

ficient, and type-safe expression of low-level operations. We

plan to add new protocols so we can experiment with more

combinations. Eventually, we would like to extend our work

to other areas of systems programming.

Specific features that we would like to see in the lan-

guage are type abbreviations in signatures, which would let

us specify types in signatures without using datatypes, and

safe ways to build data structures with control over the lay-

out as well as the ability to specify that certain memory

structures may not be relocated by the garbage collector.

Our work has also helped us identify desirable improve-

ments to our current language implementation, which is de-

rived from the SML/NJ compiler. For example, the current

implementation is unable to generate invariants for loops

and use them to reduce the amount of work to be done in-

side the loop. This could be used for example to eliminate

bounds check inside loops which access arrays, e.g. copy

loops. Another interesting challenge is to allow some sepa-

rate compilation, but have the final optimization of the re-

sulting code occur at link time. Such optimizations would let

the compiler specialize polymorphic functions on the types

of values that will actually be supplied to them, do cross-

module register allocation, and so on. Finally, it is possible

to imagine that further delaying code generation until run-

time might also prove beneficial. For example, when our

send routine returns a function that is specialized for the

connection, it is possible that a run-time code generator

might be invoked to generate specialized and highly opti-

mized code for this function.

An area of considerable interest within the network com-

munity is Integrated Layer Processing (ILP). A program

that has been restructured for ILP will combiue all its ma-

nipulation on incoming or outgoing data into a single inte-

grated loop, so a single pass is made over the data. This has

significant performance benefits, but as traditionally imple-

mented results in a breakdown of modularity, since the code

for all lavers of the Drotocol stack must be uresent in the.
single loop over the data. From the point of view of compi-

lation, ILP is reminiscent of deforestation; we suspect that

a compiler performing suitable optimizations, perhaps in-

volving link-time or run-time code generation, might achieve

much the same performance as ILP while preserving source

code modularity.

Our TCP/IP implementation is a first step towards es-

tablishing the feasibility and usefulness of advanced pro-

gramming languages for developing real-world systems, par-

ticularly network communications systems. While the per-

formance of our implementation in SML does not yet match

that of the most highly tuned C implementation, we are en-

couraged to have already achieved reasonable throughput,
with as yet little tuning or performance analysis.

Besides performance, software quality considerations are

also important. Here, we can already claim to have imple-

63

mented a system with important reliability benefits. In par-

ticular, the language guarantees that many common errors

will not happen: our system will not “dump core”. We are

keeping records of our software development process, and

plan to present more details in a future paper.

6 Acknowledgements

We would like to thank Ken Cline, Elmootazbellah Elnozahy,

Nick Haines, Greg Morrisett, and Eliot Moss for their as-

sistance and contributions to the Fox Net project. Brian

Bershad, Alessandro Forin, David Golub, Chris Maeda, and

Mary Thompson have made available to us valuable infor-

mation about Mach, and Larry Peterson, Hilarie Orman,

and Ed Menze have helped us with the x-kernel and given

us much encouragement. Matthias Felleisen and anonymous

reviewers have read early drafts of the paper and contributed

to its quality.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Mark B. Abbott and Larry L. Peterson. Automated

integration of communication protocol layers. Technical

Report TR 92-24, Department of Computer Science,

University of Arizona, December 1992.

D. D. Clark and D. L. Tennenhouse. Architectural con-

siderations for a new generation of protocols. In Pro-

ceedings of the SYGCOMM ‘9o Symposium, September

1990.

David D. Clark. The structuring of systems using up-

calls. In Proceedings of the 10th Sympostum on Op-

erating Systems Pr-inciple.s, Orcas Island, Washignton,

December 1985. ACM.

David D. Clark, Van Jacobson, John Romkey, and

Howard Salwen. An analysis of TCP processing over-

head. lEEE Commumcations, 27(6), June 1989.

J. D. Day and H. Zimmerman. The 0S1 reference

model. Proceedings of the IEEE, 71(12):1334-1340,

1983.

Nicholas Haines, Edoardo Biagioni, Robert Harper, and

Brian G. Milnes. Note on conditional compilation

in Standard ML. Technical Report CM U-CS-93-172,

School of Computer Science, Carnegie Mellon Univer-

sity, June 1993.

Robert Harper, Bruce F. Duba, and David MacQueen.

Typing first-class continuations in ML. The Journal of
Functional Programmmg, 1994. to appear.

USC Information Sciences Institute. Internet protocol.

RFC 791, September 1981.

Sean W. O’Malley and Larry L. Peterson. A dynamic

network architecture. ACM Transactions on Computer

Systems, 10(2), May 1992.

R. Rashid, R. Baron, A. Forinj D. Golub, M. Jones,

D. Orr, and R. Sanzi. Mach: A foundation for open

systems (operating systems). In Workstation Operat-

ing Systems: Proceedings of the Second Workshop on

Workstation Operating Systemsj September 1989,

A Signatures of SM L Extensions

type ‘a cent

val callcc: (’la cent -> ‘la) -> ‘la
val throw: ‘a cent -> ‘a -> ‘b

signature BYTEARRAY = sig

eqtype bytearray

exception Size

exception Subscript

except ion Range

val

val

val

val

val

val

val

val

val

end

..--+.,. :-. + A. :.. + —\ I. ..*----- -.aL. ay. Lllb - LL1b ‘/ UJ b~cULaJ

sub: bytearray * int -> int

update: bytearray * lnt * int

length: bytearray -> int

extract: bytearray * int * in

fold: (int * ‘a -> ‘a)

-> bytearray –> ‘a -> ‘a

revfold: (int * ‘a –> ~a)

-> bytearray -> ‘a ->

-> unit

-> string

a

app: (int -> ‘a) -> bytearray -> unit

revapp: (int -> ‘a) -> bytesrray -> unit

(* UBYTES matches Bytel, Byte2, Byte4 *)

signature UBYTES = sig

eqtype ubytes

type bytearray

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

end

+ : ubytes * ubytes -> ubytes

- : ubytes * ubytes -> ubytes

* : ubytes * ubytes -> ubytes

div: ubytes * ubytes -> ubytes

mod: ubytes * ubytes -> ubytes

ruin: ubytes * ubytes -> ubytes

max: ubytes * ubytes -> ubytes

> : ubytes * ubytes -> bool
>= : ubytes * ubytes -> bool

< : ubytes * ubytes -> bool
<= : ubytes * ubytes -> bool

print: ubyt es -> unit

makestring: ubytes -> string

<< : ubytes * int -> ubytes

>> : ubytes * int -> ubytes

! ! : ubytes -> ubytes

xor: ubytes * ubytes -> ubytes

II : ubytes * ubytes -> ubytes

W : ubytes * ubytes -> ubytes

to.int: ubytes -> int

from.int: int -> ubytes

update: bytearray * int * ubytes -> unit

sub: bytearray * int -> ubytes

64

