
Using the Run-Time Sizes of Data Structures

to Guide Parallel-Thread Creation

Lorenz Huelsbergen James R. Larus Alexander Aiken

AT&T Bell Laboratories University of Wisconsin-Madison University of Cahfornia-Berkeley

lorendreeeerch. att. corn larua@ca. miac. edu aikenaca.berkeley .eciu

Abstract

Dynamic granularity estimation is a new technique for

automatically identifying expressions in functional lan-

guages for parallel evaluation. Expressions with lit-
tle computation relative to thread-creation costs should
evaluate sequentially for maximum performance. Static

identification of such threads is however difficult, There-

fore, dynamic granularity estimation has compile-time
and run-time components: Abstract interpretation stat-
ically identifies functions whose complexity depends on

data structure sizes; the run-time system maintains ap-
proximations to these sizes. Compiler-inserted checks
consult this size information to make thread creation
decisions dynamically.

We describe dynamic granularity estimation for a

list-based functional language. Extension to general
recursive data structures and imperative operations is
possible. Performance measurements of dynamic gran-
ularity estimation in a parallel ML implementation on
a shared-memory machine demonstrate the possibility

of large reductions (> 2070) in execution time.

1 Introduction

Functional languages do not overly constrain a pro-

gram’s evaluation order with data dependence. This
simplifies automatic parallelization: multiple arguments

in a strict function application can evaluate in parallel,
for example. Abundant parallelism, however, does not

directly lead to effective parallel implementations. Effi-
cient implementation of a fi,mctionel language on a par-

allel architecture remains difficult in part because the
creation of a parallel thread incurs considerable over-

head costs [14, 21, 23, 20].
For an implementation to be efficient, it must decide

which parallelism in a program is beneficial; that is,
whether parallel evaluation of a given expression will

speed program execution, If an expression cent ains less

computation than the cost of creating a thread for the
expression, parallel evaluation of the thread will slow
program execution (c~. [6]). F@e 1 shows the effect

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

that scheduhng overheads can have on overall execution
times.

In this paper, we present a new tetilque, dynamic
granularity estimation (dge), that uses the run-time

sizes of data structures “to create parallel threads only
when they are known to be beneficial. This te&lque

is based on the observation that a fimction’s time com-
plexity often depends on the size of the dynamic data

with which it computes. For simplicity, we describe dge
for lists—the general scheme can, however, be applied
to programs that manipulate other data structures (e.g.,
trees, DAGs, and arrays).

In a list-based language, dge conservatively deter-
mines, for a program function f applied to a list param-

eter 1, the lengths of 1 for which the cost of computing
the application e s (~ 1) always exceeds the overhead

of creating a thread for e‘s concurrent evaluation. Ini-

tial empirical evidence, gathered in an implementation

of dge in Standard ML of New Jersey (SML/NJ) [2] on
a parallel shared-memory mafilne, suggests that the

run-time costs of dge are small and that dge can sub-
stantially reduce a program’s parallel execution time.

Dynamic granularity estimation is a hybrid; it is

composed of dynamic and static components [17, 16].
Hybrid techniques are necessary for language paralleliza-

tion since purely-static analyses are fundamentally lim-

ited. Static analysis for dge is in the form of an abstract

interpretation [5, I] that identifies functions whose time

complexity is dependent on the sizes of the list data

structures passed to them as parameters. The com-
piler statically identifies program points at which the

length of a list always influences the coet of an ap-
plication expression. When evaluation reaches such a
point, compiler-inserted code consults en approximation
to the list’s length (maintained dynamically) to deter-

mine whether it is beneficial to evaluate an application
as a separate parallel thread. The dynamic component

of dge approximates list lengths at run time.
The quicksort function (qa) of F@re 2 provides an

example. In qa, the arguments to append can evaluate
in narallel. Parallel evaluation of these am-uments is.
advantageous if the costs of the recursive applications
of qa exceed the cost of creating and scheduling them as
parallel threads. However, when the length of a sublist
(1 or g) is small (e.g., zero), creating a parallel thread to

sort the sublist is counterproductive. In this case, the
arguments to append should evaluate sequentially. The
static analysis of dge identifies list lengths for which

LISP 94- 6/94 Orlando, Florida USA
42 1994 ACM 0-89791 -643-3/94/0006..$3.50

79

I

I

el I

I

I

I

I

ea i

I

I
-1-

A- 1°’0,’
to

I I

I I

el I e2 I

I I

I I

~ }“join

T A 1°’0,’
e; I I ,1

I I
ez

I

I e{ I
+ I T

,1
e2 ,-w ‘join

Time

Figure 1: The impact of overhead. Time ntsrtmat to. The concurrent evaluation of .% =d ez, with overhead (0 = ‘fork + ‘join)

taken into account, complete- before their sequential evaluation =d is therefore benefici~. Concurrent ev~uation of e; and e~ I however,

C1OWS the program’s evaluation since e; d- not Contsin enough computation to offset ●cheduliw overhe~~.

funqsp[l=[l

I qs p (X::xs) =
let fun split 1 =

let fun split’ [1 less greater = (less, greater)

I split’ (y::ys) less greater =
if (p y x) then

split’ ys (y::less) greater
else

split) ys less (y::greater)
in

split’ 1 [1 [1

end

val (ljg) = split X8
in

if (i’ > cutoff) andalso (ij > cutoff) then
appendll (qs p 1) (x::(qs p g))

else

append (qs p 1) (x::(qs p g))
and

Figure 2: Functional quicksort automatically restructured by dynamic granularity estimation. Static analysis determines that the

amounts of computation in the argume.ntr to append depend on the lengths (denoted i smd ~) of the sublists produced by split. The

compiler insert- arun-time check (the conditional in qs’s body) to examine thelength~ of lsnd r (stored with the list representation).

Bssed on these dynamic lengths, the check decide, whether to create parallel threads (appendll evaluates its arguments in parallel).

Thecompiler shod educea tbe cutoff value.

80

the cost ofapplying qsto a list of that length is always

greater than the overhead incurred in creating a new

thread for the application’s concurrent evaluation. At

run time, dge approximates the lengths of all lists; the

length information of the lists bound to the identifiers

1 and g in the qs function is available for making the

final psrallelization decision.

Dynamic techniques, like dge, that examine the sizes
of data structures to conditionally select parallel evalu~

tion are necessary since compile-time expression schedul-
ing is fundamentally limited. This is evident from the

qa example. When a statically-unknown list reaches qa,
the sublist partition that qa’s auxiliary split function

crest es is also unknown. Therefore, the costs of the re-
cursive applications of qs that sort the sublists cannot

be known at compile time. In the absence of precise
static information about qs’s list parameter, it is not

possible to statically decide when concurrent evaluation
of qs’s recursive applications is advent ageous.

In languages with explicit constructs for thread cre-

ation and synchronization, programmers typically use
cutofl vrdues to curb parallelism and to ensure that the

program only creates large threads [11]. In the qs exam-
ple, the programmer might explicitly check if the sublist

being sorted contains > k elements for some small k be-
fore creating parallel threads for append’s arguments.

Code remains portable with dge since the language’s
implementation—not the programmer-matches a cut-

off to the underlying parallel architecture. The granu-
larity of parallel threads is less of a programming issue

when thread sizes are determined automatically.

In the next section, we describe the language under
consideration for dynamic granularity estimation and
introduce terminology. We then describe dge’s static

(53.1) ~d dynamic ($3.2) components, illustrate dge’s
operation with examples ($4), present possible exten-
sions to general data structures and mutable data ($5),
and describe an initial implementation of this new tech-

nique ($6) and discuss results (57).

2 Preliminaries

The language under consideration for dynamic granu-

larity estimation is the ~.-calculus, a functional, call-

by-value, higher-order language [24, 26]. The ground

terms of & are variables and constants:

ZEVAR
b G CONST = {nil, true, false}

The terms of A. are expressions (e E EXP) and values
(u ~ VAL c ExP):

1Restriction to a functional langtt8ge dow~ ~cient ‘impl-

ementation of dge’s dynamic component thst must approximate
the tizes of dynamic data at run time. In a functional language,
a datum djs size can only monotonically increase whereas, in a
language with assignment to reference values, d’s siBe can de-
crease and the efficient propagation of d’s new (reduced) sise
estimate to other data that share d is difficult. Section 5 de-
scriber possible methods for estimating data simes in imperative
dynamic Ianguagefi.

e ..—..—

I ~e

I if e then e else e

[cons e e

I hde
I tle

I isnull e
We assume that Av terms are well-typed.

For simplicity, we focus on the lid as the dynamic
structure for dynamic granularity estimation. This is
because a list’s size is simply its length. The syntax of

& therefore contains cons, hd, tl, and isnull directly,
Section 5 describes possible extension of dge to general

recursive datatypes that give rise to trees, for example.
Denote the time required to evaluate an expression

e as]el, the cost of e. The cost of a parallel thread
to evaluate e is Ie I plus the overhead, O, required to

create and schedule a parallel thread.a Let T > 0 be
a macMne-dependent cost threshold so that if [e I > T
then expression e is a candidate for parallel evaluation
(cf. Figures 1 and 2). Costs are measured in integer

evaluation unitu (e-units). An e-unit corresponds to—
again for simplicity-the operational notion of function

application [7]. For a given implementation, normaliza-
tion of e-units is necessary since all function applici+

tions do not have identical costs (e.g., fimctions may be

compiled in line).

For &, we assume that the evaluation of variables,
constants and A-abstractions incurs no cost (zero e-units)

and that the evaluation of the other language terms-
costs one e-unit. Under these simplifying assumptions,

for example, the application (~ (g 1)), where f end g

are functions and 1 is a list, incurs a cost of at least
two e-units (the applications of j and g each cost one),
but complete evaluation of (f (g 1)) may require many
more e-units end may depend on the size (length) of 1,

The length of list 1 is written as 1. When i is a
natural number, ; represents any list of length i.

We further use the following notation. If A end B

are sets, then A U B is their union, A n B is their inter-

section, end A\B is their difference. The empty set is

denoted by 0, and Fin(A) denotes the set of fide sub-

sets of A. If ~ is a map, then the domain and range off
are Dom(~) and R.ng(~). A finite map from A to B is a

partial map with finite domain. Denote the set of finite

maps horn A to B as A ‘$” B where any f c A ‘$ B

can be written as {al i+ bl, ..., an ++ bn}. The empty

map is written {}. If f and g are maps, then f A g
is the map with ~ modified by g and has the domain
Dom(f) U Dom(g) and the values:

(f+ 9)(a) =
{

g(a) ifa c Dom(g)

f(a) otherwise

A sequent of the form ‘A < phrane -) B holds, with re-

spect to A, if phra8e + B where + is some ternary
relation bet ween A, phrase, and B. An inference rule
has the form

Pi... Pn

c

2It ia assumed that the cost of creating and scheduling a
thread is bounded and can be (empirically) determined for a
given language implementation and machine architecture,

where n >0. Successful inference of the premises, Pi,
infers the conclusion C. The premises are either se-
quents or mathematical side conditions.

3 The New Technique

Dynamic granularity estimation deduces at compile
time for a program function f whether f‘s complex-

it y depends on the sizes of f‘s list parameters. This
information is then used by the compiler to restruc-

ture an application e ~ (f 1). The compiler inserts

a check of 1’s length that selects parallel evaluation of

e only when e contains enough computation to warrant
its parallel evaluation. The deduction of a function’s

evaluation cost relative to its list parameters and sub-
sequent program restructuring (check insertion) consti-

tute dge’s static component. The dynamic component
of dge maintains lengths with lists at run time. This

section fist describes dge’s static component and then

its dynamic component.

3.1 Static Component

The idea is to abstractly evaluate, at compile time,
an application e s (f 1) while counting the number of
e-tits required. The static e-unit count thus obtained
is conservative; that is, static estimation of e-units does
not overestimate the number of e-units that evaluation
of an expression requires. For example, if static analysis
of e indicates that \e I = i, then actual evaluation of e

must require ~ i e-units. Since the aim is to identify
functions whose list parameters control their complex-
ity, an abstract semantics that interprets a list 1 as its

length, ~, is used. E-units are (conservatively) counted

under this abstract semantics. We first give the stan-

dard semantics for the language and then the abstract
semantics. To guarantee the termination of abstract
evaluation, it is also necessary to bound the number of

abstract evaluation steps (~3. 1.3). Thk bound is natu-

rally the threshold T (52) at which parallel evaluation of
a thread becomes beneficial (i. e., overcomes scheduling

overheads).

3.1.1 Standard Semantics S

The dynamic objects of the standard semantics S are in

F@re 3. Since the list is the dynamic structure of inter-
est for granularity estimation, it is directly represented
with dynamic objects rather than indirectly encoded in
&: The constant nil is the empty list and a cons pair
(v, /) contains an element v and the list’s tail 1.

F@re 4 gives a standard semantics for the language.
The operational style of the semantics is derived from
Tofl.e’s semantics [29]. The semantics given here, how-

ever, also contains integer time annotation that indi-

cate the number of e-units that an expression’s eval-
uation requires. The evaluation relation E F e +; v
(where E c ENV, e G EXP, v G DVAL, and i ~ Z) in-

dicates that the evaluation of expression e to value u
with respect to environment E requires i e-units, For

example, the app rule states that if the evaluation of
el to VI requires a e-units, the evaluation of ez to Ua

requires b e-units, and the application of VI to vz re-

quires c e-units, then the evaluation of the application

(el e~) requires 1 + a + b + c evaluation units. Simi-
larly, conditional evaluation (if role) counts e-units only
in the evaluation of the branch expression selected by

the conditioned’s predicate. Note that the evaluation of
~“’s value terms (e.g., variables and A-abstractions) re-
quires zero e-tits under this relation; a specific imple-
mentation would, however, use an e-unit measure and

evaluation rules that reflect their concrete costs.

3.1.2 Abstract Semantics d

A non-standard (abstract) semantics A that abstracts
lists as their lengths is used for counting e-units for dy-
namic granularity estimation. This analysis determines
whether an application (f 1) will always require at least
i (where i ~ O) e-units of evaluation for a given length
of 1. The dynamic objects of the abstract semantics are
in Figure 5. Every abstract object V denotes a set of
values of the standard semantics u(V):

d{ul , . ..!%}) =

u({tfue}) =

u({fahe}) =

(7(Lh) =

u({E~}) =

d{[~, e)@]}) =
a(TA) =

(“JU({vi})

A list of length k in the abstract semantics is repre-

sented by Lk, the set of all lists with at least k elements.s

An environment (ENVA) maps a program variable either

to a concrete filte subset of values or to any such subset

(denoted TA),

The upper bound operation u on dynamic objects
X and Y is defined:

{

TA if X= TAor Y=TA

XUY= Li if X= Li~d Y= Lj~di <j

X U Y otherwise

The operator u is set union, except that TA absorbs all

other values and that list abstractions combine conser-
vat ivel y.

The relation for abstract evaluation, E* F e ~i V

(where E* E ENVA, e E EXP, V c DVALSETA, and
i c Z), evaluates expression e with respect to (abstract)

environment EA to a set of values V. This relation is

defined such that when e ~i V and e +i v then
v G u(V) and i < j. That is, the set of values computed

by the abstract relation always contains e’s actual value
(as produced by 5). Furthermore, the e-unit count pro-
duced by the abstract semantics is conservative; stan-
dard evaluation of e under S always requires at least i

e-units when abstract evaluation of e under A requires
i e-units.

Figure 6 gives the operational rules for the abstract
A

semantics using the +i evaluation relation, Begin-
ning with an uneveduat ed term, the abstract rules are

run backwards in a goal-directed faahion towards the

‘Note that Lo demribes all list- and L{ > L;+l, i ~ O.

82

b E BOOL = {true, fahe}

(u, 1) E CONS= DVAL x LIST

1 G LIST = {nil}+ CONS

[z, e, E] E CLOS = Vn x EXP x ENV

v c DVAL = BOOL + LIST + CLOS

E E ENV. VAR % DVAL

Figure 3: Dynamic objects of the standard semantics $.

ZI+VGE

EI-x+ov

E I- (Aa.e) -O [z, e, E]

E 1- el +. [z, e, E’]
El_e2+bv

E’*{z*v}Fe+cv’

E 1- (el e~) -h+~+~+~ v’

EFel+afa18e E!_eg+bv

E i- (if el then ea else es) +I+a+b v

E 1- nil +0 nil

E1-el+av Ekea+bl

E k (cons el ea) +1+.+b (v,~)

E1-e-+. (v,l)

E F (Me) -h+. v

EEe~a(v,l)

E F (tl e) +l+. 1

E1-e+a nil

E 1- (isnull e) +1+. true

J3’1-e+a(v,l)

E 1- (isnull e) +l+. false

(war)

(abs)

(app)

(if-true)

(if-false)

(nil)

(cons)

(hd)

(tl)

(isnull-true)

(isnuil-false)

Figure 4: Standard semantics 6 with time annotations.

83

b G BOOLA = {true, jahe}

L~ c LISTA = {Lo, LI,...} where Lb denotes all lists of length ~ k

[c,e, 1#] G CLOSA = VAR x EXP x ENVA

v E DVALA = BOOLA + LISTA + CLOSA

V c DVALSETA = Fin(DVALA) -t- TA

EA e I%NVA = VAIL -@ DVAL%TA

Figure 5: Dynamic objects of the abstract semantic. .4.

axioms. When more than one rule may apply (e.g.,

isnullA versus isnull-falseA), the more specific rule is
chosen.

Foremost, note that the anyA rule can always be ap-
plied. Rule anyA evaluates an expression e to any value

and incurs no e-tit cost. Therefore, it is a conserva-
tive estimate of values and e-units. Note that abstract

evaluation can invoke the anyA when the premises of
no other rule hold. The rule anyA is also applied if

the depth of the proof exceeds the parallelization cutoff
value T ($2). This is fiz.rther explained in $3.1.3 below.

The varA rule retrieves the mapping of a variable
from an environment at zero cost. The absA rule eval-

uates a A-abstraction term to a singleton set containing
its closure at zero cost. Again, in practice, costs must be

caUbrated to a particular machine and implementation.

Abstract evaluation of an application (e e’) with
the appA rule first abstractly evaluates e and e’. When

e produces a set F of closures, each f c F is applied

to the value set V that e’ produces. The e-unit cost of

en application is one e-unit (for the application proper),
the e-units required for (abstractly) evaluating e and e’,

and the minimum of the e-unit costs incurred in apply-
ing each f e F to V. This gives a conservative e-unit
count because the cost of the least expensive function

reaching the application is used. The set of values pro-
duced by appA is the union of the value sets produced
by the applications of the closures F. The app-TA rule
handles the case where F h not known.

The conditional rules (if-true A, if-falseA, if’) con-
servatively approximate a conditional’s behavior. If the

predicate abstractly evaluates to a singleton set contain-
ing either true or ~aise, the respective conditional branch

is abstractly evaluated. However, when the predicate’s
abstract value set is not precisely known (e.g., when it

contains both true and false), both conditional branches
are abstractly evaluated end the minimum e-unit cost of
these evaluations is incorporated into the conditional’s
cost—the set of values produced by the condhionel is
the union of the value sets produced by both conditional
branches.

The rules for list objects end the primitive list fimc-
tions operate as follows. The nilA rule evaluates the
syntactic constant nil to the identifier LO denoting the
set of all lists. Abstract evaluation of the constant nil

incurs no e-unit cost under this cost model.

A list’s size (length) increases when an element is
consed onto it, Lkt creation with the special cons form
(consA rule)-when the tail of the new list is in the set
Li; i.e., it is a list of at least length i) —produces the set

of lists of at least length i +1, Lit 1. The abstract e-unit

cost for this operation is one plus the cost of evaluating
the arguments to cons. The cons-TA rule handles the

case where all information about the list being cons ed
onto has been lost.

Selecting the head (hdA rule) of any object returns

any value (TA) since a list’s cent ents (its elements) are

not maintained in the abstract semantics. Selecting the
tail (tlA rule) of a list of at least length i returns Li-l,

the set of lists of at least length i – 1, since the list
returned by the tail selector is always one less then the

length of its argument list. The tl-TA rule handles

application of tl to en unknown list.
Testing for the empty list with ianull produces the

set {false} when isnull’s argument is a list of at least

length ~ 1 (isnull-falseA rule). Otherwise, this test
conservatively returns {true, false} under abstract eval-

uation (isnullA rule).

3.1,3 Termination

Abstract evaluation as described may not terminate.
Conditional terms, for example, abstractly evaluate both
arms. This termination problem is solved by bounding
the number of abstract evaluation steps. Evaluation

of an execution path under A terminates (along that

path) when the accumulated e-units exceed the over-
head threshold T ($2). In other words, when viewed as

a deductive proof, the proof tree of an expression’s ab-
stract evaluation never exceeds a depth of T unit-cost

deductions; i.e., the anyA rule is applied upon reachiig

this bound. Halting abstract evaluation in this manner

avoids the non-termination issue since we only evaluate
for a bounded T e-units along any execution path and

return the cost of the least-cost path.

3.1,4 Program Restructuring

A compiler can use dynamic granularity estimation to
restructure the program as follows. The compiler wraps
a conditional around every application expression, (f 1),
that applies function f to a list 1. The conditional’s
branches respectively contain code for the sequential

end parallel evaluation of the application expression (see,
for example, Figure 2). The predicate of the compiler-

supplied conditional examines the length of I (available
at run time) and compares it to a compiler-deduced cut-
off value (described below). When 1’s length is at least
equal to this cutoff, the conditional selects parallel eval-
uation for (f 1).

84

(cud)

.
E* 1- (e a’) ~(l+n+b+mjn(ai,..., =rn))

u
vi

;= 1

EA 1- nil ~CI &o

JJA 1- (hd e) 41+. ~A

EA i-e-&L<

EA 1- (tl e) ~l+a Lm,x(o,i_l)

EA 1- e -A+. TA

EA 1- (tl e) ~1+~ Lo

EA 1- (i-null e) Al+. {trtbe, jake]

EA 1- (i#null e) -A+l+~ @J#e]

(v+)

(abeA)

(appA)

(.pp-TA)

(if-trueA)

(if-*leeA)

(ifA)

(nilA)

(coneA)

(cons-TA)

(hdA)

(tlA)

(tl-TA)

(isnullA)

(imull-fkleeA)

Figure 6: Abstract semantic- A with time annotations.

85

varA

varA
Ekl~OLI

any * tlA

EI-l$o LI E1-x~o TA El- (tl 1) AI LO cOn~A
isnull-falseA

El- (isnull 1) ~l{falae} Z3k (cons x (tl 1)) SaLl ip

E!r(if (isnull 1) then nil else (cons x (tl 1))) 34L1

Figure ?: Example operation ofdge’s .tatic component. Emapsidentifier ltoallfists oflength >l; i.e., E~{lti L1}.

The compiler deduces the cutoff value using abstract
evaluation inthefollowing menner, Suppose that dge’s
dynamic component (~3,2) precisely keeps the lengths

of all lists of length < n, and that all lists with lengths
~nereapproximated as such. The compiler abstractly

evaluates (f Li) for O < i < n. When (f Li) Am V,
it notes the least i such that the cost c of this appli-

cation is always greater then the overhead threshold T.

This least i, if it exists, represents a length cutoff for 1

at whkh the creation of a parallel thread for (f 1) is
always beneficial. The value of this least i is the cutoff

value in the conditional guarding the application.
In general, the compiler can use the abstract evel-

uation semantics to determine a cost threshold for any
expression e, not just for the application of functions

to lists. To do so, it must first identify all lists in e; it

then abstractly evaluates e for all list-length combina-
tions end notes the lengths at which parallel evaluation

of e is viable. Tb list-length information is then used
to construct a predicate to select sequential or parallel

evaluation for e.

Section 4 provides a concrete example of the ab-

stract evaluation a compiler must perform to use dy-
namic granularity estimation.

3.2 Dynamic Component

At run-time, dge’s dynamic component maintains an
approximation to the length of a list 1 along with 1’s

physical representation. We assume en implementation
that represents lists with cons cells in a heap. A fixed

field of b bits encodes length information. This gives
lists of length < 2b – 1 en exact length (in the length

field) at run time. Longer lists of length ~ 2* – 1 have
approximate e lengths denoted by m. When a new list is

formed with the list constructor, as in 1 s (cons z 1’),

the length field on 1 is set to ~ + 1 if ~ is not oo. Oth-
erwise, it is set to 00.

An implementation of dge’s dynamic component can
store the b bits of length information either:

1. in a cons cell, or

2. in the pointers to a cons cell

Storing the approximation within the cell requires an

additional memory access when forming a new cell since

the length field pointed to by the new cell’s tail pointer

must be fetched. If the cons-cell representation does

not contain b unused bits, additional storage must also

be ellocat ed in the cell under the first scheme. The
second approach requires the pointer representation to
contain b unused bits, but avoids an additional mem-

ory fetch since construction of a new cons cell always

requires the pointer to the list that becomes the new

cell% tail field. The first approach is significantly sim-
pler to implement because it only requires modification

to the portion of the compiler that generates the code for
cons-cell creation (57). The second approach requires

modifications to the implementation’s run-time system
(e.g., the garbage collector), the generation of special

pointer dereferencing code, and (pot entielly) a revision
of the memory layout.

The final concern in the design of the dynamic com-
ponent is, how many bits, b, to allocate for the length

field. A value for b is best selected by consulting the
empirical results of applying dge’s static analysis ($3,1)

to actual programs because, for a typical application

(i i), where I (~ 1) I depends on-the length of 1, it is

likely that a threshold value for 1 exists at which per-
allel evaluation of (f 1) is fndtful. The number of bits

b should be large enough to delineate this threshold for
most cases.

4 Examples

Here we illustrate the operation of dynamic granularity

estimation’s static component (abstract evaluation) end
show how the compiler can use the information thus ob-

tained, along with run-time list lengths, to dynamically
schedule concurrent expressions only when beneficial.

F@re 7 depicts the static deductions that dge per-
forms for the expression:

e s if (isnull 1) then nil
else (cons x (tl 1))

The compiler, upon encountering e in a program, can

use dge to determine e’s cost given the length of the

list bound to identifier 1, The figure abstractly evslu-

ates e in the environment {1 ~ L1 } (i. e,, in an environ-
ment where 1 is bound to the set of lists of length ~ 1).

Abstract evaluation of e in this environment indicates
that e’s evaluation produces a list in L1 and requires

at least four e-units (i. e., {1 ~ Ll} 1- e 44 Ll). Ab-
stract evaluation of e in the environment {1 b Lo} pro-

duces a list in LO and requires two e-units (using the

i~, isnullA , and nilA rules).

As en example of how a compiler combines informa-
tion from dge’s static end dynamic components, con-
sider the function f:

fun f 1 = if (isnull 1) then nil
else f (tl 1)

Abstract evaluation at compile time determines that

(f Lo) requires three e-units, (f L1) requires seven
e-units, end (f La) requires eleven e-units. In general,
abstract (and standard) evaluation of (f Ln) requires

3 +4n e-units. However, a compiler need only abstractly

86

evaluate (f L~) for O ~ i < 2b— 1, where b is the number

of bits of list-length reformation maintained by dge’s

dynamic component (83.2), since this encompasses the

size information available at run time. The compiler
then selects the least i such that I (f Li) I > T where

T is the implementation-specific e-unit threshold ($2).

Assuming the concrete values b = 2 and T = 10 in this
example, a compiler using dge can statically deduce
that a concurrent thread for (f 1) is beneficial when

1’s length equals or exceeds two,
As a final example, dynamic granularity estimation

statically determines that the time complexity of qa

(Figure 2) depends on its list parameter. In particu-

lar, it detects that split always traverses the entire
tail of this parameter. Therefore, the qs function’s re-

cursive applications-as well as external applications of
qs in other parts of the program-warrant concurrent

threads when qs’s list parameter is sufficiently large.

5 Extensions

This section describes possible extensions to dynamic

granularity estimation that admit general dynamic data
structures and mutable data.

5.1 Other Data Structures

In addition to lists, dge can handle general recursive
structures (e.g., trees) by defining the size of such a

structure to be the sum of the sizes of its substructures.
Physical representation of a structure’s node then con-

tains the sum of the sizes of the structures pointed to

by the node. A node for a binary tree, for example,

would carry the sum of the sizes of its left end right
subtrees. A static analysis, similar to the analysis pre-

sented here for lists, can determine the data sizes for
which an expression e‘s concurrent evaluation is benefi-

cial. However, upon reconstruction of a dynamic node

of size n, the analysis must now consider all possible

combinations for the substructure’s sizes. For exam-

ple, reconstructing a binary tree of size n with subtrees

left and right requires abstract evaluation with all (n)
size assignments such that Ilejll + \right [= n – 1. Enu-

merating and abstractly evaluating these combinations
increases the static analysis’ complexity. It is, however,

plausible that static examination of all smell structures
is practical and suffices to delineate a viable size thresh-

old for making thread-creation decisions.
Run-time examination of the size of an array can

be used to dynamically determine the granularities of
expressions in array-based languages (e.g., Fortran and

C). An array descriptor (see, for example, [9]) can be

used to dynamically convey an array’s size and bounds.
Static analysis can then determine, for a program

expression e manipulating array a, the sizes of a for
which concurrent evaluation of e is beneficial.

5.2 Mutable Dynamic Data

In languages with imperative assignment to mutable dy-

namic data (e.g., ML), it is potentially expensive to dy-

4 ~~e len~h of ~,1, parmeter, at which parallel evaluation

of an application of q- is beneficial, depends on the machine-
dependent threshold T.

namicall y maintain conservative size approximations for

these data. This is because a mutable datum’s size may

decrease and, as with immutable data, mutable data are

oft en shared. To maintain conservative approximations,
it may therefore be necessary to propagate-upon as-

signment into a dynamic structure-a new size to many
structures. Identification of structures that share a d-
turn d is, however, difficult because d has no information
about the pointers to it. A possible approach to extend-

ing dge to mutable data is to not propagate reductions
in a mutable datum’s size. Instead, its size estimate

can be reconstituted periodically. Such size reconstitu-

tion can occur in the language implementation’s garbage

collectors Shce this approach permits approximations
that may overestimate a datum’s size, it may—in some

cases—select expressions for concurrent evaluation that
do not contain enough computation to compensate for

schedtilng overheads. However, if a large percentage of
the dynamic scheduling decisions are correct, dynamic

granularity estimation in the presence of modifications
to dynamic structures may be viable.

6 Implementation

The dynamic component of dynamic grenuhsrit y estima-
tion has been implemented in the Standard ML of New
Jersey 0.73 optimizing compiler [2]. The MP queue-
based multiprocessing platform [22, 4] provides thread
creation, synchronization, and management primitives.
The smL2c code generator [28] outputs C code for exe-

cution on a 20-processor shared-memory Sequent Sym-
metry.

The compiler and run-time system were modified to

incorporate one machine word (32 bits) of length infor-
mation into the standard (three-word) representation of
every cons cell (cf. 53.2). The compiler’s front end was

modified to dktinguish cons cells from all other types of
dynamic objects. This modification identifies cons cells

es such for the compiler’s back end. The code generator
was modified to produce code that computes list lengths

upon cons-cell formation. Since a list’s length is repre-

sented by a full machine word, code for approximating

list lengths is unnecessary and is not generated. We in-

troduced high-level functions to provide access to a list’s
length information. Thk allows integer lengths to be

manipulated as ML values and to be compared against
the overhead-threshold values (determined empirically,

52). Low-level primitives, i.e. abstract machine instruc-
tions, would provide even better performance.

The static component for dge has not been imple-
mented. Abstract evaluation was performed manually.

7 Results

F@re 8 gives the results of dynamic granukrit y estima-
tion applied to a quicksort (qa, F@re 2) sorting a list
of 10000 random integers, The recursive applications of

qa for sorting sublists were performed in parallel on 8
processors.a The graph plots list-length cutoffs versus

5A copying garbage collector (e.g., [3 81) travma a ‘ata
structure in its entirety—it is a simple matter for such a collector
to recompute fitructure ●ime-.

‘The graph’- standard parallel execution time u a speedup of
3.8 (on 8 procemors) over standard sequential execution.

87

14 ~ 1 1 I 1

13
t

--------- a-. -.-.. -.R---.. -.--a ..---a... -.. -.. D-.. --. -.-D--------- n-. -.. -.-. Q-..-. G---------
-1

,,,,,#c”-”-

.,.’
%’

1
a

,.. -,-8.

.-” ‘, ..., .../” . .
.,,

‘. ..*.,” .. . J..\..-”
x’”’.”

std(exec)

““”l
std(gc) -+--

std(total) -G..
dge(exec) x

dge(gc) -A-
dge(total) -*-

0 2 4 6 8 10

List-Length Cutoff

Figure 8: Effect of varying the list-length cutoff threshold in parsllel evaluation with 8 processors of quick.ort (Figure 2).

execution time. Here, we examine the effect of varying

qs’s list-length cutoff value on the program’s execution
time. Parameters of a specific language implementa-

tionsndmachine architecture would enable dge’s static
component to automatically select a concrete cutoff.

Execution, garbage collection, and total times are
given for qs with and without dge. The graph’s top

two curves are the total time required with dynamic
granularity estimation (dge) and with standard parallel

evaluation (std) respectively. The z-axis is the cutoff
values at which threads are retained for sequential eval-

uation. For the dge times, a length cutoff i indicates
that the arguments to append in qs evaluate in parallel

only when the lengths of the sublists bound to 1 and g
both equal or exceed i. The (std) times are for an ML

implementation without the modifications and associ-
at ed overhead for maintaining list-lengths at run time.

The graph’s lower curves break the total time into ex-
ecution (exec) and garbage collection (gc) times, Time
spent in the operating system are included in the total

times.
Dynamic granularity estimation improves qs’s per-

form=ce at all cutoff values i, O ~ i ~ 10. If thread
creation is throttled when sublists are of length < 3,
dge reduces the total time to execute the program by
z 23~o. F&me 8 also reveals that garbage collection
times slightly decresse ss the cutoff length increases—
fewer threads require fewer memory resources.

Two peculhrities in the timings of F@re 8 require
further explanation. First, the non-monotonicit y of the

execution times arises because of a secondary effect: As
the machine fills with threads, it becomes advantageous

not to create new threads-even if these threads con-
tsin large amounts of computation relative to schedul-

ing costs—since the machine is fi.dly utilized. The in-

put data to qs and the length cutoff (indkectly) influ-
ence the machke’s load and cause this behavior. The

second peculiarity is that the performance of dge at a
cutoff of zero is better than that of the standard imple-
ment ation. This is so even though both versions crest e
the same threads and the run-time system for dge in-

curs overhead; it allocates more data and performs more

computation in maintaining list lengths than standard
parallel evaluation. This occurs because the larger cone

cells (four machine words versus three) of the d e run

time improve processor data-cache performance. P

8 Related Work

Most similar to our work is that of Debray, Lln, and
Hermenegildo [6] in the context of parallel logic lan-

guages. They solve recurrence equations at compile
time to obtain upper bounds on execution times. For

recursive functions dependent on input sizes, their tech-
nique traverses function inputs at run time to compute

sizes—psrallelization dynamically hinges on these sizes,
Our dge technique uses lower-bound cost estimates; we
lose parallelism in returm for parallelism guaranteed to
be beneficial whereas the tecluique of Debray et al. may

sometimes create small inexpensive threads (with rela-
tively large scheduling overheads) in return for more
parallelism. A system that computes both upper and
lower bounds may provide even better information for
dynamic expression scheduling.

Other related work addresses granularity estimation

performed entirely at compile time. Aside from sim-

7This ~a, verified by experiment. setting cons-cell ●igen t 0

four machine word-, improves the performance of some pro-
gram~. Note that this phenomenon it, however, highly mschine
snd implementation dependent.

88

ple heuristics [12], work on static granularity y estimation

falls into one of two categories: load-balancing strategies

that continually monitor the number of active threads

in the machine to determine when it saturates, and sys-

tems that statically derive an algorithm’s time complex-

ity, if possible.
In Halstead’s Multilisp [13, 14], the program ceases

to create new parallel threads when the machine satu-
rates with threads. When this occurs, processors evalu-
ate the available threads to completion. Idle processors
steal threads from busy processors in this load-based in-

lining scheme. Load-based inlhing, in the presence of
Multilisp’s futures, poses deadlock problems, but these

can be avoided by Mohr et al.’s lazy task creation tech-
nique [21, 20]. Lazy task creation efficiently extracts

computation from inlined threads when no runnable
threads exist. Although lazy task creation increases the

granularity of programs by coalescing threads, unlike

dge, it does not prevent the production of fine-grain

threads that are detrimental to the program’s quick

evaluation. WorkCrews [30] is a thread management
package that performs lazy task creation, but requires

programmer knowledge of the mechanism. Qlisp [10]
provides primitives for performing load-based thread

creation as well as automatic load-based inking [23].
Dynamic granularity estimation is a load-irwenaitiue

techdque that only creates parallel threads that are
guaranteed to meet or exceed some granularity criterion.

Therefore, dge is orthogonal to—and complements—
existing load-based inlhing and task creation methods.

Harrison’s parallel Lisp system, PARCEL [15], em-
ploys a non-standard list representation that dynami-
cally maintains information about a list’s length. PAR-
CEL uses length information to implement lists contigu-

ously in memory, but not for making parallelization or
load-balancing decisions.

Static time-complexity analysis has been studied ex-
tensively; static algorithm and program analyzers have

been built. Since the general problem of deducing a pro-
gram’s complexity is undecidable, these systems cannot

always deduce a program’s complexity. In many cases,

however, the analyzers do correctly deduce the com-
plexity of a program. METRIC [32] transforms Lisp

programs into a set of mutually recursive equations and

then seeks their solution to yield the program’s com-
plexity. Le M&ayer’s ACE complexity evaluator [19]

matches list-based fictional programs against a prede-
fine library of function defiltions to map programs to
their time complexities. Sands extended thk approach
to higher-order lazy languages [27].

Dornic, Jouvelot, and GWord [7] describe a practical
time Uystem that statically infers a fuction’s complex-

it y from its local definition; i.e., their analysis does not
require interprocedural information. Reistad and Gif-

ford [25] recently extended this system to admit static
programmer annotation of upper bounds on data struc-

ture sizes. Statically, their time system propagates such
upper bounds from a datum’s point of creation to its

subsequent uses. Static time systems are, however, overly
imprecise since they determine the costs of recursive

functions using only a programmer-supplied upper bound
of data structure sizes, or they err conservatively and al-

ways assume that application of a recursive fimction is
expensive. In contrast to dynamic granularity estima-

tion, static time-complexity analyses cannot accurately

predict an expression’s cost when dynamic data sizes

are not known at compile time.

Dynamic granularity estimation’s static analysis is a

form of abstract interpretation [5, 1, 18]. It differs from

conventional abstract interpretation in two respects: it
assumes the availability of dynamic information, and it
does not abstract to finite domains-instead, the thresh-
old that governs thread creation is used to terminate
dge’s analysis. Wadler addresses the difficulties of
static time analysis in (lazy) functional languages [31].

We have previously used run-time information to
dynamically dkcover parallelism in imperative higher-

order programs that build and modify dynamic data
structures [17, 16].

9 Conclusion

Dynamic granularity estimation (dge) is a hybrid static-
dynamic technique that assists the automatic paralleliza-

tion of functional programs-it examines the run-time
sizes of data structures and only creates parallel threads

that always contain enough computation to offset their
schedulbg overheads. Hybrid (compile/run time) tech-
niques like dge are necessary for effective parallelization
since static analyses performed entirely at compile time

are inherently conservative. An implementation of dge
for lists suggests that run-time tecluiques are a power-

ful means for selecting threads suitable for parallel eval-
uation. We view the application of dge to languages

with general dynamic data structures and arrays as a
promising line for further investigation.

Acknowledgement

This work was supported in part by the National Sci-
ence Foundation under grant CCR-9101O35 and by the

Wisconsin Alumni Research Foundation. L. Huelsber-

gen was supported by an ARPA fellowship in parallel

processing; thanks to John Williams and IBM Almaden
for hosting the internship associated with this fellow-

ship,

References

[1]

[2]

[3]

[4]

[5]

S. Abramsky and C. L. Hankin, editors. Ab-

~tract Interpretation of Declarative Languages. El-
lis Horwood Ltd., Chichester, West Sussex, Eng-

land, 1987.

A. W. Appel and D. B. MacQueen. A Standard
ML compiler, Functional Programming Languagea
and Computer Architecture, 274:301-324, 1987.

C. J. Cheney. A nonrecursive list compacting algo-
rithm. Communications of the ACM, 13(11):677-

678, November 1970.

E. C. Cooper and J. G. Morrisett. Adding threads

to Standard ML. Technical Report CMU-CS-90-

186, School of Computer Science, Carnegie Mellon

University, December 1990.

P. Cousot and R. Cousot. Abstract interpreta-

tion: A unified lattice model for static analysis of

89

programs by construction or approximation of flX-

points. In Sympo8ium on Principle8 of Progmm-
ming Languagea, pages 238-252. Association for

Computing MacMnery, 1977.

[6] S. K. Debray, N.-W. Lin, and M. Hermenegildo.
Task granularity y analysis in logic programs. In
Conference on Progmmming Language Design and
Implementation, pages 174-188, June 1990.

[7] V. Dornic, P. Jouvelot, and D. K. Gifford. Poly-

morphic time systems for estimating program com-

plexity. ACM Letters on Programming Languagea
and Systems, 1(1):33-45, March 1992.

[8] R. R, Fenichel and J. C. Yochelson. A Lisp
garbage-collector for virtual memory computer sys-

tems. Communications of the ACM, 12(11):611-
612, November 1969.

[9] C. N. Fkder. Crafting a Compiler. Benjamin-
Cummings, 1988.

[10] R. P. Gabriel and J. McCarthy. Queue-based multi-

processing Lkp. In Lisp and l%nctional Progmm-
ming, pages 25-44. Association for Computing Ma-

chinery, August 1984.

[11] R. Goldman and R. P. Gabriel. Qlisp: Ex-

perience and new directions. In Proceedings

of ACM/SIGPLAN PPEALS 1988 (Pamllel Pro-
gramming: Experience with Application, Lan-

guages and S@ems), pages 111-123, July 1988.

[12] S. L. Gray. Using futures to exploit parallelism in

Lisp. Master’s thesis, MIT, February 1986.

[13] R. H. Halstead, Jr. Multilisp: A language for con-

current symbolic computation. ACM Tmnaactiona

on Programming Languagea and Sgm?erna, 7(4) :501–
538, 1985.

[14] R. H. Halstead, Jr. An assessment of Multilisp:
Lessons from experience. International Journal of
Pamllel Progmmming, 15(6):459-501, 1986.

[15] W. L. Harrison and D, A, Padua. PARCEL:
Project for the automatic restructuring and concur-
rent evaluation of lisp. In International Conference
on Supercomputing, pages 527-538, July 1988.

[16] L. Huelsbergen. D~amic Language Pamllelization,
PhD thesis, University of Wkconsin-Madkon, Au-

gust1993,

[17] L. Huelsbergen and J. R. Larus. Dynamic program

parallelization. In Lisp and Jlmctional Progmm-
ming, pages 311-323. Association for Computing
Machinery, June 1992.

[18] L. S. Hunt. Abstract Interpretation of l%nctional

Languages: from Theory to Pmctice. PhD thesis,
Department of Computing, Imperial College of Sci-
ence, Technology and Medicine, University of Lon-

don, 1991.

[19] D. Le M6tayer. ACE: An automatic complex-
ity evaluator, ACM Tmnsactiona on Pragmmming

Languages and S~stems, 10(2):248-266, April 1988,

[20] E. Mohr. Dynamic Partitioning of Parallel Linp

Programs. PhD thesis, Yale University, August
1991.

[21] E. Mohr, D. Kranz, and R. H. Halstead, Jr. Lazy
task creation: A technique for increasing the gran-
ularity of parallel programs. In Lisp and lknctional
Programming, pages 185-197. Association for Com-

puting MacMnery, June 1990.

[22] J. G. Morrisett and A. Tolmach. Procs and locks:

A portable multiprocessing platform for Standard
ML of New Jersey. In Principles and Practice of

Pamllel Progmmming, pages 198-207. Association
for Computing Machinery, May 1993.

[23] J. D. Pehoushek and J. S. Weening. Low-cost
process creation and dynamic portioning in Qlisp.
In US/Japan Workshop on Parallel Lisp, pages
183-199. Lecture Notes in Computer Science, June

1989.

[24] G. D. Plotkin. Call-by-name, call-by-value, and the

Xcalculus. Theoretical Computer Science, 1:125-
159, 1975.

[25] B. Reistad and D. GHord. Static dependent costs

for estimating execution time. In Lisp and lkmc-

tional Progmmming. Association for Computing
Machinery, June 1994.

[26] J. C. Reynolds. GEDANKEN—a simple typeless

language based on the principle of completeness
and the reference concept. Communications of the

ACM, 13(5):308-319, 1970.

[27] D. Sands. Complexity analysis for a lazy higher-

order language. In ESOP, pages 361-376. Lecture
Notes in Computer Science, May 1990.

[28] D. Tarditi, A. Acharya, and P. Lee. No assembly
required: Compiling Standard ML to C. Technical

Report CMU-CS-90-187, School of Computer Sci-

ence, Carnegie Mellon University, November 1990.

[29] M. Tofte. Opemtiomd Semantics and Pol~or-

phic TWe Inference. PhD thesis, University of Ed-

inburgh, Department of Computer Science, May
1988.

[30] M. T, Vandevoorde and E. S. Roberts. WorkCrews:
An abstraction for controlling parallelism. Interna-
tional Journal of Pamllel Programming, 17(4):347-

366, 1988.

[31] P. L. Wadler, Strictness analysis aids time analysis.
In Symposium on Principles of Programming Lan-

guages, pages 119-132.Association for Computing
Machinery, January 1988.

[32] B. Wegbreit, Mechanical program analysis, Com-

munications of the ACM, 18(9):528-539, Septem-
ber 1975.

90

