
Locality, Causality and Continuations

Christian Queinnec*

Ecole Polytechnique & INRIA-Rocquencourt

Abstract

Concurrency and distribution are topics exacerbated by the
omnipresence of Int ernet. Alt bough many languages address

these topics, few offer a real opportunity to control and co-

ordinate widely spread dynamic computations. This paper

presents such a language and its prominent features. Besides
explaining the software architecture of the implementation

(based on objects and generic functions), it also presents an
original coherency protocol for shared mutable variables.

We first recall, in Section 1, the main features of our
Scheme-baaed, concurrent, distributed and comput ation-ori-

ented language already presented in more details and exam-
ples in [QD93].

Section 2 explains how to systematically implement a
concurrent and distributed interpreter for that language, us-

ing a set of program transformations combining Abstract

Continuation Passing Style (ACPS) [FWFD88] and Object-

Oriented Lifting. The originality of this implementation is
that it chiefly uses objects and generic functions in a style
that allows to concentrate the problems related to concur-
rency and migration of computations into the sole discrimi-
nating behavior of generic functions. ACPS is not only used
to reify continuations but also to enforce locality of compu-
tations in presence of distal objects.

In Section 3, we propose a new (to our knowledge) pro-

tocol to manage shared mutable variables. This protocol en-

hances [MSRIf92], does not require atomic broadcast, toler-

ates short communication breakdowns and uses bounded cir-

cular clocks. This result comes from the use of a distributed

GC [LCJp92] (which allows us to maintain an approximation

of Global Virtual Time [Jef85]) and from the exploitation of

causality as stated by continuations. To give a continuation

a value (and a store) clearly expresses that the computations

that are present in the continuation causally depend on the

invoker of the continuation.

Finally the computation-orientation of our language and

mainly the ability to control groups of threads, concurrently

● Laboratoire d’Informatique de l’Ecole Polytecbnique (URA 1439),
91128 Palaiseau Cedex, France Email:
Christian. Queinnec@polytechnique.fr This work h= been partially
funded by GDFL-PRC de Programmation du CNRS.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear,. and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

running on multiple sites for the completion of the evalua-

tion of a single expression, is shortly sketched in Section 4.
As usual, related works and conclusions end this paper.

1 Features of ICSLAS

This Section presents the main features of ICSLAS, a Scheme-
based, concurrent, distributed and computation-orient ed lan-

guage. We shortly recall the main features and the ratio-

nale behind some previous design choices detailed in [Que90,
Que92, QD93].

1.1 Philosophy

The ICSLAS language can be roughly described as Scheme
minus a predefine callic c but plus the possibility y to con-

trol birth and death of threads, to migrate computations

towards distant sites (processes or processors with a private

value space) and to control groups of threads cooperating in

the evaluation of an expression.
Contrarily to many other concurrent and distributed lan-

guages, the goal of ICSLAS is not to obtain speed-up factors
but rather to ease the writing of intrinsically distributed sys-
tems like the news system, the programmation of knowbots
to find information on Internet or, even, the management of

ICSLAS own sources. The typical applications aimed by Ic-
SLAS involve the management of a distributed but coherent

stat e (or store) over which multiple t breads of comput ations

harmoniously cooperate.
We do not intend to program entire applications in Ic-

SLAS but rather to express in ICSLAS how to compose compu-

tations that are already well handled by other software tools.
The ICSLAS language appears as a glue or as a distributed

shell, it must therefore offers at leaat the possibilities of a
shell language i.e., side-effect and indeterminacy. But ‘to

cope wit h multiple comput at ions, ICSLAS ensures that the
semantics is independent of the number of sites: what may

be obtained on several sites can also be obtained on a sin-
gle site. For that goal, ICSLAS adopt the distributed shared

memory model (DSM).
Although many concurrent and distributed language pro-

posals start from Object-Oriented Languages (OOL), we
chose to build upon Scheme since it has a clean and essential
semantics and also because Lisp dialects allow more freedom
w .r.t. programming styles. We thus reject the prominence
of the message-passing paradigm since it is too low-level and
too restrictive. Nonetheless we find it useful to implement
ICSLAS itself.

LISP 94- 6/94 Orlando, Florida
@ 1994 ACM 0-89791 -643-3/94/00t6s;3.50

91

We analyzed the relationship between concurrency and
continuations in [Que92] where we gave a denotational se-

mantics for a first sketch of ICSLAS. First-class t breads and
first-class continuations cohabit with difficulty: for instance,

if a thread # invokes a continuation IC reified by a thread
O then, to which thread belongs an invocation of R ? To

avoid these problems, differently addressed in [IM89], we
decided to keep first-class continuations which are useful to

express control operators, and to relegate threads to back-
stage. Threads are not first-class values, they cannot be

sent signals nor they can support any other UNIXI -inspired
features.

In fact, it seems to us that writing a distributed sys-
tem is the art of harmoniously composing multiple simulta-
neous computations. Thus it must be possible to manage

computations as a whole whatever number of threads they

comprise and whichever number of involved sites. A compu-

tation i.e., the processing power needed for the evaluation

of an Sexpression, can be identified to the group of threads

running for that evaluation. Contrarily to a thread, a group

of threads is a first-class value which incarnates what acom-

putation is. In order to make explicit the relationship be-

tween threads and groups of threads, continuations must be

tamed i.e., have a behavior compatible with groups i.e., be

restricted to their dynamic extent. That is why call/cc

is ruled out since it concentrates (and blurs) three different

effects that are provided by different constructions in Ic-

SLAS: (i) dynamic extent escape d la catchftlu-err, es in

COMMON LISP [Ste90], that we provide as call/ep stand-
ing for call with exit procedure [IM89]; (ii) coroutine-like

suspensionlresumption provided (ss well as generalized) by

the group control operators pause ! and arrake !, see descrip-
tion below and examples in [Q D93]; (iii) multiple returns

where a continuation is multiply invoked. This lattest effect
is also possible in ICSLAS because of concurrency which al-

lows threads that share a common continuation to invoke it
simultaneously. This has far-reaching effects in Scheme, but

also in a concurrent framework, since programs have to pro-
tect themselves from that effect, for inst ante: it is possible
to exit from a critical section more than once!

To ease the description of ICSLAS as well as to follow a
tradition of Scheme, all the new features are offered es func-
tions rather than special forms. This will make simpler the

presentation of our extensions and leaves room for alternate
synt axes using macros.

1.2 New features

This Section briefly describes the main features of ICSLAS

that are relevant to concurrency and distribution. Following

the Scheme spirit, ICSLAS strives to offer simple and com-

posable basic features rather than sophisticated inflexible

features.

Assignment is atomic i.e., it writes the value to be ea-

signed in the appropriate location and returns the former
content of this location without interruption. More gener-
ally, data structures modifiers behave similarly. This ex-
change effect allows to write the P and V operations on
semaphores, see [Q D93].

Threads birth and death is controlled by the breed func-

tion. It takes thunks as arguments, spawns es many new
threads as there are thunks and kiUs the current thread.

1Unix is a registered trademark of UNIX Systems Laboratories,
Inc. in the USA and other countr]es.

The new threads are independent, share the dynamic con-
text of the breed-ing thread, and will die upon completion

(except if they escape using continuations as can be seen in
the example below).

The remote function migrates its arguments towards a
site and remotely applies the first of them to the others. It

looks like an annotation that indicates the relevance of a
remet e procedure application.

Let us give an example of an ICSLAS program. The fol-
lowing function returns to its caller all the integers from an

interval. In fact, it creates as many t breads as there are in-
tegers in the interval; all these threads independently return

an integer to the caller of //iota. This is an example of a
“generator” using multiple returns to a single continuation.

Moreover the enumeration itself migrates from site to site.

(define {//iota start end)

(call/ep ; mijy caller’s continuation

(lambda (return)
(define (enurn start end) ; enumerate

(if (< start end)
(breed

(lsmbda () (return start))
(lambda ()

(reaote enum (+ start 1) end’
(breed)))

(remote emm start end))))

The most original feature of ICSLAS is

;for-k

; escape

; migTate

))

; suicide

he concept of
groups of threads; groups originate from the sponsor model
of [Osb90] and the heavyweight future of [GGS 89]. A group
of threads is a first-class object controlling the evaluation of
a form. A group is constructed by the sponsor/de primitive,
standing for call with dynamic extent:

(eponsor/de (lerabda (group) jorm)
(lambda (group) finalization))

Upon invocation, sponsor/de builds a group: all the
threads that will be created for the evaluation of form will

belong to this group (independently of the sites on which
they run). A thread can determine whether it belongs to

some group using the (within/de? group) predicate. When-
ever form yields a value, this value becomes a value yielded

by the original sponsor/de form. There can be more than
one yielded value depending on the number of returning
threads that are created during the evaluation of form.

Two imperative functions exist to pause or awake a group
of threads: (pause! group) and (auake ! group). When

a group is paused, all the threads belonging to it are sus-

pended. They can be resumed with awake!. When a group

is paused and the GC finds it to be unreachable then the
group is finalized. When the GC discovers that a group
contains no more threads, the group is also finalized. In

those two cases, the second argument of sponsor/de is trig-
gered (only once) to finalize the group. To give a second
argument to sponsor/de provides a built-in distributed ter-
mination detection [TM93] making easier to program a wide
variety of algorithms.

Numerous examples of the ICSLAS language appear in
[QD93] and among them: pcall, qlembda, either, future,
and even call/cc but with a precise behavior w.r.t. groups.

2 Implementation

This Section presents the techniques we used to build a dis-

tributed interpreter for ICSLAS. First we present the rules

of our implementation language then we expose the path we

follow to obtain the interpreter.

92

2.1 Implementation language

In order to cope with heterogeneous sites, we decided to

write an interpreter but, to provide security as well as effi-

ciency, programs to be evaluated are compiled into a form

that allows fast interpretation. Compiling towards byte-
codes was a possibility but it makes debugging, and par-

ticularly stepping, difficult. We therefore adopted another
form inspired from the encoding of programs in the Scheme-
78 chip [SS80]: a program, an Sexpression, is transformed
into a tree (with similar shape) of objects whose class repre-
sents their syntactical nature, see figure 1 to get a flavor of
that transformation. This is a “real” compilation, even if we

name it “objectification”, where static properties like lexical
offsets computation, arity check of invocation to predefine

primitives, removal of duplicated type checks . . . can be per-

formed. Taking into consideration the goals of ICSLAS, the

choice of an interpreting technology is not restrictive since

communication delays are dominant.

P
2 :arity

:body

(x :&bug

Class

Point :natne

@

*
Alternative Globai-Mutable-Refemnce

F+>

:conditio

:thm n
37 :offset Field

Read-Access
2 :offset

:el.re x :nanre
:object

Local-Reference

~El :kxical &pth

“- “’exicdoffset

t+~Lw~ivdu

Figure 1: Objectification of (lambda (x y) (if g (Pointx

y) (y ‘(foo))))

We decided to implement our interpreter using objects

and generic functions. This decision is not contrary to our

previous choices, it only reflects the interest of object tech-
nology for implementation. Moreover such a 00 bssiz opens
wide possibilities for reflection and reification that we will

not investigate in this paper.
To implement preemptive concurrency at ICSLAS level, a

scheduler must be provided that periodically switches from
thread to thread. Since we adopted an interpreter technol-

ogy, this amounts to implement a non-preemptive scheduler
within the interpreter, as in [SS75, Wan80]. To be able to
suspend threads, the interpreter maintains reified continua-
tions as done in SML-NJ [App92] but will use the GC tech-

nique of [Mat92]. Continuations are reified into linked lists
of control frames. this not onlv facilitates the design of the.
scheduler but also allows to migrate continuations”like any
other data objects. To offer the scheduler opportunities to

switch between threads, the evaluation is split into myriads

of short uninterruptible evaluation steps.

Site A

hwk I

mmotcpointer

t enhy ifem

r

Y

—

origid object

*R

Site B

Figure 2: Representation of a distal object

Distribution brings another constraint: an evaluation
step must not block because of the unavailability of a dis-
tal object. Distal objects, also known as “proxies” [Piq90,

Ach93], are represented, see figure 2, by a “husk” having
the type and the size of the original object it stands for, as

well w a temporary pointer to an “exit item” (terminology of

[LQP92]) containing all the necessary information to access

the real object. Whenever needed on a site, an immutable

remote object is copied over its husk and its offspring is
brought as new husks, see figure 3. Husks are recognized

from real objects by their instantiation link. When a husk
is overwritten with the content of the object it stands for,

its instantiation link becomes normal: this implementation
trick (a simple sign change) is indicated on the figures by
the Remet e prefix. To avoid overflowing a site with multiple

copies of a same distal object, proxies are hashed to ensure
sharing.

‘its A

Js+;,,.,yxO:i-

F.................exititem

—v–x%-y
I

entq item
~T.q.

El+
,

Site B

Figure 3: Making local a distal object

There is actually a single class of mutable objects, called
Box, that is used to implement mutable variables and muta-
ble object slots. Great care is taken in ICSLAS to make the
user conscious of the (im)mutabdity [Que93b] of the manip-

ulated data. Maintaining coherency among the replicated
copies of mutable objects is dealt with in section 3.

We finally adopted the grammar of figure 4 for our imple-

mentation language. This grammar ensures that evaluation

steps are “atomic” i.e., can always be run in a bounded and
predictable time and, only requires local resources. The in-
terpreter is made of classes and methods. In the sequel, we

93

will use our own home-made object system, called MEROON.
Classes describe the data structures while methods specify
the atomic evaluation steps. The methods that intervene in
the definition of the interpreter have a single discriminating
variable (no multi-methods) and expect the value of their

discriminating variable to be locaf (not a husk). Observe
on the grammar that an expression such as (car (cdr x))
is forbidden since, the value of (cdr x) may be a husk in

which case, extracting its car cannot be done without de-

lay. We must then split such a computation into two steps

which may require in between to migrate some datum. On
the other hand, an allocation or a type inquiry (even on a

husk) is a local operation.

(clef ine-class class super (jields...))
(define-method (generic variable.) form)
form

i

I
local

I

I

i
I

: := (begin local. . . form)

(if local joTm form)
(generic local. . .)
local

: := variable I (quOte value) I constant
(begin local. . .)
(if local local local)
(make- class local. . .)
(class? local)

(clam-jield discriminating-variable findex])
(set-class-field! discriminating-vaTiable

local [index])

index : := local

Figure 4: Grammar of the implementation language

The interest of generic functions is to concentrate, in

their behavior, scheduling and migration i.e., the manage-
ment of distal objects and time quanta. Therefore a generic

function has the following behavior:

1. if the value of the discriminating variable is distal, then

send a message to its original site to bring it locally.
When this migration is finished, reschedule the generic

call in the queue of the local scheduler. In some cases

rather than migrating the datum to the computation,

we can alternatively migrate the computation to the
datum for inst ante, when returning a value to a con-

tinuation.

2. if the time quantum is exhausted, pack the calf to the
generic function into an object and enqueue it in the
queue of the locaf scheduler. The quantum can be ma-
terialized by an integer counting the number of invoca-
tions to generic functions or, better, by the exhaustion
of the zone where control frames are allocated [Mat92].

3. otherwise apply the appropriate method.

Observe in the grammar that a method may finish by
a call to a generic function so the state of a thread can
be represented by such an invocation. The queue of the

scheduler is made of such reified invocations.

2.2 The kernel

The goal of this Section is to show how to obtain an exe-
cutable definition of the interpreter with minimal effort i.e.,
using a systematic method. We do not present (nor build)

an entire theory aimed at the writing of a single interpreter,
but rather exhibit how to use theories to obtain this inter-

preter in a comfortable way.
We must reify continuations to be able to migrate them

as welf as to be able to suspend running threads. Moreover
we want to split evaluation into atomic steps. These reasons

suggest us to adopt Continuation Passing Style (CPS). CPS
is a well known transformation that makes continuations

appear but CPS also converts programs into a language with
only trivial (in the sense of [Rey72]) forms that are at omit

to our sense.
The variant we will use must produce a program respect-

ing the afore-mentioned grammar i.e., it must not convert
forms that already respect our grammar. Such a transfor-
mation is ahead y discussed in [F WH92, chap 8]. A minor
but well known technicaf problem is that CPS reifies con-
tinuation into regular J-forms which usually must be dis-
tinguished from real abstractions, we therefore use Abstract

CPS (ACPS) [FWFD88] which puts more emphasis on the
construction and use of continuations. The form (resuree

q v) will represent the return of the value v to the con-

tinuation g, while (extend q’ (lambda (q v))) will be
analogous to pushing a frame onto continuation g’, A frame
is represented by a binary abstraction; when triggered, it

receives, a value v and all the frames that lay below it in q.

The A-forms crest ed by ACPS only appears in extend forms
and are thus easy to recognize.

The kernel of ICSLAS is similar to Scheme, they have the

same set of special forms. In direct style, a Scheme evaluator
is a function that takes an expression and an environment

and yields its result ing value. Here is the definition of the

alternative, represented by an object of the Alternative
class, as handled by the, now generic, evaluate function:

(define-class Alternative Form
(condition consequent alternative))

(clef ine-rnethod (evaluate (e Alternative) r)
(evaluate (if (evaluate (Alternative-condition e) r)

(Alternative-consequent e)
(Alternat ive-alt ernant e))

r))

This method is ACPS-converted into:

(define-inethod (evaluate q (e Alternative) r)
(evaluate (extend q

(lambda (qq bool)
(evaluate qq

(if bool (Alternative-consequent e)

(Alternative-alternant e))
r)))

(Alternative-condition e)
r))

The abstractions that represent frames do not belong to
our target language, so we perform a new transformation
analogous to A-1ifting except that we will introduce objects
and classes instead of combinators, see figure 5. To push a

frame onto a continuation is transformed into an allocation
of a specialized frame object containing all the free variables
of the abstraction es slots. Since we suppose that all differ-
ent species of frames inherit from the Frame class, the body

of the abstraction defines its specialized behavior w.r.t. the
resume generic function, after suit able substitutions. We

name this transformation “OO-lifting” but, despite its so-
phisticated name, the transformation is similar to what most
compilers do when compiling abstractions. Here is the result
of the 00-lifting applied on the previous example:

(define-method (evaluate q (e Alternative) r)

94

assuming
(clef ine-class Frame Object (q))

transf oTm
(extend g’ (lambda (q v) n))

into

(make-x-Frame q’ V*)
with

(clef ine-class X-Frame Frame (v”))
(define-method (resume (q” .X-Frem.) v)

r[(Freme-q q“)/q][(X-Freme-v g“)/I&~v*
where v* are the free variablen of (lambda (q v) n))

Figure 5: 00-lifting

(evaluate (meke-Alternative-Frerse q e r)
(Alternative-condition e)
r))

(clef ine-class Alternative-Frame Freme (e r))
(define-method (resume (qq Alternative-Freme) bool)

(evaluate (Frame-q qq)
(if bool (Alternative-consequent

(Alternative-Freme-e qq))

(Alternative-alternant
(Alternative-Frame-e qq)))

(Alternative-Freme-r qq)))

The result does not belong to our implementation lan-

guage. It introduced two cascaded accesses, one of which

being: (Alternative-consequent (Alternative-Frame-e

qq)). The trick to avoid such cascades is to systematically
precompute the immutable and initialized slots oflocalob-
jects such as instances of programs. We first rewrite the
alternative as:

(define-method (evaluate q (e Alternative) r)
(let ((condition (Alternative-condition e))

(consequent (Alternative-consequent e))
(alternant (Alt.ernative-alternant e)))

(evaluate (extend q

(lambda (qq bool)

(evaluate qq
(if bool consequent alternant)
r)))

condition
r)))

Then we 00-lift the resulting expression without any
deeper thought. The frame pushed over the continuation is

larger but ensures the locality of its behavior when resumed.

(define-method (evaluate q (e Alternative) r)
(let ((condition (Alternative-condition e))

(consequent (Alternative-consequent e))

(alternant (Alternative-alternent e)))
(evaluate (make-Alternative-Freme q

consequent alternant r)
condition r)))

(define-class Alternative-Frame Frame

(consequent alternant r))
(define-method (resume (qq Alternative-Frame) bool)

(let ((q (Frame-q qq))

(then (Alternative-Freme-consequent qq))
(else (Alternative-Frame-alternant qq))
(r (Alternative-Frame-r qq)))

(evaluate q (if bool then else) r)))

Tosummarize the rewriting process, we first use ACPS,
then open slots of objects then 00-lift the whole. This is a

fairly systematic transformation once one gets used to CPS.

The remaining problem of the kernel concerns the appli-
cation. Usually the arguments of the application are com-

puted by the so-called evlis function and gathered in a list.
Butalist isnotalocal data structure: itmight span several

sites thus making difficult to bind values to the variables of

the function. Wetherefore chose togather thevalues of the

operands of an application into a single, necessarily local
object: an activation block, Here is the definition in direct
style, it can be straightforwardly rewritten as shown before.

(define-reethod (evaluate (e Application) r)
(invoke (evaluate (Application-operator e) r)

(evaluate (Application-operands e) r)))

(define-class Io-Operand Object (size))
(define-class Some-Operands Object

(others first rank))

(define-method (evaluate (e Io-operand) r)
(allocate-Act ivation-Block

(Io-operands-size e)))

(define-method (evaluate (e Some-Operands) r)
(let* ((first (Some-Operands-first e))

(others (Some-Operands-others e))
(rank (Some-Operands-rank e))
(value (evaluate first r))

(block (evaluate others r)))
(set-Act ivation-Block-value! block rank value)
block))

The operands of an application form a linked list ofob-

jects of class Some-Operands terminated by a No-Operand

object, see figure 1. Values of operands are computed from

left to right, the behavior of the terminating No-Operand
node is to allocate an activation block of the right size (this is

precomputed during objectification), then values are stored
at their appropriate rank in the activation block which fi-

nally is given to the invoke generic function which knows
how to invoke objects. We will not detail lambda in this

paper.

2.3 The environment

This Section shows how the specific features of ICSLAS are

grafted onto the previously described kernel. The problem
is that the kernel is now written in CPS while the addi-

tional features will be written (for sake of readability) in

direct style but wit h CPS interfaces i.e., with an initial con-

tinuation variable. The problem is how to transform these
programs into a form that respects the grammar of our im-
plementation language.

Let us take an example and, for instance, a simplified ex-

ception mechanism inspired from EULISP [P NB93]. A value
can be signalled as an exception using the signal function.

A handler can be set by bind-handler to catch the ex-
ceptions that might be signalled during the evaluation of

a thunk. This handler wilI be invoked on the exception in
the dynamic context of signal but under the protection of

the handler that was present at bind-handler time.

The bind-handler simply pushes a special frame onto
the continuation to record the current handler. When nor-

mally resumed, this frame just passes the value it receives to
the next frame (this might be the inherited default behavior
of Frame). Observe in the following the mix between direct
style and CPS interfaces. We also aesume from now on that

primitives are defined with def ine-prirnit ive and takes a
continuation and a local activation block as arguments.

(define-prisiitive (bind-handler q block)
(let ((handler (Activation-Block-value block O))

(thunk (Activation-Block-value block 1)))

95

(invoke (make-Handler-Frame q handler)
thunk

(allocate-Activation-Block O))))

(define-class Handler-Frame Frame (handler))
(define-method (resume (q Handler-Frame) V)

(resume (Frame-q q) V))

Signaling an exception requires to find the current han-

dler somewhere in the frames forming the continuation, then
to invoke it on the exception in the current dynamic con-

text but for the exception handler which must now be the
previous one. This is simply achieved by pushing an extra
frame that will skip the found handler if looked for again.

Direct style and CPS are again mixed together and possibly
non-local evaluations may appear in non-terminal positions:
this is, for instance, the case of (find-handler q) in the
following program fragment, which scans the continuation,

maybe on other sites, to find the appropriate handler.

(define-primitive (signal q block)

(let* ((exception (Activation-Block-value block 0))
(hfq (find-handler q)))

(invoke (make-skip-Frame q (Frame-q hfq))

(Handler-Frame-handler hfq)
(make-Activation-Block exception))))

(clef ine-class Skip-Frame Frame (follow))
(clef ine-method (find-handler (q Frame))

(find-handler (Frame-q q)))
(clef ine-method (find-handler (q Handler-Frame))

q)
(clef ine-method (find-handler (q Skip-Frame))

(find-handler (skip-Frame-follow q)))

These programs represent the intent of the exception sys-
tem, they precisely are what we want to maintain so we look

for a way to convert them into a form suitable for the im-
plement ation without headaches.

Part of the solution is to apply the same set of trans-
formations we described above i.e., to perform another CPS

transformation on the body of that CPS-interfaced func-
tion. This might seem strange since continuations generally

are the ultimate goal of CPS and, here, continuations are
already reified and apparent. But CPS also splits compu-
tations into small atomic chunks so it is the tool we look
for. To apply CPS again wiU make apparent new “infra-
continuations” corresponding to internal points where com-
putation may be suspended. The raw result is:

(define-primitive (signal q block)
(let ((excn (Activation-Block-value block O)))

(find-handler (make-Find-Handler-Frame q excn) q)))
(clef ine-method (find-handler qq (q Frame))

(find-handler qq (Frame-q q)))
(clef ine-method (find-handler qq (q Handler-Frame))

(resume qq q))

(clef ine-method (find-handler qq (q Skip-Frame))
(find-handler qq (Skip-Frsme-follou q)))

(define-class Find-Handler-Frame Frame

(exception))
(define-method (resume (q Find-Handler-Frame) hfq)

(let ((q (Frame-q q))
(excn (Find-Handler-Frame-exception q)))

(invoke (make-Skip-Frame q (Frame-q hfq)) ; pro btem!
(Handler-Frame-handler hfq) ; pToblem!

(make-Activation-Block excn))))

Unfortunately this is once again a disappointing result
since it does not respect our implementation language due
to the presence of the two read accesses to slots of hf q: since
hfq is not the discriminating variable of the generic function
resume, there is no guarantee that the value of hfq is local.
A systematic way to correct this behavior exists which is to

insert a call to a dummy generic function discriminating on

hfq and, of course, to apply CPS again to place that generic

invocation in tail position.
Another more interesting solution is to adopt the “top

frame integration” idea of [Que93a]. The generic function

find-handler is always invoked on top of a Find-Handler-

Frame so we can specialize find-handler for that configura-
tion of the continuation. This amounts to integrate the be-

havior of Find-Handler-Frame in the method for Handler-

Frame and to add the slots of Find-Handler-Frame as ad-
ditional operands of find-handler. The final result is now
simpler even if continuations appear twice in the arguments
of find-handler:

(define-primitive (signal q block)
(let ((excn (Activation-Block-value block O)))

(find-handler q excn q)))

(clef ine-method (find-handler qq excn (q Frame))
(find-handler qq excn (Frame-q q)))

(define-method (find-handler qq excn (hfq Handler-Frsme))
(invoke (make-Skip-Frame qq (Frame-q hfq))

(Handler-Frame-handler hfq)
(make-Activation-Block excn)))

(clef ine-method (find-handler qq excn (q Skip-Frame))
(find-handler qq excn (Skip-Frme-folloW q)))

The transformations that were used above are not new
nor they are automatic: writing an interpreter is still an art!
What we gain is that the interpreter is described in small

fragments using the appropriate level of details. Transfor-
mations justify the final code as a kind of structured im-
plementation documentation. One can even imagine to for-
mally check this equivalence.

The ICSLAS interpreter has been entirely obtained by
these techniques and “top frame integration” was used a

number of times.

2.4 Concurrency

This Section describes the explicit and implicit concurrency
present in ICSLAS. Explicit concurrency is created with the
breed function while implicit concurrency is mandated by
time-slicing or distal objects management. Generally ob-
jects do not move out of the site where they were created
except if beneficial: immutable objects are often replicated
towards the computations that need them while mutable ob-
jects may drift closer to these computations. Continuations
are stuck to their birth site to distribute computations. Con-

trol over the distribution d la Trellis-DOWL [Ach93] will be
investigated in the future.

Every site runs a copy of the interpreter, the objecti-

fied program naturally flows as needed by the cooperating
sit es i.e., as required by the evaluate generic function. Ev-
ery site has a running scheduler. The scheduler is assumed

to be fair. The local -enqueue ! implement ation primitive
adds a t bread to the local scheduler, while rernot e-enqueue !

does a similar job in the queue of a remote scheduler. The
schedule ! function kills the current thread and triggers
the local scheduler. These are the sole internal primitives to

manage concurrency.
The breed function is now simple to express, it just en-

queues new threads created on the received thunks with an

appropriate Suit ide-Frame pushed onto the dynamic con-
text.

(clef ine-primit ive (breed q block)
(let ((n (Act ivation-Block-value-l ength block))

(qq (make-Suicide-Frame (Frame-q q))))

96

(do ((i O (+ i l)))

((= i n))

(local-enqueue !

(make-invoke-Call qq
(Activation-Block-value block i)
(allocate-Activation-Block O))))

(schedule !)))
(define-method (resume (q Suicide-Frame) v)

(schedule !))

The scheduler maintains a queue of suspended calls. With

fairness, it extracts one of its elements and runs it. Generic

functions such as invoke, resume . . . all have an associ-

ated class that allows to reify a call to them. These classes

provides an appropriate method for run; for inst ante, here

follows the associated class and method for invoke:

(define-class invoke-Call Object

(q function block))
(clef ine-method (run (thread invoke-Call))

(invoke (invoke-Call-q thread)

(invoke-Call-function thread)
(invoke-Call-block thread)))

The remote primitive also introduces concurrency but

on a different site. It just packs (reifies) the invocation

into an object which is enqueued on another site. The
remet e-enqueue ! function is responsible for the migration

machinery. It takes an object, encodes it into a stream of
bytes using the XDR protocol [xdr], sends it to the desig-

nated site, through batch RPC, where it is decoded and run.
The encoding function is a generic function so it can be eas-

ily customized. It has to migrate the object itself and part
of its offspring. On the other hand it is useless to migrate

too many objects, a good balance is necessary not to waste
computing power. Experimentations have to be performed

to acquire a better understanding of these issues.

3 Shared variables coherency

This Section explains how variables are implemented. In a

mostly-functional style, variables are often immutable. Also,
it is often the case, as can be seen in the examples of [QD93],
that mutable variables are local. Non local mutable shared
variables are thus the central problem to solve. Mutable

variables are implemented via an indirection through a box,

an object containing a single value, see top-left part of figure
6. Mutable slots within objects are similarly handled. Boxes

are analogous to the reference of ML and were also used

in the Orbit compiler [KKR+ 86]. Although boxes are used
to implement mutable variables, we still prefer assignment

over reference since all assignments to local variables are
statically known (in fact, a local variable is only known to
be mutable if it is the target of a set !): this knowledge may
improve compilation.

3.1 Representation

This Section describes how mutable variables are represented
and usually managed. Once created on a site, boxes are

never copied; if a box has to be migrated then a proxy, an
instance of Cached-Box, is remotely created whose rble is to

serve, for read and write accesses, as a relay towards the
original box.

As previously shown, for inst ante in [Piq91], replication

of data requires some care. Reference counters on entry
items seem the most appropriate method to implement a dis-
tributed GC [LQP92] but maintaining distributed counters

entry item -17
.?hvironment

iii Box

IGQ

Site A II
L

entrv item #

-—
Environment

Site B

~~
CachedBox

f
Environment

n

Site C

m.CachedBox

evalue:
original:

‘e’”on jiom:

I I

Figure 6: Shared mutable variable

is difficult due to the race condition between the messages
that increment or decrement these reference counters. A ref-
erence counter may reach zero and leads to the reclamation
of the dat urn it stands for, while increment messages are

still in transit towards this same entry item. To avoid this
problem, we use the indirect reference counting scheme of

[Piq91] where a replicated object maintains two references:
the first refers to the original object to relay access while

the second refers to the object from which it was copied, see

an examrde in the bottom of fhzure 6. When a replicated.
object is reclaimed, it only sends a decrement message to
the object it comes from. This technique totally eliminates

increment messages (since increment ation is always local)
and therefore race condition. More details and related bibli-

ography can be found in [Piq91] but are unessential to what
follows.

When a thread on a site wants to read or write a non

local box, a message may be sent to the original site where is
the original box: this is the naive implementation but an in-
efficient one since it requires too many messages. The usual
solution is to locally cache values of boxes i.e., to copy boxes
into cached boxes, see again figure 6. When a cached box

must be read, its cached value is returned if present; other-

wise a message is sent to the original box and the fetched
value is stored in the cached box to improve future read-

ings. For a write access, the protocol is different: a message
is sent to the original box along with the value to be as-

signed. When this message is received, the original box is

overwritten with the new value and the former content is re-
turned back to the continuation. This is a “write-through”
cache behavior.

97

With this protocol, the problem now is to consistently
change all the obsolete cached values when the original box
is mutated. The usual solution is to atomically broadcast
an invalidation message so that all receiving sites can reset

their cache. But such an atomic broadcast is an expensive
solution that generally does not support non-answering sites.

Moreover many protocols require or, the total number of
shared variables to be statically known or, the existence of

a centralized machine to maintain some matrices (for “who

knows what” knowledge) or, the program duration to be
bounded so that clocks never overflow. We propose hereafter
a new protocol free of these three problems.

3.2 Causality

The basic observation is the following. Due to thread schedul-
ing in ICSLAS, there is no reason why a mutation should

appear to take effect instantaneously and ubiquitously (to
anti-paraphrase [HW90, p. 464]). What is essential with

mutation is that when a thread modifies a box, this modi-
fication must not be ignored by the computations induced
by the continuation of this thread. Conversely, unrelated

threads do not need to be aware of it immediately but are
compelled to perceive it eventually. The basic rule is that
a thread cannot ignore what its invoker knew! Corollarily,

(i) since sites run many threads in the same value space, a
thread cannot ignore what its site is aware ofi (ii) whenever

a thread is migrated, the receiving site cannot ignore what
knew the thread on its emitting site i.e., what knew the
emitting site. We may then convert an atomic invalidat-

ing broadcast into a lazy propagation of the invalidation.

This protocol will be more efficient since it does not require
global synchronization, allows invalidation messages to be
combined and supports non answering sit es for some time.

Consider the following queer ICSLAS program, where the
schedule ! function is also offered at the user level to al-
low a thread to voluntarily release control. Forms explicitly

using remote do not appear since they are intended to be
transparent.

(let ((x O)(y 0))
(breed (lambda ()

(set! x (+ x 1))

(display x)) ; displays 1 or 2.

(lambda ()
(until (> x O) (schedule!))
(set! x (+ x 1))

(set! y (+ y 1)))
(lambda ()

(until (> y O)
(display (list y x))
(schedule!)))))

busy wait

obaeme

The two first spawned threads are synchronized via the

two shared variables: x and y. The third thread observes
these shared variables. When scheduled, this thread repeat-

edly evaluates the (display (list y x)) form which can

only display an arbitrary number (even zero) of times (0 O)
then (O 1) then (O 2) and, at most once, (1 2) (evaluation

is left to right). The point is that the third thread cannot

observe the new value of y and, in the same time, ignore the

mutations of x since the mutation of y is only triggered by
the first mutation on x and therefore is causally dependent
of this mutation. This is causality and is totally indepen-

dent of any remet e function that might be inserted in the
previous program. Another point is that the observer will
eventually see the mutations since the semantics should not

depend on the number of sites and if there were a single site,
these mutations will be immediately perceived.

3.3 Essence

This Section exposes the essence of our protocol. Nothing
special must be done to guarantee causality on a single site,

this is naturally implied by the uniqueness of the memory.

For a distributed world, we adopt the vectorized time of

[Fid88, Mat88]. Roughly stated: any site has a “proper
clock” counting the number of times its local boxes were

mutated. A site also has as many other clocks as there are
other sites, these clocks record the time of these other sites

as far as the site knows them. The complete set of clocks
represents the “view of the world” the site has. This view is
only guaranteed to be accurate for the proper clock of the
site.

When a thread is migrated then the receiving site must

have a view of the world that must be compatible with that

of the emitting site. A compatible view of the world means
that the receiving site cannot ignore a mutation already per-

ceived by the emitting site. Therefore to ensure causality
(i) any cached box has a version slot that dates the cached

value, this date is the time of the site of the original box
when the value was copied from it; (ii) whenever a thread

is migrated, the view of the world of the emitting site is also

migrated (via remet e- enqueue !) so the receiving site can

invalidate all the cached boxes with out of order versions,
see figure 7. The interest of that scheme is twofold: reading

may be local using caches, invalidation is lazily propagated
and checked when reading.

I

message tiom A to C

[A@BO Q.. Q I tied 1
I?uWorld accordingto A

$ii!i:,;]1-~,
B clcck

Site B

Figure 7: Message shape

When the proper clock of a site is incremented, all the

sites that will perceive it (later) will invalidate all the cached
values coming from that site. This is rather drastic tio we

may adopt an intermediate solution with n proper clocks
per site. Any remotely accessed box has an associated “en-

try item” which never changes. We can use its address and
the 1P number of its site as a basis to compute which one of

the n proper clocks is associated to the box. Other policies

such as associating clocks on a per-type basis may also be
interesting. One can even associate a clock to a single very
important box. To use a big n confuses less boxes but aug-

98

ments the size of messages (note that communication delays
are quite similar for a few bytes or a single Kbyte).

Clocks are represented by integers. Since we intend to
use ICSLAS for wide and long computations (factorizing big

numbers often takes months! [Mor91]) we must take care of

possible clock overflow. This problem is rarely addressed,
except in [L K90]; our solution is bssed on the use of the
underlying distributed GC. A cached value is invalidated as
soon as its version differs from the last known value of the

clock of its original site. Therefore what we must ensure
is: when a clock is incremented, it must not use a number
agsin if there are, somewhere, some cached boxes holding
this number in their version slot. In other words, we are
free to reuse clock numbers if they are unused: this is clearly

a typical GC problem.
We therefore decide to split the clock into s different

sectors and to associate objects to these sectors. Since these
objects must be remotely accessible, associated entry items
are created for them and will never be reclaimed. When a

message is sent, we not only send the values of the clocks

a site is aware of, but we also send the references to the
associated sector objects containing these values. On figure

7, the message emitted by site A transmits the vslue of the

proper clock of site A and a reference to the currently used
sector of clock A. The message also transmits the value of

clock B as known by site A: it passes the reference onto the

appropriate sect or of the proper clock of B, this reference is
already held by site A. Note, on the left of figure 7, a psssing-

through reference to an older sector of clock B presumably
passed earlier and coming from a site which has a not up

to-date view on B.

When incrementing a proper clock and when the current
sect or is exhausted, to know if t he numbers oft he next sector

are unused, it is sufficient to check whether the reference
counter of its associated entry item is zero. This GC-aided
technique allows each site to maintain a minimal index to the
lowest but still used sector of its proper clock, thus all used

numbers for any clock are bound by the minimal and actual
value of this clock. This minimal value allows to compare

clock values and select the highest one: w .r.t. some minimal
value rein, nl is lower than nz if nl lies between min and

nz clockwise. ‘Since all incoming messages on a site impose
to reset the local view of the world to the highest possible

values combining the locsl view with the view conveyed in
the message, messages not only contain values of clocks but

also their minimal values (see again figure 7) i.e., rather than
sending the current value of clocks, we transmit the interval

of used values.
When all sites are normally running, each clock is used

for only a few sectors provided regular communications allow
sites to propagate their clocks. When a site does not answer,

it keeps references towards sectors of any clock and thus will

prevent (in some future) the normal incrementation of these

clocks. We basically have two solutions. We can memorize
all the messages that the non answering site does not receive
so it can desynchronize itself when reconnecting. This is
possible if the memorization of these messages is not too
expensive in space and if clocks still have a large number of
future available ticks before being blocked.

The other solution is to identify and to exclude these
faulty sites in order to allow the running ones to continue
their job. We will not address the problem of lost data and
leave it for the application which hsa to duplicate computa-
tions on different sites to support failure. To exclude some
sites can be done according to [L QP92]. Reference coun-

ters can be used with Christopher’s algorithm [Chr84] to

determine which references come from faulty sites, These

references can be suppressed by running sites thus freeing
clocks; outgoing references towards these sites must also be

set in a state where access through them will signal errors.

No message coming from (resp. directed to) these excluded

sites must be accepted (resp. sent) before their vslue spaces
are correctly reset: they must not use the old annihilated

references nor the running sites may expect vslues that were
referenced to be in a coherent state. Excluding sites is a dif-

ficult synchronization problem.

3.4 Protocol

This Section details the protocol. Let us assume that the
local site can be known using the (current-site) form. A
site is a compound object with at least two slots containing
its index (a number identifying it) and, its view of the world

i.e., an indexed sequence of clocks. Clocks are compound

objects too, they have a current value (regularly incremented
by local mutations) and a minimal value (referring to the last

sector object still in use from elsewhere). When the clock is

not proper, it also refers to a sector-object associated to the
value the site believes the original clock to be.

(clef ine-class Site Object (index clock . . .))

(define-class Clock Object (value rein))
(define-class lonLocalClock Clock (sector))

3.4.1 Writing

The box-set ! function distinguishes two cases whether the

box is local or remote. If the box is remote, we just send
a message delegating the modification of the box. It is not

necessary to invalidate the possibly locally cached value nor
to update it, this will be done automatically when the former
value of the location comes back towards the continuation.
If the box is local and remotely referenced then its associ-
ated proper clock must be incremented. An improvement is
to increment the clock only if the content of the box seems

to change (equality is discussed in [QD93]). The predicate

seems-different? is an atomically computable (to avoid
remote or lengthy computations) approximation of inequal-

it y, it only has to err on the safe side: it may always return
true!

(define-method (box-set ! q (box Box) new)
(let ((old (Box-content box)))

(when (seems-different? old nev)

(increment-clock!
(Site-clock (current-site)

(Site-index (current-site)))))

(set-Box-content ! box new)
(resume q old)))

(clef ine-method (box-set! q (box Cached-Box) new)

(let* ((exit-item (Cached-Box-original box))
(site (Exit-Item-site exit-item)))

(remote-enqueue ! site

(make-box-set !-Call q box new))
(schedule!)))

To increment a proper clock is done as follows. If the
current sector is not exhausted, then the current value of

the clock is incremented by one. If the sector is exhausted
then the next sector in clockwise order is checked to be un-

used i.e., to have a null reference counter in the associated
entry item. If it is the case, thifi sector can be used and the
current value of the clock is set to the first value of that
sector. If the sector is still in use then the increment ation

99

cannot be performed and a “panic mode” w in [Hug85] has
to be entered. The first action is to force every answering

site to be aware of the exact state of the current site then

to let the distributed GC reacts so it can raise the minimal

value of clocks i.e., discovers that some sectors are now un-

used. If the next sector is still in use then there are some non
answering sites that must be excluded by all running sites in
a coordinated way. The references coming from these faulty

sites will be identified by Christopher’s technique [Chr84]
and annihilated. When the panic mode ends, the next sec-

tor is free again and the increment ation can proceed. This
drastic cut in processing power w well as this data loss will

probably have a deep effect on the application.

3.4.2 Reading

To read a box is simple if the box is local or has a locally

upto-date cached value: its content is returned. That a box
is upto-date is easily checked: we just compare its version

content with the latest value obtained from the clock of its
original site. If they are equal then no new mutation w.w

perceived from that site so the cached value is correct. Since
clocks never reuse already used numbers, a simple integer

comparison is sufficient. Otherwise a remote read access is
emitted with a continuation that will try to cache the re-

sulting read value. Some care must be taken since when a
value comes back, the site may well be ahead of time with

the cache filled with a more upto–date value. The cache is
written only if the value is upto-date that is why box-fetch

returns the value of the box and the time that was current
when read. To fill the cache is simply done by pushing an ap

propriate frame onto the continuation and sending a regular
remet e-enqueue ! message with that modified continuation.

While a box-f etchca.11 is remotely running, other threads

may try to read the same non local box. They may be

blocked waiting for the box to be filled (this spares band-

width) or, they may ignore each other and thus detect more

recent mutations. We only present this latter variant here:

(define-method (box-ref q (box Box))
(resume q (Box-content box)))

(define-method (box-fetch q (box Box))
(resume q (cons (Box-content box)

(Clock-value
(Site-clock (current-site)

(Site-index (current-site)))))))
(define-class Cached-Box Box

(original version from))
(clef ine-method (box-ref q (box Cached-Box))

(let* ((exit-item (Cached-Box-original box))
(site (Exit-Item-site exit-item))

(clock (Site-clock (current-site)
(Site-index site))))

(if (= (Clock-value clock)

(Cached-Box-version box))

(resume q (Cached-Box-content box))
(begin (remote-enqueue ! site

(make-box-fetch-Call
(make-Cache-Frame q box)
box))

(schedule!)))))
(define-class Cache-Frame Freme (box))
(define-method (resume (q Cache-Frame) value+time)

(let* ((value (car valua+time))

(time (cdr value+time))
(box (Cacha-Frame-box q))

(exit-item (Cached-Box-original box))
(site (Exit-Item-site exit-item))

(clock (Site-clock (current-site)
(Site-index site))))

(when (= time (Clock-value clock))

(set-Cached-Box-cent ent ! box value)
(set-Cached-Box-version ! box time))

(resuma (Cache-Frame-q q) value)))

3.4.3 Updating clocks

The rersot e-enqueue ! primitive is responsible for the man-
agement, on the receiving site, of the compatibility between
the views of the world of the two communicating sites. When

rersote-enqueue ! migrates a thread, it also sends the view
of the world oft he sending site. We assume send to perform

the encoding of the values to be sent and do not detail it
further (it may also send additional information such as the

identity of the emitting site for security reason, piggyback
the actual load average for load balancing etc.)

(clef ine (remote-anqueue ! site thread)

(send site (Sits-clocks (current-site)) thread))

Upon reception, the incoming view serves to update the
local view. For any clocks, its current value is compared to

the corresponding incoming value and if the latter is more
recent, the receiving clock is updated with it. We assume

the t irne<? predicate to clockwise compare its second and
third argument w.r.t. the first one. Since a proper clock is

always accurate, it cannot be reset from outside.

(dafine (update-clock! local remote)

(uhan (time<? (Clock-rein local)
(Clock-value local)
(Clock-value remote))

(set-Clock-value ! local (Clock-value remote))
(set-Clock-sector! local (Clock-sector remote))

(set-Clock-rein! local (Clock-rein remote))))

The migrated thread is simply enqueued in the local
scheduler. In the case of Cache-Frame resumptions, it may

also be immediately run to take benefit earlier of cache fill-
ing.

(define (receive vies thread)
(for-each update-clock! (Site-clocks (current-site))

view)
(local-enqueue! thread))

In some sense, this new protocol trades an atomic broad-
cast for a lazy propagation of cache invalidations. Due to

its laziness, it easily supports short communication break-

downs; sites wili be desynchronized at their next successful
communication (provided no messages are lost). Our pro-
tocol is sound i.e., ensures the correct simulation of a dis-

tributed shared memory, but it does not enforce liveness.

For instance, in the above queer example, it does not ensure
that the third thread will eventually displays anything dif-

ferent from (O O). To force Iiveness simply requires that, pe-
riodically, sites communicate, for instance to exchange their

load average or, as described with panic mode, to update
the minimal value of clocks. Note that this minimal value
corresponds to a lower approximation of the Global Virtual
Time (GVT) [Jef85] of the application.

4 Groups

This Section only sketches some of the main points of the
implementation of groups of threads, additional details can
be found in [Que94]. The status of a group whether it is
awaked or paused is recorded ss a boolean in a mutable box.

100

Sites maintain the tree structure of the groups they know

so they are able to atomically (i.e., locally) check whether a

thread belongs to a group or not. When a message migrates
a thread, it also conveys the most specific group to which
this thread belongs. When an unknown group is received,

sites delay all operations on its associated threads until the

full ancestry of that group is locally known. Threads refer
to their most specific group (groups do not refer to their

associated threads since it would be too difficult to main-
tain such a data structure and since it would create cycles

slowing down the GC and endangering termination detec-

tion). Groups refer to their super-groups i.e., the group in

which they were created. They SJSOhold the ls.st date when
the status of their immediate supergroup was surely known.

This is necessary to sequentialize not causally-related con-
current pause ! or awake ! operations on a group and one

of its (direct or indirect) subgroups. The running status of
a group is the content of the (cached) box provided (this
cached value is valid and) no mutation was perceived on the
running status of any of its supergroups.

5 Related Work

Concurrency was already present in the first implementation
of Scheme [SS75] ever since multiple implementations where

studied and among them [KHM89, Ha189, GGS89, JP92].

They all offer exchange instructions, breed equivalent and

some of them made steps towards the group concept. We
differ from these on three points: threads are not first-clsss,

computations are assimilated to groups and, we are not in-
terested in speed-up for shared memory computers. We
rather tried to address the problems of “programming in
the (very) large”. We also studied for a long time, the rela-

tionship between continuations and threads and presented
what we think is a good combination even if it reintroduces

the concept of dynamic extent.

Since [SS75] we were not aware of any published imple-

mentation of a concurrent interpreter. We hope to have
partially filled this gap. The implementation uses concepts

borrowed from modern object technology [BDG+ 88]: com-
bhred with CPS, generic functions allow to confine threads

and distal objects management, freeing the body of meth-
ods from these details. 00-lifting is new (in its form not

in its effect). The implementation is written by fragments
with the appropriate level of details. These fragments may

be written in direct style or in CPS or in direct style with

CPS-interfaces. We then convert these fragments towards

our implementation language and sometimes require to use
CPS twice. The transformations are rather mechanical, they

constitute by themselves an interesting documentation. The

use of CPS to finally ensure the locality of computations is

a new interesting facet of this program transformation that

is heavily used by the implementation.
Many aspects of distribution are supported by the un-

derlying distributed GC. This is the csse of termination de-
tection, inspired from [TM93], and slso of the management

of clocks sectors. Details on this distributed GC appear in
[LQP92]. The coherency protocol does not require atomic
broadcast which is more appropriate for multi-processors
caches [Bro90, BKT92]. It improves upon [MSRN92] since

it does not require a centralized shared memory manager
and only uses a small fixed number of clocks per site inde-
pendently of the number of mutable variables.

6 Conclusions

This paper presented two main results:

1. a software architecture for the implementation of a
concurrent and distributed interpreter.

2. a new coherency protocol for shared variables with in-
teresting properties.

We hope that these explanations will foster the realiza-

tion of new implementations of these kind of dialects.

Bibliography

[Ach93] Bruno Achauer. Implementation of distributed trellis.

In Oscar M Nierstrasz, editor, ECOOP ’93 — 7th European
Conference on Object- OTiented Prog~amming, volume Lec-
ture Notes in Computer Science 707, pages 103–1 17, Kaiser-
slautem (Germany), July 1993. Springer-Verlag.

[App92] Andrew Appel. Compiling with continuations, Cam-
bridge Press, 1992.

[BDG+88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P.
Gabriel, Sonya E. Keene, Gregor Kiczales, and David A.

Moon. Common lisp object system specification. SIGPL.4N

Notices, 23:special issue, September 1988.

[BKT92] H E Bal, M F Kaashoek, and A S Tanenbaum. Orca:
A language for parallel programmi ng Of distributed systems.
IEEE Transactions on Software Engineering, 18(3):190-205,

March 1992.

[Bro90] G Brown. Asynchronous multicaches. Distributed Com-
puting, 4:31–36, 11990.

[Chr84] Thomas W Christopher. Reference count garbage collec-
tion. Software-Practice and Experience, 14(6):503–507, June

1984.

[Fid88] J. Fidge. Timestamps in message passing systems that
preserve the partial ordering. In PTOC. 11th. Australian Com-
puter Science Conference, pages 55–66, 1988.

[FWFD88] Matthias Felleisen, Mitchell Wand, Daniel P. Fried-

man, and Bruce Duba. Abstract continuations: a mathemat-
ical semantics for handling functional jumps. In Proceedings
of the 1988 ACM Symposium on LISP and Functional Pro-

gramming, Salt Lake City, Utah., July 1988.

[FWH92] Daniel P Friedman, Mitchell Wand, and Christopher
Haynes. Essentials of Programming Languages. MIT Press,
Cambridge MA and McGraw-Hill, 1992.

[GGS89] Ron Goldman, Richard P. Gabriel, and Carol Sexton.
Qlisp: An interim report. In Takayasu Ito and Robert H Hal-
stead Jr., editors, PaTallel Lisp: Languages and Systems,
US/Japan Workshop, volume Lecture Notes in Computer Sci-

ence 441, Sendai (Japan), June 1989. Springer-Verlag.

[Ha189] Robert H. Halstead, Jr. New ideas in parallel lisp:
Language desigm, implementation, and progr amming tools.

In Robert H Halstead, Jr. and Takayasu Ito, editors, fL9-
Japan Workshop on Parallel Lisp, volume Lecture Notes in
Computer Science 441, Sendai (Japan), June 1989. Springer-
Verlag.

[Hug85] John Hughes. A distributed garbage collection. In Func-

tional Programming and Computer Architecture, pages 256-
272. Lecture Notes in Computer Science 201, Springer-Verlag,

September 1985.

[HW90] Maurice P Herlihy and Jearmette M Wing. Lin-
earizability: A correctness condition for concurrent objects.
ACM TTarwaction on Programming Languages and Systems,

12(3):463–492, Jtiy 1990.

101

[IM89] Takayaem Ito and Manab. Matsui. A parallel lisp lan-
guage PaiLisp and its kernel specification. In Takayasu

Ito snd Robert H Halstead, Jr., editors, Proceedings of the

US/Japan Wo7kshop on Panzllel Lisp, volume Lecture Notes

in Computer Science 441, pages 58–100, Sendsi (Japan), June
1989. Springer- Verlag.

[Jef85] D. R. Jefferson. Virtual time. ACM Transactions on Pro-

gramming Languages and Systems, 7(3) :404–425, July 1985.

[JP92] Suresh Jagannathan snd Jim Philbin. A foundation for an
efficient multi-threaded scheme system. In Proceedings of the
1992 ACM Conference on Li8p and Functional Programming,
pages 345–357, San Francisco, USA, June 1992.

[KHM89] David A. Kranz, Robert H, Halstead, snd Eric Mohr.

Mul-T: A high-performance parallel Lisp. In Proceedings oj

the 1989 SIGPLAN Conference on Programming Language

Design and Implementation, pages 81–90, Portland, Oregon,
June 1989. ACM Press. Published as SIGPLAN Notices

24(7), Jdy 1989.

[KKR+ 86] David Kranz, Richsrd Kelsey, Jonathan A. Rees, Paul

Hudak, Jsmes Philbin, and Norman I. Adams. Orbit: an opti-
mizing compiler for scheme. In Proceedings oj the SIGPLA N
’86 Symposium on Compiler Construction, pages 219–233.

ACM, June 1986.

[LK90] William S Lloyd and Phil Kearns. Bounding sequence

numbers in distributed systems: A general approach. In Pro-
ceedings of the 10th International Conference on Distributed
Computing Systems, pages 312–319, Paris (France), May-
June 1990.

[LQP92] Bernsrd Lang, Christisn Queinnec, and JOS6 Piquer.

Garbage collecting the world. In POPL ’92 – Nineteenth An-
nual ACM symposium on Principles of Programming Lan-
guages, pages 39–5o, Albuquerque (New Mexico, USA), Jan-

UUy 1992.

[Mat88] F. Mattern. Virtusl time and global states of distributed
systems. In PaTaIlel and Distributed Algorithms, pages 215-
226. North-Holland, 1988.

[Mat92] Luis Mateu. Efficient implementation of coroutines.

In Yves Bekkers and Jacques Cohen, editors, International
WoTk8hop on Memory Management, number 637 in Lec-

ture Notes in Computer Science, pages 230–247, Saint-Malo
(Frsnce), September 1992. Springer-Verlag.

[Mor91] FranSois Morain. Distributed primality proving and the

primality of (23539 + 1)/3, In I. B. Damg&d, editor, Advances

in Cryptology – EURO CRYPT ‘9o, volume 473 of Lecture
Notes in ComputeT Science, pages 110–123. Springer–Verlag,
1991. Proceedings of the Workshop on the Theory and Appli-
cation of Cryptographic Techniques, Aarhus, Denmark, May
21–24, 1990.

[MSRN92] Mszaaki Mizuno, Gurdip Singh, Michel Raynal, and
Mitchell L Neilsen. Communication efficient distributed

shared memories. Research Report 1817, INRIA, December
1992.

[Osb90] Randy B. Osborne. Speculative computation in Multi-
Lisp, an overview. In LFP ‘9o - ACM Symposium on Lisp
and Functional Programming, pages 198–208, Nice (France),
1990.

[Piq90] JOS6 Piquer. Sharing data structures in a distributed
lisp. In High PeTjoTmancc and Panzllcl Computing in Lisp,

Twickenharn, London (UK), November 1990. a EUROPAL
workshop.

[Piq91] JOS6 Miguel Piquer. Indirect reference counting: A dis-
tributed garbage collection slgorithm. In PARLE ’91 – Paral-
lel Architccturm and Languages EuTopc, pages 150–165, Lec-
ture Notes in Computer Science 505, Springer-Verlag, June

1991.

[PNB93] Padget, J. A., Nuyens, G., and Bretthauer, H. An

overview of EuLisp. Lisp and Symbolic Computation,

6(1/2):%98, 1993.

[QD93] Christian Queinnec and David De Roure. Design of a
concurrent and distributed language. In Robert H Halstead
Jr and Takayasu Ito, editors, Pa?allel Symbolic Computing:
Languages, Systems, and Application81 (US/Japan WoTkshop

Proceedings), volume Lecture Notes in Computer Science 748,
pages 234–259, Boston (Msssachussetts USA), October 1993.

[Que90] Cti,stian Queinnec. PolyScheme : A Semantics for a
Concurrent Scheme. In WoTk8hop on High Perfo?-mance and
PaTallel Computing in Lisp, Twickenham (UK), November

1990. Europesn Conference on Lisp and its Practical Appli-
cations.

[Qu@2] Christi.n Queirmec. A concurrent and distributed ex-

tenmon to scheme. In D. Etiemble and J-C. Syre, editors,
PARLE ’92 – parallel ATchitcctuTes and Language8 EuTope,

pages 431–446, Paris (France), June 1992. Lecture Notes in
Computer Science 605, Springer-Verlag.

[Que93a] Christian Queirmec. Continuation conscious compila-
tion. Lisp Pointem, 6(1):2–14, January 1993.

[Que93b] Christian Queinnec. Designing MEROON v3. In Chris-
tian Rathke, Jiirgen Kopp, Hubert us Hohl, and Harry Bret-
thauer, editors, Object- Oriented PTogTamming in Lisp: Lan-
guages and Applications. A Rcpovt on the EC OOP’93 Work-

8hop, number 788, Sankt Augnstin (Germany), September
1993.

[Que94] Ctilstian Queinnec. Sharing mutable objects snd con-
trolling groups of tsaks in a concurrent and distributed lan-

guage. submitted, 1994.

[Rey72] John Reynolds. Definitional interpreters for higher order
progr amming languages. In ACM Conference Proceedings,
pages 717–740. ACM, 1972.

[SS75] Gerald Jay Sussmsn and Guy Lewis Steele Jr. Scheme: an

interpreter for extended lambda calculus. MIT AI Memo 349,
Massachusetts Institute of Technology, Cambridge, Mass., De-
cember 1975.

[SS80] Guy L. Steele, Jr. and Gerald Jay Sussman. Design of

a lisp-based processor. CA CM, 23(11) :628–645, November
1980.

[Ste90] Guy L. Steele, Jr. Common Li8p, the Language. Digital

Press, Burlington MA (USA), 2nd edition edition, 1990.

[TM93] Gerard Tel and Friedmann Mattem. The derivation of

distributed termination detection algorithms from garbage
collection schemes. ACM Transaction on Programming Lan-

guages and Systems, 15(1):1–35, Jsnuary 1993.

[Wsn80] Mitchell Wand. Continuation-basedmultiprocessing. In
Conference Record of the 1980 Lisp C’onfeTcnce, pages 19–28.
The Lisp Conference, 1980.

[xdr] Rfc 1014: external data representation standard: Protocol
specification. Technical report, ARPA Network Information
Center.

Ftevision: 1.17

102

