
Scheme: The Next Generation

John D. Ramsdell*
The MITRE Corporation

Scheme has served the community for twenty years.
It has demonstrated that a useful language can be
constructed which has a very small number of rules
for forming expressions. Scheme's set of rules were
carefully chosen so as to produce a language flex-
ible enough to support most major programming
paradigms in use today, yet allow efficient implemen-
tations.

Scheme has evolved modestly over the years, but
the computing world has not. Since the introduction
of Scheme, many new programming languages have
emerged with innovative ideas. Parallel computers
have become common place. Finally, the extensive
use of Scheme has taught both users and implemen-
tors much about the current definition of Scheme and
how to improve it.

I believe now is the time to design a new dialect of
Scheme for the next generation. This paper describes
a set of changes and additions that were carefully
chosen so as to retain the flavor of Scheme. I hope
this paper marks the beginning of a community effort
to design a next generation Scheme dialect.

Imitation is the most sincere form of flattery, and I
believe the Scheme community should flatter the ML
community. One practice we should copy from ML [5]
is the pervasive use of immutable data structures.
Most data structures created by Scheme programs
are not modified. Programmers should be allowed to
write code which creates and shares data with other
modules, while being assured that no other module
modifies that data. Implementations should be able

*This paper reflects the views of the author and makes
no statement about the views of The MITRE Corporation.
Author's address: The MITRE Corporation MS/K320, 202
Burlington Road, Bedford MA, 01730-0208. E-mail: rams-
dell@mitre.org.
@1995 John D. Ramsdell. Permission to copy without fee all
or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, this
copyright notice and the title of the publication and its date
appear, and notice in given that copying is by permission of
John D. Ramsdell.

to take advantage of the knowledge that some data
structures are immutable.

In practice, this means that the procedure cons
should return an immutable pair and s e t - c a r ! and
s e t - c d r ! should be eliminated. Vectors should re-
main mutable, but an immutable vector creating pro-
cedure should be added. As in ML, the application
of a lambda expression should bind variables to val-
ues, and not locations that contain values. The ef-
fect of mutable lambda bound variables should be
provided by adding the three procedures make-ce l l ,
cell-ref, and cell-set!, which creates an initial-
ized mutable location, retrieves the value in cell, and
modifies the value in the cell.

Another practice we should copy from the ML com-
munity is to make the use of formal methods an inte-
gral part of the design process for the next generation
Scheme dialect. While Scheme has a formal seman-
tics, it has the markings of an afterthought. For ex-
ample, though printed with the document, it is not a
part of IEEE Std 1178-1990, IEEE Standard for the
Scheme Programming Language [3]. Furthermore,
optimizing Scheme compilers often perform program
transformations that are difficult, if not impossible,
to justify with the semantics.

The Vlisp Project [2] carefully studied and used the
Scheme semantics. That work strongly motivates the
following changes to le t r rec and equality testing.

Le t r ec should be restricted so as to bind variables
only to lambda expressions. The semantics should
include l e t r e c as an expression constructor in the
abstract syntax, and its meaning should be defined
recursively, i.e. with the use of a fixed point operator.

Equality testing should provide implementors with
more freedom. When eqv? is given two procedures as
arguments, the result should be a boolean value, but
implementations should be allowed to return either
value at its discretion. With this change, compiler
writers and the formal semantics would no longer
need to label procedures to satisfy the needs of equal-

Scheme: The Next, Generation bv John D. R.amsde]]
13

ity testing.
In combination with the change to immutable

lambda bound variables, the above two changes will
bring the semantics in line with the intuition dis-
played by compiler writers. Larabda expressions and
the portion of an environment extended using l e t r e c
no longer depend on the store, which is the essence
of the intuition.

Let me briefly list several other issues that should
he addressed before I conclude with a proposal for
parallel programming.

• Programmers should be able to rely on the order
in which the elements of a call are evaluated. I
believe the arguments should be evaluated left-
to-right, followed by the operator. This change
also makes the formal semantics more useful be-
cause it reduces the number of answers associ-
ated with each program.

• Support should be provided for the "little mod-
ules" approach to programming, in which the
programming language provides facilities for
partitioning code into many small indepen-
dent parts. The module system included in
Scheme 48 [4] provides a good starting point.

• The language should facilitate optional type
checking, which might motivate the addition of
a pattern matching conditional [6].

In order to support parallel processing on both dis-
tributed and shared memory machines, I believe the
Scheme community should flatter the Erlang commu-
nity. Parallel activity in Erlang [1] is synchronized by
the use of message passing. All data structures are
immutable.

Elimination of all mutable data structures would
not be in the spirit of Scheme, but limiting muta-
tions to one thread of control would. In a next gener-
ation Scheme dialect, parallel activity should be ini-
tiated by the use of a spawn procedure which creates
a thread of control for the procedure given as an ar-
gument in a copy of the parent's store. Copying the
parent's store ensures only one thread of control can
access or modify each mutable data structure.

As in Erlang, parallel activity should be coordi-
nated using asynchronous buffered message passing.
Each message should be copied into the store of the
receiver so as to prevent access to mutable data from
more than one thread of control. Parallel algorithms
which require a shared mutable database, would as-
sociate one thread of control with the database and
use message passing to mediate database interactions
from other threads.

Implementations on shared memory machines need
only copy data structures which contain mutable
data. Part of the motivation for making the use of
immutable data structures pervasive is to reduce the
amount of copying required by an implementation.

In conclusion, the ideas assembled retain the flavor
of Scheme while incorporating innovative ideas from
other programming languages. I hope these ideas will
inspire an ambitious effort to design a new dialect of
Scheme for the next century. It's t ime to embark on
a new voyage in language design. Engage!

R e f e r e n c e s

[1] Joe Armstrong, Robert Virding, and Mike
Williams. Concurrent Programming in ERLANG.
Prentice Hall, 1993.

[2] Joshua D. Gut tman, John D. Ramsdell, and
Mitchell Wand. VLISP: A verified implementa-
tion of Scheme. Lisp and Symbolic Computation,
8(1/2):5-32, 1995.

[a] IEEE Std 1178-1990. IEEE Standard for the
Scheme Programming Language. Institute of Elec-
trical and Electronic Engineers, Inc., New York,
NY, 1991.

[4] Richard A. Kelsey and Jonathan A. Rees. A
tractable Scheme implementation. Lisp and Sym-
bolic Computation, 7(4):315-335, 1994.

[5] Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML. The MIT Press,
Cambridge, MA, 1990.

[6] Andrew K. Wright and Robert Cartwright. A
practical soft type system for Scheme. In 1991
ACM Conference on Lisp and Functional Pro-
gramming, volume 7 of LISP Pointers, pages 250-
262, 1994.

Scheme: The Next Generation bv .lohn D. Ramsdell
14

