
Semantics of Combinat ions in Scheme *

S. Anglade t J.J. Lacrampe t
Laboratoire d'Informatique

Fondamentale d'Orl4ans

C. Queinnec t
Ecole Polytechnique

& INRIA-Rocquencourt

A b s t r a c t

This paper presents a denotational semantics for the
combinations of the Scheme language. Scheme leaves
unspecified the order of evaluation of the terms of a
combination. Our purpose is to formally and denota-
tionally characterize such indeterminacy. We achieve
this by extending the denotation as well as the do-
main of final answers to take into account the various
possible orders of evaluation.

1 I n t r o d u c t i o n

The Revised 4 Report [CR91] defines the Scheme lan-
guage in English. This document also contains an
appendix that provides a denotational definition for
Scheme. The informal description of combinations is:

[R4 RS 4.1.3] . . . The operator and operand ex-
pressions are evaluated (in an unspecified order)
and the resulting procedure is passed the resulting
arguments
In contrast to other dialects of Lisp, the order of
evaluation is unspecified, and the operator expres-
sion and the operand expressions are always eval-
uated with the same evaluation rules.
Although the order of evaluation is otherwise un-
specified, the effect of any concurrent evaluation
of the operator and operand expressions is con-
strained to be consistent with some sequential or-
der of evaluation. The order of evaluation may be
chosen differently for each procedure call.

*Revision: 2.0
tLaboratoire d'Informatique Fondamentale d'Orlfians, BP

6759, 45067 Orl4ans Cedex 2, France
Email: {anglade ,lacrampe}@univ-orleans .fr

ILaboratoire d'Informatique de l'Ecole Polytechnique
(URA 1439), 91128 Palaiseau Cedex, France
Ernail: Christian.queinnecOpolytechnique.fr This work
has been partially funded by GDR-PRC de Programmation
du CNRS.

But the denotational appendix uses a trick to sug-
gest the indeterminacy of the order of evaluation:

[R 4 RS 7.2] The order of evaluation within a call
is unspecified. We mimic that here by applying
arbitrary permutations permute and unpermute,
which must be inverses, to the arguments in a call
before and after they are evaluated. This is not
quite right since it suggests, incorrectly, that the
order of evaluation is constant throughout a pro-
gram (for any given number of arguments), but it
is a closer approximation to the intended seman-
tics than a left-to-right evaluation would be.

The purpose of this paper is to present a denota-
tional specification for the indeterminacy of the order
of evaluation.

In section 2, we analyze combination and proce-
dure invocation and illustrate some ambiguities. In
section 3, we expose our solution which roughly allows
all possible orders of evaluation and leaves to the im-
plementation the final choice among all possible deno-
tations. Section 4 will discuss related problems such
as other aspects of indeterminacy and infinite evalua-
tion. We will also emphasize the notion of store. We
finally end with conclusion, in section 5.

2 A c t u a l s t a t e

This section presents and discusses the actual mean-
ing of combinations. We had two additional con-
straints: we wished to preserve as much as possi-
ble the actual denotational semantics as published in
[CR91], we also wanted the resulting semantics to be
still executable when translated into Scheme.

15

2.1 F o r m a l s e m a n t i c s

In the Revised 4 Report, the semantics of procedure
calls appears as1:

El(E0 E')~ =
Ap~.g* ~(permute ((E0 § E*))]

P
.ke*.((Ae*.applicate (e*~ 1)(e*'[" 1)~)

(unpermute e*))

The valuation function £* distributes g onto a se-
quence of expressions. Several problems exist with
that definition:

.

.

.

As recalled in the introduction, permute is a
global function that may incorrectly suggest that
the generated permutat ion is constant.

unpermute is not exactly an inverse of permute
since it only shuffles sequences of values and has
nothing to do with syntax.

permute is a syntactic constructor taking syn-
tactical terms and returning a sequence of these
terms. This violates a tenet of denotational se-
mantics and forces one to prove that E is well de-
fined. This proof is straightforward (and always
omitted) if the denotation of any term is only
made of the denotations of its subterms [Sto77].

2.2 I n f o r m a l s e m a n t i c s

The following example will be used to illustrate the
many points we will discuss and, most of all, the var-
ious evaluation orders. It is written with an essential
syntax.

(l e t ((o r d 0))
(l e t ((f (lambda ()

(set! ord (+ 1 ord))
(let ((imp ord))

(lambda 1 (cons tmp 1))
))))

(Cf) (C~) (C~))) ((f) ((f))))))

Let us illustrate the various possible orders of eval-
uation with the associated sentences of Revised 4 Re-
port.

[R4 RS 7.2] . . . Applying arbitrary permutations
permute and unpermute . . . is a closer approxima.
tion to the intended semantics than a left-to-right
evaluation would be.

1The denotations appearing in this paper were produced
automatically with LiSP2TEX. This program may be fetched
on f tp. inria, f r : INRIA/Projects/Papers/.

For an uniform left-to-right evaluation, the result
is (1 (2 (3)) (4 (S))) .

For an uniform right-to-left evaluation, the result
is (5 (4 (3)) (2 (1))) .

And, for the evaluation where the second, first
and then, when necessary, third expressions are
successively considered, the result is (3 (2 (1))
(5 (4))) .

[R4 RS 7.2] . . . Applying arbitrary permutations
. . . to the arguments in a call before and after they
are evaluated, is not quite right since it suggests,
incorrectly, that the order of evaluation is constant
throughout a program (for any given number of
arguments).

If we adopt a left-to-right evaluation order for the
external procedure call and, a right-to-left for the in-
ternal procedure calls then, the result is (1 (3 (2))
(s (4))) .

[R4 RS 4.1.3] Although the order of evaluation is
otherwise unspecified, the effect of any concurrent
evaluation of the operator and operand expressions
is constrained to be consistent with some sequen-
tial order of evaluation.

This rule excludes, for instance, a result like (2 (1
(S)) (3 (4))) . This result might be produced by a
tri-processor concurrently evaluating the three terms
of the external procedure call. The second proces-
sor is the first to start evaluation as well as the last
to finish. Meanwhile, the first and third processors
interleave their reading of the shared variable ord.

[R4 RS 4.1.3] The order of evaluation may be
chosen differently for each procedure call.

This formulation is ambiguous and will be the sub-
ject of the next section.

2 . 3 C o m b i n a t i o n s v e r s u s i n v o c a t i o n s

The Revised 4 Report states that combination and
procedure call are synonymous (section 4.1.3). A com-
bination is a piece of text having a precise syntax, it
is a syntactical concept. On another hand, an invoca-
tion represents a run-t ime concept where a function,
obtained by evaluation of the operator part of a com-
bination, is applied on the values that were obtained
from the operands of the combination. Therefore a
combination may lead to numerous invocations: this

16

is the case of (cons trap l) which is a combination
that the above example evaluates five times.

A combination may have more than one occur-
rence. This is the case, for instance, of ((:f) ((: f)))
which appears twice. Each of these occurrences is
evaluated only once.

In pure denotational style [Sto77, Sco82, Sch86],
there is no means to distinguish between occurrences
of a combination, therefore ~((:f) ((:f)))~ should
have an unique denotation.

The last quoting from Revised 4 Report may be con-
sidered ambiguous since it does not precise whether it
concerns combinations or invocations. If it concerns
combinations then the evaluation order of a combina-
tion is unique even if that combination has multiple
occurrences. In particular if one instruments a com-
bination to determine the chosen order then, once de-
termined, this order will never change (for that com-
bination).

If the evaluation order concerns invocations then,
a single occurrence of a combination may exhibit a
different evaluation order any time it is evaluated.
This is even more obvious for different occurrences of
a combination.

Let us name invocation approach the latter and
combination approach the former. Returning to
our previous example, there are 24 different possi-
ble evaluation orders for the invocation approach,
whereas there are only 12 possibilities in the combina-
tion approach. For instance, the result (1 (3 (2))
(4 (5))) cannot be obtained with the combination
approach ~ .

If a real compiler compiles differently different oc-
currences of a combination then it implicitly adopts
the invocation approach.

3 A l l o r d e r s

The purpose of this section is to propose a denota-
tional semantics for the invocation approach which is
more general than the combination approach.

3 .1 T o w a r d s d e n o t a t i o n a l f u n c t i o n s

This subsection defines the permutation machinery.
We define two new functions, named perm and un-
perm. We will use the following notations for se-
quence manipulation:

2If computations were allowed to be interleaved then, there
are 120 imaginable permutations, most of them are ruled out
by the necessary sequentiality of evaluation order.

(st/)
(sli)
(s i)

i (s-x)

drops as usual the first i members of s,

is also the ith member of s,

keeps all the members of s but the i th ,

shifts right the members of s

from the i th and inserts x as the i th,

Let D be the domain U --~K ---~C and let 6 name
elements of D.

The first trick is not to permute expressions but
to permute their denotations. The second trick is to
automatically produce the unpermutation from the
definition of the permutation. Recall that N is the
set of natural numbers. A sequence of items in D
can be encoded as a function from N to D. Therefore
a permuter perm is a function that maps sequences
onto sequences; its signature is (N ~ D) ~ N ~ D .

The unperm function reverses the effect of perm.

Though perrn is imposed by the implementation, un-
perm may be derived automatically from perm, with
the signature D + ~ D.

The role of unperm is to build a cascade of con-
tinuations that will insert values in the order which
is appropriate for the final application. The unperm
function is defined as follows:

unperm =
A6 + . perm

(6+ I i)
P
single
Ac. # 6 + = i --+ •c>,

unperm

(6+Ti)
P
AC. (C 2-e)

#6 +

If 6 + is the sequence of denotations of expressions,
(6 + .L i) represents the one perm chooses, and (6 + Ti)
the sequence of all others. The chosen denotation is
"run" with a continuation that will take the resulting
value e, and will insert it at the right place in the
sequence of already obtained values e* coming from

i
the other denotations (e* ~-e).

Let Fix be a fix-point operator [Sco82] then given
a perm function, invert builds the associated unperm
function. Its signature is therefore ((N --~ D) ~ N
D) ~ D + ~ D.

17

invert =
l p e r m . Fix

Aunperm.
A6 + . perm

aipN. (6 + l i)
P
single

Ae. # 6 + = 1 ~ t¢(¢},
unperm

(~+ii)
P

),~*.~ (~" 2-~)
#5 +

For a given perrn, The semantics of procedure call
can therefore be expressed as:

E[(Eo E*)] =
lp~ . invert

p e r m
g*[E0 E*~

P
,~¢+.applicate(e + 1 1)(e+t 1)n

The semantics of sequence of expressions is now
defined as:

E ' H = (>
E*[Eo E*~ : (E[Eo]) ~ E*IE*]

3.2 A n A x i o m a t i z a t i o n of e v a l u a t i o n
o r d e r

The function p e r m cannot be any function with sig-
nature ((N ~ D) ~ N ~ D). To ensure that u n p e r m
visits all (and only once) the elements of a sequence
5 +, p e r m must verify:

Vf, n , 3 i, 1 < i < n , p e r m f n = f i

This formula corresponds to the contract of p e r m
which is to choose one element among n, then one
element among the n - 1 remainings etc.

With a denotational semantics point of view, an
evaluation context is made of an expression, an envi-
ronment, a continuation and a store. The exact choice
of an evaluation order in a combination (E0 E*) may
depend on all these informations. This order can be
deduced by inver t from a function perm, depending
on the context.

Actually, one could axiomatize evaluation order of
a combination by:

VEo, E*, p, ~c, oL

3 perm, Vf, n,3 i, l < i < n, p e r m f n = f i

Such a specification does not fit our aim to trans-
late the denotational semantics into a native Scheme.

3.3 A M e t a - f u n c t i o n for e v a l u a t i o n
s t r a t e g i e s

Let us name Meta-perm the function that defines the
evaluation order strategy in a given implementation.
To be realistic, we give to Meta-perm the whole con-
text E0, E*, p, g and ~ to leave the choice of an eval-
uation order completely unrestricted. Therefore this
function has: Exp ~ Exp* --~ U ~ K ---~ S ---~ (N
D) ~ N ~ D as signature. It fully characterizes an
evaluator which is correct if:

VEo, E * , p , ~ , o ' , f , n ,

3 i , 1 < i < n, Meta-perm Eo E* p ~ f n = f i

Metn-perrn results from a skolemization of perm
and the semantics of procedure call, depending on
Meta-perm can therefore be expressed as:

g[(Eo E*)~ =
Ap~.Ao. invert

Meta-perm E0 E* pt¢ cr
S*[Eo E*~

P
Ic+.applicate(e + 1 1)@+t 1)to
o"

Let us give some examples of specific Meta-perms.

1. Meta-perm E0 E* p ~ cr = A f i . (f 1)
characterizes left-to-right order.

Meta-perrn E0 E* p ~ o" = t f i . (f i)
characterizes right-to-left order.

These behaviors are entirely independent from
the context.

2. If the behavior of Meta-perrn depends only on
the expressions then it reflects the combination
approach. A given combination always uses the
same order but, two different combinations can
use different orders.

3. If the behavior of Me~a-perrn depends on each
component of the context then, it reflects the
invocation approach 3.

3For instance, (lh 7r2) can be compiled into (i f (arab)
(let ((x ~rl)) (x ~r2)) (let ((x ~r2)) (Irl x))). This
leaves the indeterminacy until run-time, the store under the
random function amb being responsible for the choices.

18

3 . 4 M u l t i p l e a n s w e r s

The Meta-perm function of the previous section is
suitable to characterize implementations. We now
want to characterize the language itself independently
of its implementations i.e., to characterize the set of
all possible answers yielded by Meta-perm instances
satisfying the invocation approach.

The basic idea is to generate a l l permutations and
to collect their results. This leads us to redefine C as S

A" rather than as S ~ A since the denotation now
returns the sequence of answers rather than a single
one. Then Meta-perm E0 E* p ~ o" will constantly
yield all where all is a function that concatenates the
answers of its first argument fapplied to each natural
positive number, less than the length of the submitted
sequence.

The all function ensures that we get the results of
all possible permutations using invert all.

all =
)~f ipncr, i = 1 ~ f i p ~ ~r,

all f (i - l) p n t r

f i p n o "

So the final semantics for combinations is:

$[(E0 E*)] =
Ap~. invert

all
E*IEo E*I
P

Ae+.applieate(¢ + ~ 1)(e+t 1)n

Of course, an implementation is compelled to re-
turn only one of the possible values as predicted by
the semantics.

4 R e l a t e d p r o b l e m s

In this section, we consider various related problems
such as - - the specification of the unspecified value,
- - the writing of an evaluator for the above semantics
and, - - the potential for infinite evaluations [Lac92].

The Revised 4 Report explicitly allows an other
kind of indeterminacy:

[R4 RS 1.3.2] If the value of an expression is
said to be "unspecified", then the expression must
evaluate to some object without signaling an error,
but the value depends on the implementation; this
report explicitly does not say what value should be
returned.

[R 4 RS 7.2.2] Here and elsewhere, any expressed
value other than undefined may be used in place
of unspecified.

The "unspecified" value is not required to be the
same in every context. We can adopt the same tech-
niques developed in this paper (see sections 3.2, 3.3,
3.4) for the specification of the meaning of this "un-
specified value". For instance and similarly to section
3.3, the global semantics can be parameterized by an-
other implementation-defined function which goal is
to return an unspecified value that might be chosen
according to the context of execution i.e. p n o'.

A nice evaluator would try to show all the various
possible answers an expression yields. But this eval-
uator would also have to return the multiple corre-
sponding stores. In a toplevel-based implementation,
different choices are possible, for instance - - to let
the user choose which solution is the base for the next
toplevel iteration or, - - to evaluate exhaustively the
new expression in all the previously obtained stores.
The latter leads to a combinatorial explosion but the
former is already very expensive.

The previous nice evaluator requires an Answer do-
main able to represent collections of values. The sim-
plest solution is to use sequences of values as in A*.
But there is no reason to impose an order on the an-
swers so a set would be more appropriate. But sets
require elements (i.e., functions) to be comparable to
ensure that elements do not belong more than once
to a given set. Bags will be more useful but sequences
are a good comnpromise.

To use sequences of answers also raises the prob-
lem of infinite evaluations. A clever and fair [LL92]
evaluator should produce first the finitely computable
values.

5 C o n c l u s i o n s

We showed in this paper how to precisely define an
undefined evaluation order. We propose it for R'~RS
which should at least clarify the meaning of "proce-
dure call". Note that our approach does not impose
(but does not exclude either) to choose the order of
evaluation at run-time, it allows multiple occurrences
of a single combination to have different but statically
chosen order of evaluations. As such our proposal
leaves entire freedom within indeterminacy.

19

Acknowledgements
We wish to thank John Ramsdell for his remarks and
mainly the adaptation of our solution to the "unspec-
ified value" problem.

Bibliography
[CRgl] William Clinger and Jonathan A Rees. The

revised 4 report on the algorithmic language
scheme. Lisp Pointer, 4(3), 1991.

[Lac92] Jean-Jacques Laerampe. S3L ~ tire d'ailes
. . . . Technical Report 92-11, Laboratoire
d'Informatique Fondamentale de l'Universit@
d'Orl@ans, BP 6759 - 45067 Orl@ans Cedex 2,
France, 1992.

[LL92] Jean-Jacques Lacrampe and Mar-
ianne Ligou. Une machine "@quitable" pour
implanter s31. In Journges Francophones des
Langages Applicatifs, pages 82-109, 1992.

[Sch86] David A Sehmidt. Denotational Semantics,
a Methodology for Language Development.
Allyn and Bacon, 1986.

[Sco82] Dana Scott. Domains for denotational se-
mantics. In M. Nielson and E.M. Scmidt,
editors, Automata, Languages and Pro-
gramming, 9th Colloquium, pages 577-623.
Aarhus, Lecture Notes in Computer Science
140, Springer Verlag, 1982.

[Sto77] Joseph E Stoy. Denotational Semantics:
The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, Cain-
bridge Massachussetts USA, 1977.

BIBLIOGRAPHY
20

