
Static Dependent Costs for Estimating Execution Time

Brian Reistad David K. Gifford

Laboratory for Computer Science,

Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139.

{reistad, gi.fford}@lcs .mit. edu

Abstract

We present the first system for estimating and using data-

dependent expression execution times in a language with

first-class procedures and imperative constructs. Thepres-

ence of first-class procedures and imperative constructs

makes cost estimation a global problem that can benefit

from type information. We estimate expression costs with

the aid of an algebraic type reconstruction system that as-

signs every procedure atype that includes a static dependent

cost. A static dependent cost describes the execution time

of a procedure in terms of its inputs. In particular, a proce-

dure’s static dependent cost can depend on the size of input

data structures and the cost of input first-class procedures.

Our cost system produces symbolic cost expressions that

contain free variables describing the size and cost of the pro-

cedure’s inputs. At run-time, a cost estimate is dynamically

computed from the statically determined cost expression

and run-time cost and size information. We present experi-

mental results that validate our cost system onthreecompil-

ers and architectures. We experimentally demonstrate the

utility of cost estimates in making dynamic parallelization

decisions. In our experience, dynamic parallelization meets

or exceeds the parallel performance of any fixed number of

processors.

1 Introduction

We present a new method for estimating program execu-

tion time that can be added to any statically typed pro-

gramming language with polymorphism. Reliable static es-

timates of the execution time of program expressions have

imDortant atmlications such as optimization. documenta-. .
tion, automatic parallelization, and providing real-time per-

formance guarantees. With reliable static estimates anop-

timizing compiler can focus its attention on the most im-

portant portion ofa program and analyze which expressions

might be profitably evaluated in parallel [G86, SH86, G88,

MKH90]. We have developed a simple dynamic paralleliza-

tion system which uses cost estimates to make parallelization

decisions based on their profitability.

This research supported by DARPA/ONR Grant, No, DABT63-
92-c-0012

Permissionto copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

A cost system estimates the cost of a program in terms

of a desired metric such as time. A micro analysis system is

a cost system in which costs are expressed using constants

that describe the costs of common, elementary operations.

Micro analysis was first presented by Knuth [K68] and more

recently by Wegbreit [W75] and Cohen [C82]. For instance,

the cost of the Scheme expression (+ x 2) would be the sum

ok

● the cost of looking up the operator +,

● the cost of evaluating the arguments, which requires

looking up the variable x and evaluating the number

2,

● the cost of calling the operator, and

● the cost of performing the operation.

This cost is expressed as

(sum C.var C.var Cnum C-call C-+)

where the symbolic constants are execution target specific.

In the presence of first-class procedures it is impossible

to syntactically determine the expected execution cost of

a procedure call. In the expression (f x 2) the total cost

includes the cost of performing the operation named by f;

however, the cost of f is not syntactically apparent. The

difficulty arises from the presence of an unknown procedure

and is present even if procedures can only be passed as ar-

guments or stored in data structures but not returned as

values.

In a static dependent cost system each procedure type

is automatically annotated with a latent cost description.

A latent cost communicates the expected execution time of

a procedure from the point of its definition to the point of

its use. Thus in (f x 2), f would have type (TI x mm)

c~”tent , 7’2 where (llatent denotes the cost of perform-

ing the operation named by f. This type is written in

S-expression syntax as (-> Cla,cn, (Tl mm) Tz). The

cost of the expression (f x 2) can be obtained by extract-

ing the latent cost of f from its type; giving a total cost of

(suzr C-var C-var C-mm C_call C1.t.nt).

Adding latent costs to procedure types provides a way

to describe the cost of higher-order procedures. Assume

the above expression (f x 2) is the body of a procedure:

(lambda (f x) (f x 2)). The latent cost of the procedure

defined by this lambda expression is the cost from above,
giving the procedure the following type:

LISP 94- 6/94 Orlando, Florida USA
o 1994 ACM 0-89791-643-3/94/0006..$3.50

65

(map fctn lst)

b,
I

~r-----+ 1
(sum C-map-overhead (prod Niength (sum C-map-per-elem C~~t~~t)))

map : v {Tl, T2, Ciatent, ~tength} .

(-> (sum Cmap-overhead (prod IVl=ng,~ (sum Cmap-per-elem c~atent)))

((-> Ctat.nt(2’1)T2) (listof T1 ~[ength))

(listof T2 IVt.n,th))

Figure 1: Factors in The Latent Cost of map

(-> (sum C_var C-var Cnum C-call CJate.t)

((-> Ct.tent(2’1nmrr) T2)

T])

Tz)

The latent cost of this procedure depends on the latent cost

of its procedural argument f.

The latent cost of a procedure may also depend on the

size of the procedure’s actual arguments. Consider the ex-

pression (map f ctn 1st) in which the familiar map operator

is used to apply the procedure fctn to each element of the

list 1st. Following the above analysis, this expression would

have cost (sum C.var C_var C.var C.call C~aP) where

C~~P is the latent cost of map. The latent cost of map de-

pends on both the latent cost of the input procedure and

the length of the input list. Wit bout any information about

the size of the list, there is no finite value that can be chosen

for C~aP to give an upper bound for lists of all sizes.

A static dependent cost is a latent cost that depends on

the size of the procedure’s arguments. In our cost system,

data structure types are annotated with a size description

that provides an upper bound on the run-time size of the

data structure. A size description communicates the data

structure’s size from its point of definition to its point of

use in much the same way that latent costs communicate

the expected execution cost of a procedure.

Figure 1 shows how a static dependent cost is used to

describe the execution time of map. The arrows show how

the definition of map and the values of its arguments all con-

tribute to the cost of executing its body for the expression

(map f ctn 1st). The latent cost off ctn is denoted Clat.~t

and is provided the type off ctn. ~len@h is an upper bound

on the length of the input list 1st and is provided by the

type of 1st. Our system uses static dependent costs to pro-

vide accurate estimates for a complete set of data parallel

operators in a manner similar to that shown here for map.

Polymorphism is central to our static dependent cost sys-

tem. Figure 1 shows the polymorphic type of map. Cost pa-

rameters such as the latent costs of higher-order procedures

and the size of data structures are made fully polymorphic

in our cost system. Cost and size polymorphism provides

the key descriptive power required to provide reliable cost

estimates for non-trivial programs.

Our static dependent cost system contains dependent

costs for a complete set of data parallel operators. A large

number of interesting programs can be written using only

first-class procedures and a complete set of data parallel op-

erators [B78]. The example programs in this paper were

all written without general recursion, including Sussman’s

n-body simulation [ADGHSS85].

Our cost system does not currently provide estimates for

user-defined recursive procedures, but still provides cost esti-

mates for non-recursive subexpressions. Predicting costs for

recursive procedures requires solving recurrence equations

which is not always possible. This problem is not addressed

as it is beyond the scope of this paper and has been the

subject of previous work [W75, L88, R89, S90]. Our cost

system could potentially be augmented with a pre-defined

database of recursion equations and their closed forms.

We show experimental results that demonstrate that the

estimates produced by our cost system are accurate to within

a factor of three of the actual cost incurred in the context of

multiple applications and architect ures. Thus our cost est i-

mates are sufficiently accurate to be of use to programmers

and optimizing compilers.

We have used our cost estimates to make dynamic par-

allelization decisions based on a profitability analysis. An

expression can be profitably evaluated in parallel if the cost

of evaluating the expression exceeds the overhead of per-

forming the parallelization. Our system computes cost ex-

pressions for polymorphic procedures that contain free cost

and size variables. Parallelization decisions cannot be made

at compile time because the values of these free cost and

size variables are not known. By providing this information

at run-time, paralleliz ation decisions can be made dynam-

ically. The decisions are low cost because the majority of

the cost analysis is done statically and the dynamic decision

only involves evaluating a cost expression. In our experi-

ence, dynamic parallelization meets or exceeds the parallel

performance of any fixed number of processors.

In this paper we present previous work (Section 2), our

cost analysis (Section 3), an algebraic cost and size recon-

struction algorithm (Section 4), experiment al results demon-

strating our cost system predicting execution times on vari-

ous target architectures (Section 5), and results of using our

cost system to make dynamic processor allocation decisions

(Section 6).

2 Previous Work

Our work is related to previous work on profiling, effect sys-

tems, cost systems, cost estimation, automatic complexity

analysis, and range analysis.

66

Profiling Profiling is a dynamic alternative to ob-

tainin~ cost information about a rmomam’s execution time.

The ~eneral approach is to run’ a ~rogram once, gather

statistics about where time is spent, and feed this cost in-

formation back into the compiler to re-compile the pro-

gram. Profile data has been used for various optimization

efforts including partitioning and scheduling parallel pro-

grams [SH86]. Unfortunately, the profile data from one run

is not always a good predictor of subsequent runs with dif-

ferent inrmt data ~W911. The static cost estimates rnoduced

by our s~stem do ‘not ~uffer from this disadvantag~ because

our system produces cost estimates that depend on the size

of the input data and thus generalize to previously unseen

data sizes. Static analysis can be done without choosing

“typical” input data that is required to gather profile statis-

tics.

Effect systems Effect systems originated the idea of

annotating procedure types with static information about

how a program computes and form the basis for cost sys-

tems. Lucassen and Gifford [LG88] first proposed effect sys-

tems to analyze side effects. Jouvelot and Gifford [JG91]

present an algebraic reconstruction algorithm to infer effect

descriptions and provide let-polymorphism using algebraic

type schemes. Talpin and Jouvelot [TJ92] extend recon-

struction to regions describing memory locations and show

how to include the notion of subeffecting.

Cost systems Cost systems are an extension of ef-

fect systems to analyze program execution time, but to date

they have not captured dependence on data structure size.

Dornic et al. [DJG92] propose a cost system that parallels

an effect system but it requires explicit typing. Dornic [D92]

presents the first cost reconstruction algorithm and includes

a notion of subcosting, but he does not describe how to han-

dle polymorphism. Dornic [D93] presents a refinement that

labels recursive calls, thus identifying the sources of recur-

sion. These systems cannot provide cost estimates for the

examples given in this paper because they are not powerful

enough to handle size dependencies and thus cannot describe

any form of iteration.

Cost Estimation Skillicorn and Cai [SC93’J present

a cost calculus for a parallel functional programming lan-

guage that can be used in a program development system.

They use sizes and costs in a similar manner to our sys-

tem in describing costs for data parallel operators; however,

they do not deal with first-class procedures that may have

dependent costs.

Huelsbergen et cd. [HLA94] present an automatic paral-

lelization system that statically estimates costs and makes

dynamic parallelization decisions. They use abstract evac-

uation to compute a lower bound on the cost of evaluating

an expression for various sizes of an input list. Their system

does not compute cost expressions that depend on the size of

the list. Instead Huelsbergen et al. determine the list size at

which evaluation of the expression will execute longer than

the parallelization threshold. Parallelization decisions are

made dynamically by comparing this statically determined

cutoff with run-time estimates of the list’s size. Presum-

ably, the abstract evaluation is run on increasing input sizes

until the abstract cost estimate exceeds the Darallelization

threshold; however, they did not implement the static por-

tion of their system and do not specify how the cutoff would

be automatically determined. Abstract evaluation seems be
expensive for first-class procedures. If multiple procedures

can possibly reach a point in the program (the value set for

the operator contains multiple procedures), the application

E E Expression

E ::= Identifier ~ Primitive Operator

[Symbol [Boolean ~ Float ~ Natural Number

] (lambda(I) E) I (ret (If I.) E)
I (E E)
I (let (I E) E)] (if E E E) I (begin E*)

Figure 2: pFX/SDC Syntax

of each procedure to the argument value set must be ab-

stractly evaluated. On the other hand, our system uses a

single type description for all the procedures that can reach

that point. Abstract evaluation may diverge for recursive

procedures, so the parallelization threshold is used during

static analysis to ensure that it halts. Lastly, their costs

are in terms of e-units that estimate the number of proce-

dure applications and conditionals in the evaluation. This

implies that iterators such as map are not primitives or their

cost would be greatly underestimate ed.

Complexity Analysis Automatic complexity anal-

ysis attempts to provide closed form costs by analyzing re-

currence equations, but has been developed only for lan-

guages without first-class procedures and mutation. Weg-

breit [W75] presents one of the earliest automatic complex-

ity analysis tools METRIC to analyze simple Lisp programs.

Le M6tayer [L88] presents the ACE system for analyzing FP

programs by rewriting to a time-complexity function and

matching against a database. Rosendahl [R89] presents a

similar system for a first-order subset of Lisp based on ab-

stract interpretation. Sands [S88, S90] presents a mecha-

nism to produce time-complexity expressions for a language

wit h first-class procedures (but not mutation) to extend Le

M6tayer’s ACE system. It seems that his approach still ex-

poses first-class procedures to the ACE system which would

require a powerful deduction system to solve recurrences

cent aining first-class procedures.

Interval/Range Analysis Range analysis is rele-

vant because our system includes estimates of data structure

sizes that allow us to describe dependent costs. Chatterjee

et al, [CBF91] analyze a data parallel program graph to dis-

cover which vectors have the same run-time sizes. They

observe that their algorithm is similar to type inference.

Harrison [H77] presents a mechanism for determining the

value ranges of variables in the context of loops.

3 Cost System Semantics

In this section we define our language and introduce our cost

system.

3.1 Language Definition

The experimental work described in this paper has been

carried out in a subset of the FX programming language

[GJS092], called pFX/SDC. pFX/SDC is statically typed

with first-class procedures and mutation. pFX/SDC has

been used to write a number of programs, including matrix

multiplication, the game of life, and n-body simulation.

The syntax of our language is shown in Figure 2.
pFX/SDC has symbolic, boolean, float, and natural number

literals, means of declaring both regular and recursive pro-

cedures, procedure application, 1 et bindings, a conditional

67

expression and a sequence expression. The re c expression

defines a recursive procedure in which If is the name of the

recursive procedure, 1$ is the name of the argument, and E

is the body. We restrict our discussion to single argument

procedures for simplicity, but our implementation actually

handles multiple argument procedures. The set of primi-

tives includes a full set of data parallel operators as well

as imperative primitives for allocating, reading and writing

mutable cells.

Values include first-class procedures, floats, natural num-

bers, symbols, booleans, pairs, lists, vectors, permutations

and mutable cells. Only natural number arithmetic can be

used to compute values that are used to size data structures;

see Section 4.2.

The call-by-value dynamic semantics is shown in Fig-

ure 3. The dynamic semantics of pFX/SDC includes a

counter to measure execution cost. Evaluation rules have

the following form: u, Env l-- E - v, c, u’ which is read

“given store u and environment Env, the expression E eval-

uates to value v incurring cost c and producing the modified

store a’.” Each rule is assigned a symbolic cost constant al-

lowing us to calculate a micro measure of the steps required

to evaluate an expression.

Recursive bindings are implemented by unwinding the

recursive binding in the fourth component of the closure.

This binding is unwound once by the Rec function during

application and appended (::) with the current environment.

Dynamic semantics are not given for the arithmetic, mutable

cell or data parallel operators.

3.2 Static Semantics

We begin by presenting value descriptions that include cost

and size annotations and then we discuss the static seman-

tics for deducing descriptions.

Value expressions are described by descriptions. As shown

in Figure 4, legal descriptions are types, costs and sizes:

● Types include base types (unit, symbol, boolean, float),

pairs, reference types (mutable cells), procedure types

and data structure types. Procedure types include a

latent cost that describes the procedure’s execution

cost. Data structure types include a size that is a static

upper bound on the run-time size of the data structure.

The numof type includes an upper bound on the value

of natural numbers that is used to predict execution

times of primitive iterators, such as make-vector, that

require a numeric argument.

Polymorphism is expressed with type schemes that ab-

stract a type T over a set of description variables D.,:

v {Dti,}.z’.
In the remainder of this paper we will not discuss

the following types: base types (unit, sym, bool, and

float), pairof (analogous to refof), vectorof and

permutationof (analogous to listof and nmnof).

● Costs are upper bounds on the execution time of ex-

pressions. Costs are described by expressions that in-

clude symbolic constants, the constant long denoting

an unbounded estimate, and the sum or maximum of

two cost estimates. Cost can also be proportional to

the size of a data structure. We interpret sum, prod

and max as the usual algebraic operators with associa-

tivity and commutativity.

Value = Base Value + Closure + DataStructure

Base Value = Boolean+ Symbol

+Fioat + {unit} + M + Pair
Closure = (Id, Expression, Env, Env)

Data%wctur’e =

Natural + List + Vector+ Permutation

Environment = Identifier -+ Va!ue

Store = Location -+ Value
cost

u, Env t- Nat ~ Nat, C-mm, u

[1 H v] c Env

u, Env 1- I ~ v, G.var, u

(lambda)

a, Env k (lambda (~) Eb)

+ (~, Eb, Env, []), C-lambda, u

(ret)

(call)

u, Env 1- EOP ~ (I, Eb, Env’, Env”), COP, ffoP

(let)

u, Env 1- E~vl, cl, al

al, Env[I w v]] ~ Eb -+ v, c, a’

a, Env 1- (let (1 E) Eb) ~ v, (sum C.let c1 c), u’

(if-true)

U, Env 1- Ete,C - true, ct~.t, u’

o’, Enu R E.On ~ v, c, u“

a, Env 1- (if Et..tEco~ E~lt) ~ V, (sum C-if ctest c), CT
)/

(if-false)

u, Env P E,es, ~ false, cte,,, a’

u’, Env k Eatt ~ v, c, u“

U, Env ~ (if Etest Ec~n E~tt) + V, (sum c-if ct..t c), u“

Rec([Ifw (Iz, E, Env, [])]) n

[If + (I., E, Env, [If w (I., E, Env, [1)1)1
Rec([]) = []

Figure 3: pFX/SDC Dynamic Semantics

68

DC

TG
T :,=

cc
c ::=

NE

● Sizes

Desc::= TICIN

Type
I I unit I sym [bool [float

(refof T) I (pairof T T)
(-> C (T) T)
(numof N) I (listof T N)
(vectorof T N) I (permutationof N)

cost
I I Symbolic Constant (eg. C.call) I long

(sum C C) [(prod N C) I (max C C)

Size ::= I [Nat I long

(sum N N) I (prod N N) I (max N N)

Figure 4: ,uFX/SDC Descriptions

are upper bounds on the run-time size of data.-
structures and have an algebra similar to that for costs.

Size in this context refers to the dimension of the data

structure over which the primitive iterators work: the

length of vectors and lists and the magnitude of num-

bers.

The static semantics for pFX/SDC is shown in Figure 5.

Judgments in the static semantics are of the form:

A F E : T $ C which is read “in type environment A, the

expression E has type T and maximum cost C .“ The type

environment A binds identifiers to types or type schemes;

types are just type schemes with no free description vari-

ables.

The static semantics contains rules for each language

construct. The rule for each language construct computes

the cost of the subexpressions and adds a symbolic constant

representing the overhead of that construct. For example,

the cost computed by the let rule includes the overhead

c.let, the cost of the named expression, and the cost of the

body. The if rule uses max to choose the larger cost of the

consequent and alternative subexpressions.

The latent cost of a procedure is communicated from its

point of definition to its point of use by the lambda, ret,

and call rules. Procedure types are annotated with latent

costs by the lambda and rec rules. The rule for procedure

application extracts the latent cost of the procedure from
the operator type. The cost of the application includes the

overhead of calling the procedure, the cost of the subexpres-

sions, and the latent cost of the operator. We have not dis-

tinguished between primitives and generaJ procedures as has

been done in other cost analysis systems such as [W75, S90].

To be conservative, we must assume that every application

incurs the overhead of general procedure call.

The static semantics includes some flexibfity in deduc-

ing size and cost descriptions. For example, the num rule

allows us to report a numof type with any size at least as

large as the literal. Without this subsizing flexibility, the

expression (if #t 1 2) would not type-check because the

types (numof 1) and (numof 2) would not be equivalent.

The num rule allows us to claim that 1 has type (numof 2)

and thus the entire expression also has type (numof 2). We

could also claim that the expression has an even larger type,

but doing so will produce overly conservative estimates.

(num)

Nat ~,,=e N

A !- Nat : (numof N) $ Cnum

(var)

[I: V{ DV, }.T]CA

[D;/Dv,]T Lt,peT’
AkI:T’$Lvar

(lambda)

AII : Targ] t- Eb : Tm.turn $ C

c-~co,t Clatent
A i- (lambda (1) Eb)

: (-> Ciat.nt (T&) Treturva) $ c-lambda

(ret)

c gcostC[a,ent
A I- (ret (Ij 1=) E) : (-> C1.t,nt (T..g) Trettirn) $ C-ret

(call)

AFEOP: (-> Clatent (Targ) T.et) $ CoP

A } E.,g : Tin-9 $ Carg

Tret Ltype T;et

A 1- (E.p E.~9) : TL.t $ (SIXO C-call Cop Ca,g Ctatent)

(let)

E non-expansive

A1-E:T$C
AII : Gen(T, A)] b Eb : T~ $ Cti

A * (let (~ E) Eb) : Tb $ (sum C.let C cb)

(ifj

A 1- Ete.t : bool $ Ctest
A F Em : T $ Coon.-.
A + E.lt : T $ Ca[,

A 1- (if Et..t E..~ E.tt)
: T $ (sum C-if Ctest (max

Gen(T, A) = V
where

(D.,} . T
{Du, } = FV(T) \ FV(A

,
con Colt))

Figure 5: pFX/SDC Static Semantics

69

(subtype-numof’)

N G,,,, N’

(numof N) Ctype (numof N’)

(subtype-listo~

N ~.,z. N’

(listof T N) ~tYPe (listof T N’)

(subtype-arrow)

c Cco,t c’
T’;rg ~tvpeT.,g

~ret Ltype ~;e.t

(-> c (Targ) 2! ’..,) c,,== (-> c’ (Z%,g) T;et)

Figure 6: Subt yping Relation

The lambda and rec rules report a latent cost that is

larger than the cost deduced for the body expression. This

subcosting flexibility allows us to report the larger of two

latent costs when two procedures are constrained to have the

same type. These two rules provide the same functionality

as Dornic’s subcosting rule [D92].

The var rule must incorporate the same subcosting and

subsizing flexibility as the num and lambda rules because

the identifier may be bound to a natural number or a proce-

dure. This flexibility is expressed by the subtyping relation

shown in Figure 6. No subtyping is provided on mutable

data types such as the types in refof and listof types.

Notice the latent cost determined by the rec rule may

be unbounded if there is a recursive call in the body. The

latent cost of the procedure Clate~t must be greater than

or equal to the cost of the body C, but this cost includes

both the latent cost and the call overhead: Ct.t.~t > C =
(sum C’btentC-call), forcing C~atent = long.

Let-polymorphism is provided for non-expansive [T87]

expressions by the use of type schemes. (The rule for ex-

pansive expressions is straightforward and omitted.) Previ-

ous effect reconstruction systems have used substitution to

provide let-polymorphism, but substituting the let-bound

expression may artificially increase the cost estimate of the

body. The Gen function generalizes the type by abstract-

ing over the description variables that occur free in T but

are not bound in A (Figure 5), where FV computes the set

of free description variables in a type or type environment.

The type scheme is instantiated by the var rule.

Type schemes abstract over costs and sizes as well as

types. A procedure has a static dependent cost if a de-

scription variable denotirw the size of one of its armments.
occurs free in the proced~re’s latent cost. The init&J type
environment contains type schemes for the primitive opera-

tors. Below we give the static dependent costs for some of

the data parallel primitives that we use to “bootstrap” the

system.

Primitive operator types

+ : v {m, ?22}. (-> c.+

* :V {?I1, m} . (-> C-*

: v {n], m} . (-> c--

map :V
(->

{t~, tz,c, len} .

(sum Cmap-overhead

((nmsof m) (numof nz))

(numof (sum nl n2)))

((numof m) (numof n2))

(mmof (prod nl n,)))

((numof 721) (numof n2))

(numof n]))

(pro-d len (sum Cnrap-per-elem c)))

((-> c (t]) t2) (listof tI len))

(listof t2 len))

reduce : V {tl, t2, c, len} .

(-> (sum Creduce-overhead

(prod /en (sum C-reduce-per-elern c)))

((-> c (tl t2) t2) (listof t, len) t2)

tz)

make-vector : V {t,n} .

(-> (sum Cmake-vector-overhead

(prod n Cnrake-vector-per-elem))

((numof n) t)

(vectorof t n))

Figure 7: Primitive Operator Types

and permutation iterators. We give the types of a few se-

lected primitive operators in Figure 7 to demonstrate how

size estimates are computed and used in costs.

Thesize contained in aprocedure’s return type may de-

pend on the size of the procedure’s arguments. The return

size for +is the sum of its input sizes. The return size for -is

thesame asthesize ofits first argument because our size al-

gebra does not have a subtraction operator; see Section 4.2.

Primitive iterators such as map and reduce have a static

dependent cost. These primitives have an execution time

proportional to the size of the data structures over which

they iterate. Oursystem assumes that the latent cost of the

procedural argument is the same for all applications so the

cost of the iterator can be written in closed form.

3.3 Correctness Issues

Thestatic semantics inconsistent with the dynamic seman-

tics if the static semantics computes a valid typing for the

resultant value and reports a cost estimate that is an upper

bound onthe actual cost. An inspection of Figures3 and5

shows that the static semantics closely mirrors the dynamic

semantics. The main difference being that the procedure

body is dynamically evaluated when the procedure is used

(third antecedent in the call rule of Figure 3), but it is stat-

ically analyzed at the procedure’s point of definition (first

antecedents of the lambda and rec rules of Figure 5). A

formal proof of consistency must deal with the complication

that an expression can be assigned more than one type (see

the discussion of the num rule above). We further discuss

correctness issues in Section 4.3.

The set of primitives includes floating point and natural

number arithmetic, mutable cell operators, and a complete

set of data parallel operators from FX including list, vector,

70

4 Cost Reconstruction

Cost analysis is most useful when cost estimates can be au-

tomatically generated. This frees the programmer from the

burden of cost declarations and allows the compiler to iden-

tify expensive expressions for possible automatic paralleliza-

tion. We provide an algebraic cost reconstruction algorithm

for our cost system that computes the type and cost of an

expression. It reconstructs size bounds on data structure

types and uses let-polymorphism to compute static depen-

dent costs. Algebraic reconstruction has three major com-

ponents:

●

●

●

The reconstruction algorithm f? walks over the expres-

sion calculating the type and cost along with a set of

constraints on cost and size variables.

The unification algorithm U produces a substitution

on description variables that makes types equivalent.

The constraint solver CS generates minimaf assism-

ments to cost and size variables that are consistent

with the constraints discovered by the reconstruction

and unification algorithms.

Given an expression and a type environment, the recon-

st ruct ion algorithm returns the expression’s type and cost

along with a substitution on description variables and a con-

straint set on cost and size variables:

R : Type environment x Exp

~ Tgpe x Cost x Substitution x Constraint set

The algorithm is shown in Figure 8. A substitution is repre-

sented as [D/Do] where D is substituted for the description

variable D.. Substitutions can be appfied to a type, cost,

size, or constraint set. The constraint set is denoted K and

each constraint is represented as a pair (C”, C) where C”

must be greater than or equal to C.

The reconstruction algorithm maintains two invariants.

First, the resultant type, cost, and constraint set have had

the substitution applied to them. Second, and more impor-

tantly, cost and size descriptions within types are always

variables. This allows unification of size and costs to be

triviaJ because constraints are recorded in the constraint set.

The type schemes for the primitive operators must be con-

verted to algebraic type schemes to insure only size and cost

variables appear in types. An algebraic type scheme is a pair

of a type and constraint set that are abstracted over a set

of description variables [JG9 1].

The reconstruction algorithm directly implements the

static semantics. For compound expressions, R is applied

to the subexpressions and the results are combined appro-

priately. For example, the case for if applies R to each

subexpression, unifies the type of the predicate with bool,

unifies the consequent and alternate types, and returns an

appropriate cost and a merged constraint set.

The subtyping flexibility contained in the static seman-

tics is implemented by the constraint set. For example,

the case for naturaf number literals creates the constraint

{(IVO, Nat)}. This constraint ensures that the size of the

reported type is at least as large as the literal itself. Sim-

ilarly the cases for lambda and rec include constraints for

the reported latent cost.

The subtyping algorithm shown in Figure 9 implements

the subtyping relation of the static semantics (Figure 6).

The subtyping algorithm consists of two algorithms: lift-type

R(A, E) = case E in

Nat - N. fresh,

return ((numof NV), Cnum, [], {(NV, Nat)})

I ~ if [1 : V {DO, }.(T, K)] c A then

let S = [D~t/DV,], D;, fresh

let (Z”, K’) = /ift-t~pe(ST)

return (T’, C-var, [], SK U K’)

else fail

(lambda (1 : T.) E)
+ C” fresh

let T’ = newfgpe(T.)

let (T, C,S,K) = R(AII : T’], E)

return ((-> C. (ST’) 2’), C.lambd~ S, It’ U {(C., C)})

(ret (If 1= : Tz) E : Tret)
+ C“ fresh

let T: = newtype(Z’w)

let &t = ~ewtype(~ret)

let A’ = AIIf : (-> Cv (T:) T~e,), Iz : T~]

let (Tb, Cb, Sb, Kb) = R(A’, E)

kt s = ~(~b, SbT;et)
return S(Sb(-> C. (Tj) Tjet), C_rec,

S~, ~bU {(SbCo, Cb)})

(Eop Ea.g)

~ TV, CV fresh

let (TOP, COP, SOP,~~P) = R(A, E~p)
let (Targ, Carg, Sarg, K.rg) = R(SoPA, Earg)
let S = U(S~,g Top, (-> C. (T~~g) To))

let (T’, K’) = lift- tgpe(S Tv)
return (T’, ‘S(sum c_call S~~g COP C~,g Cw),

Ssa,gsop,Ss.rgh’opu sKa,g u K’)
(let (~ E) Eb) +

if E expansive then

let (T, C,S,K) = R(A, E)

let (Tb, Cb, Stq ~(b) = R(SA[~ : T], Eb)

IetUIll (Tb, (SUIU C_lC2t Sb6’ 6’b), SbS, sb~ U ~b)

else (E non-expansive)

let (T, C,S, K) = R(A, E)

let {Da, . . . D;. } =’(FV(T)UFV(K)) \ FV(SAj
let (Tb, 6’b, Sb, ~b) = R(SAII : V {D., }.(T, K)], Eb)
retUHI (Tb, (SUIII C-1et Sbc Cb), SbS, Sbii’ U ~b)

(if EI E2 E,)

-+ let (TI, CI, SI, KI) = R(A, El)

let (T2, C2, SZ, KZ) = R(SIA, E2)
let (Ts, C,, S3, K3) == R(S2SIA, E3)

let S = U(S3S2 Tl, bool)

let S’ = U(SS3 T2, ST3)

return S’S(T3, (sum c-if S3 S2 Cl (max S3 C2

S3S’2S1, I$3S2~<l U S3h’2 U 1’3)

else fail

C3)),

Figure 8: ,uFX/SDC Reconstruction Algorithm

71

lift-type(T) = case 2’ in

(-> c (Tm.g)T.et)
+ Cv fresh,

let (T~rg, Kar,) = Sink-type(Tar,)

let (Z’,e,, K,.t) = lift-tgpe(Tr.t)
return ((-> C’. (Z’i,~) n,,),

{(C., C)} u Kmg U Kret)

(numof N)
+ N. fresh, return ((numof N.), {(NV, N)})

(listof T N)

~ N“fresh, return ((listof T NV), {(NO, N)})

else return (T, 0)

sink-type(l’) = case T in

(-> c (Targ) T.et)

--+ C v fresh,

let (!l’j.g, Karg) = lift-type(Targ)
let (T;,,, K,.,) = sink-type(Tr.t)
return ((-> Cv (T&.) 2%,,),

{(c, c.)} u K.rg u K?.,,)
(numof N)

+ N. fresh, return ((numof NV), {(N, N.)})

(listof T N)

~ Nv fresh, return ((listof 2’ N~), {(N, N.)})

else return (T, 0)

Figure 9: Subtyping algorithm

to compute a larger type and sink-type toc~mpute a smaller

type. Recall, all cost and size annotations on types arevari-

ables, so the sink-tgpe algorithm is well defined.

Subtyping is applied to the types of variable references

and the result type of procedure calls in both the static

semantics and the reconstruction algorithm; however, the

application of iift-tgpe requires that the type be known. In

most type reconstruction algorithms, the lambda case intro-

ducesafresh type variable allowing thetype of the variable

to be determined by the context. This implies that the type

of the variable is initially unknown and thus some uses of

the variable may be given the type variable as a type before

the determining context is reached. Such an approach is not

sufficient to implement the static semantics of the previous

section because subtyping cannot be correctly applied to the

type variable. Thus we assume that the program is explic-

itly annotated with type skeletons that provide information

about the bound variables in 1 ambda and re c expressions.

Type skeletons are types without cost or size annotations.

In our implementation, type skeletons are computed by a

reconstruction algorithm similar to Tofte’s [T87]. The type

skeletons are converted to annotated types by the newtgpe

algorithm (Figure 10) which inserts fresh cost and size vari-

ables. Thus the type of the variable will be known for all

references and lifl- type can be correctly applied.

In the case for ret, the latent cost of the recursive pro-

cedure Cd is forced to be greater than or equal to the cost

of the procedure body Cb. If the recursive procedure is ever

called, then the cost of the body is at least the latent cost

of the recursive procedure plus the call overhead. Thus,

C. ~ C6 ~ (sum C.call CV) which implies Cv = long.

newtgpe(TS) = case Z’s in

(-> - (Ta,g) T,et)

~ C. fresh,

return (-> C. (newtype(Targ)) newtgpe(Tret)))
(numof -)

-+ NV fresh, return (numof No)

(listof T .)

~ NV fresh, return (listof newtype(T) NV)

(ref of 7’) ~ return (ref of newtwe(T))
else return T

U(T1,

Figure 10: newtype

7’2) = case (Tl, 7’2) of

(base type, base type) or (TV, To) - []
((refof T), (r_efof T’)) ~ V(T, T’)
(Z’v, T) or (T, TV) ~ if TV c ~V(~) then fail

((-> c. (T) T.), (-> Cj (T’) l%))
else [T/ I’ti]

+ let SO = U(T, T’)

let SI = U(SO T., SO T;)

return [Cti/Cj]Sl SO

((numof N“), (num.of Nj)) -+ [Nv/

((listof T N.), (listof 2!” N:))

-i let S= U(Z’, T’)

return [No/N~]S

else fail

N;]

Figure 11: ~FX/SDC Unification Algorithm

4.1 Unification Algorithm

The unification algorithm in Figure 11 is straightforward

and in the spirit of Robinson [R6 5]. The unification algo-

rithm works on types:

U : (Type x Tgpe) ~ Substitution

Unification of procedure types not only requires unifying

the input and return types, but also unifying their latent

costs, Unification of data structure types such as natural

numbers and lists requires unification of the size estimates.

Unification of costs and sizes, however, is straightforward

because types only include cost and size variables.

4.2 Constraint Solving

The final phase oft ype and cost reconstruction involves solv-

ing the deduced constraints. Each constraint describes a

lower bound on a cost or size variable. Since costs depend

on size estimates, we must solve the constraints on size vari-

ables first. Since sizes and costs have the same algebra, we

can solve them with a single algorithm. We will use C to

denote both costs and sizes in the following discussion. Mul-

tiple constraints on a single variable are merged by taking

the max of the lower bounds.

The constraint set is always solvable by assigning all C.t

to long since long is greater than any size or cost. However,

long does not provide us with any useful information, so

we would like a minimal assignment to C., that satisfies

the constraints. This is referred to as the least pre-fixpoint

77

of the constraint equations [A90]. The least pre-jizpoint is
the smallest solution of a set of inequalities. Because the

operators sum, prod, and max are monotonically increasing
and continuous, the least pre-fixpoint can be calculated with

the least fixpoint. The least jizpoint is the smallest solution
to a set of equalities. The least fixpoint can be calculated by

assigning the variables to O and counting up, but this will
not halt if the least fixpoint of some variable is long.

The following algorithm CS computes the least fixpoint
by counting up but recognizes when it has entered a loop.

Thus it can halt and assign long to the required variables.
Assume there are n bounds in the constraint set. Let t’,
be the constrained variables and F, the associated lower

bounds.

Least Fixpoint Algorithm, CS:

[Step 1] V 2, set V, = O.

[Step 2] Repeat n times:
V i, set V, = F,(VI,..., Vn).

[Step 3] V 2, let V[= V,.
Repeat n more times:

V i, set V, = F,(VI, ..., Vn).

[Step 4] Vi, if V, # V{ then set V, = long,

On each iteration, the value for the variable is updated based

on the values of all variables from the previous iteration. If
the least fixpoint of a variable is long, then the variable’s

value will change at least every n it&ations because the

circular dependency involves at most n constraints. If the

least fixpoint of a variable is finite, then it will be computed

in the first n iterations and will not change on subsequent

iterations.
This algorithm is quadratic in the number of constraints

and can be improved in two ways. The easiest improvement
is to group the constraints into strongly connected compo-
nents so that the algorithm is only run on a set of constraints
that includes circular dependencies. The more important

improvement is to eliminate unnecessary constraints. When
type checking a lambda expression, the only item of inter-

est is how the output costs and sizes depend upon the in-

put costs and sizes and the costs and sizes in the type en-

vironment. However, the reconstruction algorithm inserts

constraints in every place that subtyping, subsizing or sub-

costing can be used in the static semantics. Each constraint
behaves as a “rubber band” by allowing the cost or size to

be increased as needed during constraint solving. Thus the
dependence between the inputs and outputs of a procedure

is expressed by a chain of “rubber bands,” but flexibility
within this chain is no longer needed and it can be replaced

wit h a single “rubber band.” In our implementation, this is
done by running the constraint solving algorithm on a subset

of the constraint set that does not include constraints on the
inputs and outputs. Reducing the size of the constraint set

is particularly important if the 1 smbda expression occurs in
a let binding and is generalized over because the constraint
set will be copied each time the variable is referenced and
its type scheme is instantiated.

Our cost algebra does not contain a subtraction oper-
ator because it complicates constraint solving. The major

problem with subtraction is that a minimal solution to the

constraint set is meaningless. Consider the constraint set
{Col >5, C“2 > (sub 10 CtiI)}. Minimizing C’vl makes

C~Z larger and vice versa. An alternative approach could
possibly provide better size information by using interval
arithmetic [H77]. One could allow a subtraction operator

and compute a reduced constraint set, but what should be
done with the reduced constraint set remains an open issue.

4.3 Correctness Issues

The reconstruction algorithm is sound if the type and cost

it computes are a valid solution to the static semantics.

An inspection of Figures 5 and 8 shows that the recon-
struction algorithm directly implements the static seman-

tics. Each subt yping, subcosting, or subsizing clause in the
static semantics in mirrored by the use of constraint sets in

the reconstruction algorithm. For example, the subsizing in
the num rule (Figure 5) is implemented by the constraint

{(NV, f(d)}in the case for natural number Merals of R (Fig-
ure 8). The subt yping relation of Figure 6 is implemented

by the subtyping algorithm of Figure 9. The reconstruc-

tion algorithm would be sound even if it reported long for

all costs and sizes. It would only be unsound if it failed to
merge constraints to reflect the requirement that two types

be equivalent; however, this is implemented by the unifi-
cation algorithm (Figure 11) which is straightforward and

invoked in the procedure application and if cases. Thus we
believe the reconstruction algorithm is sound even though

we have not given a formal proof.
The reconstruction algorithm is complete if the type and

cost it computes are the best solution to the static seman-
tics. Completeness depends upon two things: the recon-

struction algorithm must generate all the appropriate con-

straints and the constraint solver must compute the optimal

solution. The first requirement seems to be met as discussed

above for soundness; however, while overly conservative con-
straints are not a problem for soundness, they do affect com-
pleteness. The second requirement that the constraint solver
compute the optimal solution depends on how that solution
is expressed. Types are directly annotated with cost and
size expressions in the static semantics while the reconstruc-
tion algorithm annotates types with cost and size variables

and records information about the actual costs and sizes
in the constraint set. An argument for completeness must

compare costs and sizes from the stat ic semantics and the

reconstruction algorithm; however, if the completeness argu-

ment is to be inductive, the constraint solver cannot replace

the cost and size variables in the resultant type with actual
cost and size expressions (because this violates one of the
assumptions of the reconstruction algorithm). Constraint
solving must proceed by reducing the size of the constraint

set while maintaining the invariants of the reconstruction
algorithm. Demonstrating that the constraint solver meets

these criterion requires establishing two things: the recon-
struction algorithm must create constraints which admit a

minimal solution and the constraint solver must compute

this solution. A solution is minimal if all other solutions to

the constraint set can be expressed in terms of the the min-

imal solution. Thus completeness remains an open issue,
but as long as the reconstruction algorithm computes good
solutions it will be useful pragmatically.

5 Using Our Cost System to Predict Execution Times

Our cost system successfully predicted execution costs within
a factor of three for various programs run on different com-

pilers and architectures. We have conducted experiments
on the three different compilers and target architectures de-

scribed briefly below:

73

pFX/DLX I Mu1-T I SML/NJ 1

II I no cachirw I I

C-if 5 4 0.00

c-+ 1 1 3.00

c-* 5 15 4.00

C_cons 8 12 1.67

Cmap-overhead 118 45 3.01

Cnrap-per-elem 101 56 14.06

C-raap2-overhead 133 18 2.27

C_map2-per-elem 118 76 10.15

C~educe-overhead 126 27 4.81

czeduce-Der-elem 98 42 5.15

Table 1: Values for Symbolic Constants

The~FX/DLXcompiler isavery simple compiler used
for instructional purposes at MIT. Assuch, it empha-
sizes readability over performance optimizations. It
compiles pFX to Hennessy and Patterson’s DLX ar-
chitecture [HP90]. We measured the actual number of
DLX instructions executed.

The Mu1-T compiler compiles a parallel version of T
to the Alewife machine. Our experiments were run

with ASIM, a cycle-by-cycle simulator for the Alewife

machine [L92]. We measured the actual number of

cycles executed in a configuration of one processor.

We used the SML/NJ comriler (version 0.93) on a
Spare IPX to run ~xperime~ts af;er a simple ~yntac-
tic translation from yFX/SDC to ML. We measured

actual execution time with the SML/NJ profile tool
[sML/NJ93].

We have implemented the reconstruction algorithm dis-

cussed in the previous section. Our implementation com-
putes the cost of program expressions in terms of symbolic

constants that describe the cost of basic language compo-
nents. We experimentally determined values for these con-
stants in the above systems. Since these constants form
the basis of onr system’s cost predictions, it is important to

determine accurate values while still providing conservative

upper bounds. Table 1 summarizes some of the vrdues.
The values in Table 1 are the best conservative bounds

we could experiment aJly determine. Some values were de-

termined by inspecting actual machine code, but most were
picked by running small experiments and choosing an upper
bound on the actual cost over a number of trials. Some of
the constants were difficult to estimate because they could

not be independently estimated. For instance, the cost of
c-if was too small to measure for SML/NJ. The per element

costs for primitive iterators were influenced by caching ef-
fects as discussed below.

5,1 Experimental Results

We ran three test programs on a variety of inputs to ex-
amine the accuracy of the static cost estimates. The cost

no caching

Matrix Multiply 1.39-1.11 1.23-1.09 1.72

Game of Life 1.24 1.20

N-bodv Simulation 1.51
I . , 1

Table 2: Ratio of Estimated Cost to Actual Cost

estimates were always within a factor of three of the ac-
tual cost and correctly captured how the costs depended on
problem size. Table 2 presents the ratio of estimated cost

to actual cost. Not all programs were run on every system
because some systems did not provide sufficient facilities.
We describe each program below and discuss the results in

detail for matrix multiply.

Matrix multiply We implemented matrix multipli-

cation using data parallel operators as shown in Figure 12.

The procedure takes a matrix z and the transpose of a ma-
trix y and uses reduce and map2 to calculate the dot product

of a row from z and a column from y. In this expression the
cost of a matrix multidv is: (the number of rows in z) x

(the number of colum~s”in y)’ x (the cost to calculate the
dot product).

Figure 12 also includes the type of the procedure as in-
ferred by the system. The system has deduced that multi-
plying an N~ x N. matrix by an N~ x ivk matrix yields an
N~ x Nk matrix. The system does not force N. and N:

to be equal because it allows subsizing flexibility for each

input matrix. Most importantly, the system infers a latent

cost proportional to the dimensions of the input matrices.

Lastly, the size of the elements in the resultant matrix are

unbounded because reduce is passed +, forcing the following
types to be equivalent:

(-> C-+ ((numof NI) (numof Nz)) (numof (sum N1 Nz))

(-> c (TI T2) T2)

This forces NZ = (sum N1 NZ) which has solution long.
Figure 13 plots predicted and actual cost in each system

for multiplying two square matrices of increasing size. The
predictions closely matched the actual cost for ,uFX/DLX

and Mu1-T without caching. The ratios shown in Table 2
are for dimensions from O to 6 with the worst prediction for

dimension O.
Our cost system does not model the effects of the cache

because it assumes primitive iterators incur the same over-

head for each element. Figure 13 contains two plots for
Mu1-T: one with caching and one without. Without caching
the simulator assumes memory accesses are satisfied in one

cycle, so the actual cost incurred with caching is slightly

larger than the cost without caching. The predictions for
the system with caching are significantly larger because we
must assume worst case cache performance. As expected,
the predictions were less accurate for SML/N J because of
caching effects.

To analyze the automatically generated cost expression
we fit a polynomial to the observed actual execution time.

The algorithm is 0(n3) for square matrices, so we fit the ex-
perimental data to a degree-3 polynomial. We compared the

experimental polynomial term by term with the static cost
expression. For large matrices, the actual and estimated cost

are dominated by the highest order term. Thus, the amount
of overestimation is the ratio of the coefficient for the third

74

E= (let ((dot-product (lambda (r c) (reduce+ (map2* r c) O))))

(lambda (X y-transpose)

(map (lambda (row)

(map (lambda (col) (dot-product row CO1))
y-transpose))

x))

E : (-> (sum C-call C-lambda Cmap-overhead (* 2 C-var)

(prodlV~ (sum Cnrap-per-elem C-call C-lambda Cmap-overhead (* 2 C-var)

(prod Nk (sum Cmap-per-elem C-map2-overhead Cnum
C~educe-overhead (* 3 C_call) (* 9 C.var)

(prod (nrax N. N:)

(sum C-nrap2-per-elem C.*
C-reduce-per-elem C..+)))))))

((listof (listof (numof N.) N.) N~)

(listof (listof (numof NV) Ni) N~))

(listof (listof (nUrof long) Nk) N~))

Figure 12: Matrix Multiply Code and Inferred Type

degree term. For Mu1-T with caching, the coefficient was

overestimated by a factor of three while for SML/NJ, the co-

efficient was overestimated by less than a factor of two. The

results in Table 2 show that for the SML/NJ experiments

and the other experiments except for Mu1-T with caching,
the cost estimates were within a factor of two of the actuaJ

cost. Caching is a large source of cost overestimation, but
we were surprised its effects were not worse.

GameofLife We implemented the game of life us-
ing FX’S permutation operators and our system is able to
predict the cost of computing a single generation. We ran
experiments for the game of life on a five by five grid.

N-body simulation We translated Sussman’s code
for the n-body problem [ADGHSS85] as found in [M87] to

pFX/SDC. This code simulates the movement of the solar
system by using differential systems. Our cost system is able

to assign a finite cost to a single step of the simulation which
depends on the number of bodies being simulated.

5.2 Sources of Overestimation

As shown above, our cost system successfully predicted ex-
ecution times for data parallel programs within a factor of

three. Variances between the static cost estimate and the
actual cost incurred arose for a variety of reasons:

● Our cost analysis does not distinguish between prim-

itives such as + that can be in-lined and procedures

that require general procedure call overhead. Thus, we
must assume that every application incurs this over-

head.

Other optimizations such as common subexpression

elimination and constant folding can also contribute
to overestimation.

● We overestimate sizes and costs where necessary to

avoid reporting a type error because of conflicting size

or cost descriptions. This approximation results in
overestimation when the smaller size or cost is dy-

namically incurred. The same holds true for the two
branches of an if expression.

We must also make conservative approximations on
the cost of first-class procedures. This allows us to

express the cost of higher-order procedures in closed
form, but also gives rise to overestimation. For exam-

ple, the cost of map assumes its procedural argument

has the same cost for all elements of the list.

● As discussed above, our system does not model the

effects of caching. Since we are guaranteeing upper
bound cost estimates, we must assume worst case cache

performance.

Our cost system also does not model the effects of garbage

collection which can cause the system to underestimate the
actual cost. The cost of garbage collection is an important
factor, but it is difficult to predict when garbage collection

will be initiated and how to account for its distributed costs.
Thus, the measurements in this section do not include the

cost of garbage collection.

6 Dynamic Parallelization

Efforts in automatic parallelization have been primarily con-
cerned with identifying expressions that cau be safely exe-
cuted in parallel [HG88, JG89, TJ93, HL92]. However, a

static cost system provides information about what expres-

sions can be pr-ofitabl~ evaluated in parallel. It is only worth-
while to evaluate two expressions in parallel ifthetime saved
is greater than the cost of setting up the paraJlel computa-

tion. Gray [G86] introduced a system for inserting futures

that estimates costs based on a local, syntactic method.
Our cost system provides static cost estimates that can

be used to make parallelization decisions at compile time.

If the cost expression contains no free cost or size variables,
then adynamic parallelization decision can be madeat com-
pile time. If there is adefinite benefitto be gained by paral-
Iel execution, the appropriate code can be inserted. If cost
analysis shows there is no benefit, then the code is left un-
changed.

If the cost estimate contains free cost or size variables,

then the parallelization decision mustbe made dynamically.
This can occur if the cost of a procedure is polymorphic in
the cost or size of some of its inputs. When such a poly-
morphic procedure is called, dynamic information must be
passed to convey free costs and sizes. Then a decision can be

75

pFX/DLX Mul-T/Alewife – No Caching

,,,!!!!!= %:%i!!l
0123456 0123456

matrix dimension matrix dimension

SMLINJ Mul-TIAlewife – With Caching

time ~j= ~$,’~~=

(,usecs)

0123456 0123456

matrix dimension matrix dimension

predicted +

executed -1-

Figure 13: Mat rix Multiply – Predictions and Actual Execution

Game of Life -- Dynsmic Parallel ization

, 1 1 I , 1 I
/

always one —
always two -----

always three -----
always four --

dynamic +-

/“/

80

Figure 14: Dynamic Parallelization of the Game of Life

76

made dynamically on which parts of the body can be prof-

itably evaluated in parallel. Thus, once type and cost recon-

struction is complete, the program can be annotated with

dynamic information where appropriate. In our simple dy-

namic paraJJelizat ion system, this annotation was performed
by hand. There is no fundamental obstacle to automating

this annotation; a similar mechanism has been used with
effect systems [TJ93, HL92].

We use maximum cost estimates for parallelization deci-
sions even though they cannot guarantee speed up. If the

maximum cost is much larger than the actual cost then we
mayparallelize when it is not profitable. Onthe other hand,

if the maximum cost is in fairly close correspondence with
the actual cost then Darallelization will have been success-

ful. As shown in Sec~ion 5, our cost estimates were within
a factor of two for the majority of the experiments, so we

correspondingly adjusted our parallelization threshold by a

factor two. Minimum cost estimates could ensure sDeed UD.

but may overlook opportunities for parallelism if the mi~i~

mum estimate is too low.
We built a simple dynamic parallelization system on an

SGI IRIX computer with four processors using SML/NJ
with a multiprocessor interface [MT92]. Our system ex-

ploits data parallelism by performing vector map operations

in parallel. Since there are a limited number of processors,
the vector is broken into segments and each processor per-

forms the vector map on a given segment. The extra pro-
cessors busy wait until there is work for them to do.

Adding multiprocessor support to our program slowed
its single-processor performance by 40Y0. This overhead was

traced in part to the SML/NJ multiprocessing support soft-

ware and possibly could be eliminated. The overhead im-

posed by dynamic cost and size information is not notice-
able.

We tested our dynamic parallelization system with the

game of life. The program was manually annotated with
the cost and size information computed by our reconstruc-

tion algorithm. We experimentally determined values for

the symbolic constants and the fork cost for SML/NJ on

the SGI IRIX computer as explained in Section 5. Then we
ran trials in which the program decided dynamically how

many processors to use for each vector map. Five strategies
were considered:

● Always use a constant number of processors for all

vector maps, either 1, 2, 3 or 4.

● Dynamically choose how many to use based on the

latent cost of the procedure being mapped and the
cost of forking off a new t bread.

Figure 14 shows these tests for the game of life with the
grid size ranging from 10 to 80. To reduce the effects of

garbage collection, a major garbage collection was forced
before each trial. Trials for grid sizes above 60 incurred one
major garbage collection while those bellow 60 ran without
requiring a major garbage collection. To reduce other sys-
tem noise each trial was repeated ten times and the number
reported is the average of the smallest five.

The dynamic strategy chooses the optimal number of
processors for small and large grid sizes. For grid sizes less

than 25, using a single processor is clearly the best strategy,
while for large grids (above 60 or so) using all four processors
is best. At these extremes, the dynamic st rat egy is choosing
to use the optimum number of processors.

The dynamic strategy performed better than all other

strategies for grid sizes in the range from 25 to 50. This

may seem impossible at first as the dynamic strategy is sup-
posed to simply pick the optimum number of processors for

a particular grid size. In fact, the dynamic strategy is able
to make multiprocessing decisions independently for differ-

ent subcomputations. Thus the superior performance in this

range is the result of the dynamic strategy using a different

number of processors on different parts of the computation.
For instance when the grid size is 42, the dynamic strat-

egy chooses to use two processors to compute the number of
neighbors for each cell, three processors to apply the liveness

criterion to each cell, and four processors to shift grids in

preparation for the neighbor calculation.

Conclusion

We introduced the notion of static dependent costs to de-

scribe the execution times of expressions that depend on the

size of data structures. Our cost system uses static types to
provide bounds on the size of data structures and to provide

information about latent costs. Our system includes static
dependent costs for primitive data parallel operators which

allow us to predict costs for a number of programs. We
successfully predicted the execution cost of these programs

within a factor of three on a variety of target systems. We
demonstrated the utility of static cost estimates in a simple

dynamic parallelization system that was able to selectively
choose how many processors to use based on cost informa-

tion.
Our cost system could be improved by integrating our

ideas for handling first-class procedures and mutation with

previous work in automatic complexity analysis. Our cost
analysis could also produce estimates of storage costs or
communication costs by re-interpreting the symbolic con-

stants. Our system could also benefit from minimum esti-
mates on the size of data structures.

Acknowledgments

We would like to thank Forest Baskett for providing us with

the SGI processor boards that allowed us to perform the
multiprocessing experiments. Additional thanks to Pierre
Jouvelot and Vincent Dornic for their previous work and dis-

cussions relating to our extensions. Thanks also to our read-
ers: Michael Blair, Jim O ‘Toole, Jonathan Rees, Guillermo
Rozas, Mark Sheldon, and Frarddyn Turbak.

References

[ADGHSS85] Applegate, J. F., Douglas, M. R., Giirsel, Y.,
Hunter, P., Seitz, C., and Sussman, G.J. A Digital

Orrery, IEEE Computer, September 1985.

[A90] Apt, K.R. Logic Programming. Handbook of TCS,
Vo! B, Forma! Models and Semantics, Jan Van
Leeuwen (editor), Elsevier, 1990, 491-574.

[B78] Backus, J. Can Programming Be Liberated from the
von Neumann Style? A Functional Style and Its Al-

gebra of Programs. CACM, 21(8), 1978, 613-641.

[GBF91] Chatterjee, S., Blelloch, G. E., and Fisher, A.L.

Size and Access Inference for Data-Parallel Pro-
grams. PLDI IW1, 130-144.

77

[C82] Cohen, J. Computer-Assisted Microanalysis of Pro-
grams. CA CM, 25(10), 1982, 724-733.

[D92] Dornic, V. Analyse de Complexity des Prograrnrnes:
V&ijication et Inffrence. Ph.D. Thesis, Ecole des

Mines, Paris, France, CRI/A/212, June 1992.

[D93] Dornic, V. Ordering Times. Yale University, Re-

search Report YALEU/DCS/RR-956, April 1993.

[DJG92] Dornic, V., Jouvelot, P., and Gifford, D.K. Poly-

morphic Time Systems for Estimating Program

Complexity. LoP.LaS, l(l), 1992, 33-45.

[GJS092] Gifford, D. K., Jouvelot, P., Sheldon, M. A., and
O’Toole, J.W. Report on the FX-91 Programming
Language. MIT/LCS/TR-531, February 1992.

[G88] Goldberg, B. Multiprocessor Execution of Func-
tional Programs. International Journal of Parallel

Programming, 17(5), 1988, 425-473.

[G86] Gray, S.L. Using Futures to Exploit Parallelism in
Lisp. M.S. Thesis, MIT, February 1986.

[GS092] Grundman, D., Stata, R., and O’Toole, J.
pFX/DLX - A Pedagogic Compiler. MIT/LCS/TR-

[HG88]

[H77]

[HP90]

[HL92]

538, ‘March 1992. - -

Hammel, R. T., and Gifford, D.K. FX-87 Perfor-
mance Measurements: Dataflow Implementation.

MIT/LCS/TR-421, November 1988.

Harrison, W.H. Compiler Analysis of the Value

Ranges of Variables. IEEE Transactions on Soft-

ware Engineering, SE-3(3), 1977, 243-250.

Hennessy, J. L., and Patterson, D.A. Computer

Architecture - A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., San Mateo, California,

1990.

Huelsbergen, L., and Larus, J. Dynamic Program

Parallelization. LFP 1992, 311-323.

IHLA941 Huelsbergen, L., Larus, J., and Aiken, A. Using

[JG89]

[JG91]

[K68]

[L88]

[L92]

‘the Run-T-ime Sizes of Data Structures to Guid~
Parallel-Thread Creation. LFP 1994.

Jouvelot, P., and Gifford, D.K. Parallel Functional
Programming: The FX Project. Parallel and Dis-

tributed Algorithms, M. Cosnard et al. (editors),
Elsevier Science Publishers B.V. (North-Holland),

1989, 257-267.

Jouvelot, P., and Gifford, D.K. Algebraic Recon-
struction of Types and Effects. POPL 1991, 303-
310.

Knuth, D.E. The Art of Computer Programming,
Vol. 1: Fundamental Algorithms. Addison-Wesley,
1968.

Le M.4tayer, D. ACE: An Automatic Complexity
Evaluator. ToPLaS, 10(2), 1988, 248-266.

Lim, B. Instructions for Obtaining and Installing
ASIM. MIT/LCS, Alewife Systems Memo #3o,
September 1992.

[LG88] Lucassen, J. M., and Gifford, D.K. Polymorphic Ef-
fect Systems. POPL 1988, 47-57.

[M87] Miller, J.S. MultiScheme: A Parallel Process-

ing System Based on MIT Scheme. Ph.D. Thesis,

MIT/LCS/TR-402, September 1987.

[MKH901 Mohr, E., Kranz, D. A., and Halstead, R.H. Lazy
Task Creation: A Technique for Increasing the

[MT92]

[R65]

[R89]

[s88]

[s90]

[SH86]

[SC93]

Granularity of Parallel Programs. LFP 1990~ 197-

185.

Morrisett, J. G., and Tolmach, A. A Portable Multi-
processor Interface for Standard ML of New Jersey.

Carnegie Mellon University, CMU-CS-92-155, June
1992.

Robinson, J.A. A Machine Oriented Logic Based on
the Resolution Principle. .7A CM, 12(1), 1965, 23-41.

Rosendahl, M. Automatic Complexity Analysis.
Proceedings of the Fourth International Conference

on Functional Programming Languages and Com-
puter Architecture, 1989, 144-156.

Sands, D. Complexity Analysis for Higher Order
Languages. Imperial College, London, Research Re-

port DOC 88/14, October 1988.

Sands, D. Calculi for Time Analysis of Functional

Programs. Ph.D. Thesis, University of London,
September 1990.

Sarkar, V., and Hennessy, J. Compile-Time Parti-

tioning and Scheduling of Parallel Programs. In Pro-
ceedings of the SIGPLAN ’86 Symposium on Com-

piler Construction, 1986, 17-26.

Skillicorn, D. B., and Cai, W. A Cost Calculus

for Parallel Functional Programming. Queen’s Uni-

versity, Kingston, Canada, ISSN-0836-0227-93-348,
March 1993.

[SML/NJ931 Standard ML of New Jerseu Reference Manual

[T93]

[TJ92]

[TJ93]

[T87]

[W91]

[W75]

(V&zon 0.93). Feb&ary 1993. “ “

Talpin, J.P. Aspects Th&oriques et Pratiques de
i’Inf&ence de Type et d ‘Effets. Ph.D. Thesis, Paris

University VI, May 1993.

TsJpin, J., and Jouvelot, P. Polymorphic Type, Re-
gion and Effect Inference. Journal of Functional
Programmmg, 2(3), 1992, 245-271.

Talpin, J., and Jouvelot, P. Compiling FX on the

CM-2. Proceedings of the Third Workshop on Static
Analysis, LNCS 724, September 1993, 87-98.

Tofte, M. Operational Semantics and Polymorphic
Type Inference. Ph.D. Thesis, University of Edin-

burgh, 1987.

Wall, D. Predicting Program Behavior Using Real

or Estimated Profiles. PLDI 1991, 59-7o.

Wegbreit, B. Mechanical Program Analysis. CA CM,

18(9), 1975, 528-539.

78

