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A b s t r a c t  

This paper presents a denotational semantics for the 
combinations of the Scheme language. Scheme leaves 
unspecified the order of evaluation of the terms of a 
combination. Our purpose is to formally and denota- 
tionally characterize such indeterminacy. We achieve 
this by extending the denotation as well as the do- 
main of final answers to take into account the various 
possible orders of evaluation. 

1 I n t r o d u c t i o n  

The Revised 4 Report [CR91] defines the Scheme lan- 
guage in English. This document also contains an 
appendix that provides a denotational definition for 
Scheme. The informal description of combinations is: 

[R4 RS 4.1.3] . . .  The operator and operand ex- 
pressions are evaluated (in an unspecified order) 
and the resulting procedure is passed the resulting 
arguments . . . .  
In contrast to other dialects of Lisp, the order of 
evaluation is unspecified, and the operator expres- 
sion and the operand expressions are always eval- 
uated with the same evaluation rules. 
Although the order of evaluation is otherwise un- 
specified, the effect of any concurrent evaluation 
of the operator and operand expressions is con- 
strained to be consistent with some sequential or- 
der of evaluation. The order of evaluation may be 
chosen differently for each procedure call. 

*Revision: 2.0 
tLaboratoire d'Informatique Fondamentale d'Orlfians, BP 

6759, 45067 Orl4ans Cedex 2, France 
Email: {anglade ,lacrampe}@univ-orleans .fr 

ILaboratoire d'Informatique de l'Ecole Polytechnique 
(URA 1439), 91128 Palaiseau Cedex, France 
Ernail: Christian.queinnecOpolytechnique.fr This work 
has been partially funded by GDR-PRC de Programmation 
du CNRS. 

But the denotational appendix uses a trick to sug- 
gest the indeterminacy of the order of evaluation: 

[R 4 RS 7.2] The order of evaluation within a call 
is unspecified. We mimic that here by applying 
arbitrary permutations permute and unpermute, 
which must be inverses, to the arguments in a call 
before and after they are evaluated. This is not 
quite right since it suggests, incorrectly, that the 
order of evaluation is constant throughout a pro- 
gram (for any given number of arguments), but it 
is a closer approximation to the intended seman- 
tics than a left-to-right evaluation would be. 

The purpose of this paper is to present a denota- 
tional specification for the indeterminacy of the order 
of evaluation. 

In section 2, we analyze combination and proce- 
dure invocation and illustrate some ambiguities. In 
section 3, we expose our solution which roughly allows 
all possible orders of evaluation and leaves to the im- 
plementation the final choice among all possible deno- 
tations. Section 4 will discuss related problems such 
as other aspects of indeterminacy and infinite evalua- 
tion. We will also emphasize the notion of store. We 
finally end with conclusion, in section 5. 

2 A c t u a l  s t a t e  

This section presents and discusses the actual mean- 
ing of combinations. We had two additional con- 
straints: we wished to preserve as much as possi- 
ble the actual denotational semantics as published in 
[CR91], we also wanted the resulting semantics to be 
still executable when translated into Scheme. 
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2.1  F o r m a l  s e m a n t i c s  

In the Revised 4 Report,  the semantics of procedure 
calls appears as1: 

El(E0 E')~ = 
Ap~.g* ~(permute (( E0 § E*))] 

P 
.ke*.( (Ae*.applicate (e*~ 1)(e*'[" 1)~ ) 

(unpermute e*) ) 

The valuation function £* distributes g onto a se- 
quence of expressions. Several problems exist with 
that  definition: 

. 

. 

. 

As recalled in the introduction, permute  is a 
global function that  may incorrectly suggest that  
the generated permutat ion is constant. 

unpermute  is not exactly an inverse of permute  
since it only shuffles sequences of values and has 
nothing to do with syntax. 

permute  is a syntactic constructor taking syn- 
tactical terms and returning a sequence of these 
terms. This violates a tenet of denotational se- 
mantics and forces one to prove that  E is well de- 
fined. This proof is straightforward (and always 
omitted) if the denotation of any term is only 
made of the denotations of its subterms [Sto77]. 

2.2 I n f o r m a l  s e m a n t i c s  

The following example will be used to illustrate the 
many  points we will discuss and, most of all, the var- 
ious evaluation orders. It  is written with an essential 
syntax. 

( l e t  ( ( o r d  0) )  
( l e t  ( ( f  ( lambda () 

(set! ord (+ 1 ord)) 
(let ((imp ord)) 

(lambda 1 (cons tmp 1)) 
) ) ) )  

(Cf) (C~) (C~))) ( (f)  ( ( f ) ) ) ) ) )  

Let us illustrate the various possible orders of eval- 
uation with the associated sentences of Revised 4 Re- 
port. 

[R4 RS  7.2] . . .  Applying arbitrary permutations 
permute and unpermute . . .  is a closer approxima. 
tion to the intended semantics than a left-to-right 
evaluation would be. 

1The denotations appearing in this paper were produced 
automatically with LiSP2TEX. This program may be fetched 
on f tp.  inria, f r  : INRIA/Projects/Papers/. 

For an uniform left-to-right evaluation, the result 
is (1 (2 (3 ) )  (4 ( S ) ) ) .  

For an uniform right-to-left evaluation, the result 
is (5 (4 (3 ) )  (2 ( 1 ) ) ) .  

And, for the evaluation where the second, first 
and then, when necessary, third expressions are 
successively considered, the result is (3 (2 (1 ) )  
(5 ( 4 ) ) ) .  

[R4 RS  7.2] . . .  Applying arbitrary permutations 
. . .  to the arguments in a call before and after they 
are evaluated, is not quite right since it suggests, 
incorrectly, that the order of evaluation is constant 
throughout a program (for any given number of 
arguments). 

If we adopt a left-to-right evaluation order for the 
external procedure call and, a right-to-left for the in- 
ternal procedure calls then, the result is (1 (3 (2 ) )  
(s  ( 4 ) ) ) .  

[R4 RS  4.1.3] Although the order of evaluation is 
otherwise unspecified, the effect of any concurrent 
evaluation of the operator and operand expressions 
is constrained to be consistent with some sequen- 
tial order of evaluation. 

This rule excludes, for instance, a result like (2 (1 
(S))  (3 ( 4 ) ) ) .  This result might be produced by a 
tri-processor concurrently evaluating the three terms 
of the external procedure call. The second proces- 
sor is the first to start  evaluation as well as the last 
to finish. Meanwhile, the first and third processors 
interleave their reading of the shared variable ord. 

[R4 RS 4.1.3] The order of evaluation may be 
chosen differently for each procedure call. 

This formulation is ambiguous and will be the sub- 
ject of the next section. 

2 . 3  C o m b i n a t i o n s  v e r s u s  i n v o c a t i o n s  

The Revised 4 Report  states that  combination and 
procedure call are synonymous (section 4.1.3). A com- 
bination is a piece of text having a precise syntax, it 
is a syntactical concept. On another hand, an invoca- 
tion represents a run-t ime concept where a function, 
obtained by evaluation of the operator part  of a com- 
bination, is applied on the values that  were obtained 
from the operands of the combination. Therefore a 
combination may lead to numerous invocations: this 

16 



is the case of (cons trap l )  which is a combination 
that the above example evaluates five times. 

A combination may have more than one occur- 
rence. This is the case, for instance, of ((:f) ( ( : f ) ) )  
which appears twice. Each of these occurrences is 
evaluated only once. 

In pure denotational style [Sto77, Sco82, Sch86], 
there is no means to distinguish between occurrences 
of a combination, therefore ~((:f) (( :f)))~ should 
have an unique denotation. 

The last quoting from Revised 4 Report may be con- 
sidered ambiguous since it does not precise whether it 
concerns combinations or invocations. If it concerns 
combinations then the evaluation order of a combina- 
tion is unique even if that combination has multiple 
occurrences. In particular if one instruments a com- 
bination to determine the chosen order then, once de- 
termined, this order will never change (for that com- 
bination). 

If the evaluation order concerns invocations then, 
a single occurrence of a combination may exhibit a 
different evaluation order any time it is evaluated. 
This is even more obvious for different occurrences of 
a combination. 

Let us name invocation approach the latter and 
combination approach the former. Returning to 
our previous example, there are 24 different possi- 
ble evaluation orders for the invocation approach, 
whereas there are only 12 possibilities in the combina- 
tion approach. For instance, the result (1 (3 (2))  
(4 (5 ) ) )  cannot be obtained with the combination 
approach ~ . 

If a real compiler compiles differently different oc- 
currences of a combination then it implicitly adopts 
the invocation approach. 

3 A l l  o r d e r s  

The purpose of this section is to propose a denota- 
tional semantics for the invocation approach which is 
more general than the combination approach. 

3 .1  T o w a r d s  d e n o t a t i o n a l  f u n c t i o n s  

This subsection defines the permutation machinery. 
We define two new functions, named perm and un- 
perm. We will use the following notations for se- 
quence manipulation: 

2If computations were allowed to be interleaved then, there 
are 120 imaginable permutations, most of them are ruled out 
by the necessary sequentiality of evaluation order. 

(st/) 
(sli) 
(s i) 

i (s-x)  

drops as usual the first i members of s, 

is also the ith member of s, 

keeps all the members of s but the i th ,  

shifts right the members of s 

from the i th and inserts x as the i th, 

Let D be the domain U --~K ---~C and let 6 name 
elements of D. 

The first trick is not to permute expressions but 
to permute their denotations. The second trick is to 
automatically produce the unpermutation from the 
definition of the permutation. Recall that N is the 
set of natural numbers. A sequence of items in D 
can be encoded as a function from N to D. Therefore 
a permuter perm is a function that maps sequences 
onto sequences; its signature is (N ~ D ) ~ N  ~ D .  

The unperm function reverses the effect of perm. 

Though perrn is imposed by the implementation, un- 
perm may be derived automatically from perm, with 
the signature D + ~ D. 

The role of unperm is to build a cascade of con- 
tinuations that will insert values in the order which 
is appropriate for the final application. The unperm 
function is defined as follows: 

unperm = 
A6 + . perm 

(6+ I i) 
P 
single 
Ac. # 6  + = i --+ •c>, 

unperm 

(6+Ti) 
P 
AC. (C 2-e) 

#6  + 

If 6 + is the sequence of denotations of expressions, 
(6 + .L i) represents the one perm chooses, and (6 + Ti) 
the sequence of all others. The chosen denotation is 
"run" with a continuation that will take the resulting 
value e, and will insert it at the right place in the 
sequence of already obtained values e* coming from 

i 
the other denotations (e* ~-e). 

Let Fix be a fix-point operator [Sco82] then given 
a perm function, invert  builds the associated unperm 
function. Its signature is therefore ((N --~ D) ~ N 
D) ~ D + ~ D. 
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invert = 
l p e r m .  Fix 

Aunperm. 
A6 + . perm 

aipN. (6 + l i) 
P 
single 

Ae. # 6  + = 1 ~ t¢(¢}, 
unperm 

(~+ii) 
P 

),~*.~ (~" 2-~) 
#5 + 

For a given perrn, The semantics of procedure call 
can therefore be expressed as: 

E[(Eo E*)] = 
lp~ .  invert 

p e r m  
g*[E0 E*~ 

P 
,~¢+.applicate(e + 1 1)(e+t 1)n 

The semantics of sequence of expressions is now 
defined as: 

E ' H = (  > 
E*[Eo E*~ : ( E[Eo] ) ~ E*IE*] 

3.2 A n  A x i o m a t i z a t i o n  of  e v a l u a t i o n  
o r d e r  

The function p e r m  cannot be any function with sig- 
nature ((N ~ D) ~ N ~ D). To ensure that u n p e r m  
visits all (and only once) the elements of a sequence 
5 +, p e r m  must verify: 

Vf,  n , 3  i, 1 < i < n , p e r m  f n =  f i 

This formula corresponds to the contract of p e r m  
which is to choose one element among n, then one 
element among the n - 1 remainings etc. 

With a denotational semantics point of view, an 
evaluation context is made of an expression, an envi- 
ronment, a continuation and a store. The exact choice 
of an evaluation order in a combination (E0 E*) may 
depend on all these informations. This order can be 
deduced by inver t  from a function perm,  depending 
on the context. 

Actually, one could axiomatize evaluation order of 
a combination by: 

VEo, E*, p, ~c, oL 

3 perm, Vf, n,3 i, l < i < n, p e r m  f n = f i 

Such a specification does not fit our aim to trans- 
late the denotational semantics into a native Scheme. 

3.3 A M e t a - f u n c t i o n  for e v a l u a t i o n  
s t r a t e g i e s  

Let us name Meta-perm the function that defines the 
evaluation order strategy in a given implementation. 
To be realistic, we give to Meta-perm the whole con- 
text E0, E*, p, g and ~ to leave the choice of an eval- 
uation order completely unrestricted. Therefore this 
function has: Exp ~ Exp* --~ U ~ K ---~ S ---~ (N 
D) ~ N ~ D as signature. It fully characterizes an 
evaluator which is correct if: 

VEo, E * , p , ~ , o ' , f , n ,  

3 i ,  1 < i < n, Meta-perm Eo E* p ~  f n =  f i  

Metn-perrn results from a skolemization of perm 
and the semantics of procedure call, depending on 
Meta-perm can therefore be expressed as: 

g[(Eo E*)~ = 
Ap~.Ao. invert 

Meta-perm E0 E* pt¢ cr 
S*[Eo E*~ 

P 
Ic+.applicate(e + 1 1)@+t 1)to 
o" 

Let us give some examples of specific Meta-perms.  

1. Meta-perm E0 E* p ~ cr = A f i . ( f  1) 
characterizes left-to-right order. 

Meta-perrn E0 E* p ~ o" = t f i . ( f  i) 
characterizes right-to-left order. 

These behaviors are entirely independent from 
the context. 

2. If the behavior of Meta-perrn depends only on 
the expressions then it reflects the combination 
approach. A given combination always uses the 
same order but, two different combinations can 
use different orders. 

3. If the behavior of Me~a-perrn depends on each 
component of the context then, it reflects the 
invocation approach 3. 

3For instance, ( lh 7r2) can be compiled into ( i f  (arab) 
(let ((x ~rl)) (x ~r2)) (let ((x ~r2)) (Irl x))). This 
leaves the indeterminacy until run-time, the store under the 
random function amb being responsible for the choices. 

18 



3 . 4  M u l t i p l e  a n s w e r s  

The Meta-perm function of the previous section is 
suitable to characterize implementations. We now 
want to characterize the language itself independently 
of its implementations i.e., to characterize the set of 
all possible answers yielded by Meta-perm instances 
satisfying the invocation approach. 

The basic idea is to generate a l l  permutations and 
to collect their results. This leads us to redefine C as S 

A" rather than as S ~ A since the denotation now 
returns the sequence of answers rather than a single 
one. Then Meta-perm E0 E* p ~ o" will constantly 
yield all where all is a function that concatenates the 
answers of its first argument fapplied to each natural 
positive number, less than the length of the submitted 
sequence. 

The all function ensures that we get the results of 
all possible permutations using invert all. 

all = 
)~f ipncr, i = 1 ~ f i p ~ ~r, 

all f ( i - l )  p n t r  

f i p n o "  

So the final semantics for combinations is: 

$[(E0 E*)] = 
Ap~. invert 

all 
E*IEo E*I 
P 

Ae+.applieate(¢ + ~ 1)(e+t 1)n 

Of course, an implementation is compelled to re- 
turn only one of the possible values as predicted by 
the semantics. 

4 R e l a t e d  p r o b l e m s  

In this section, we consider various related problems 
such as - -  the specification of the unspecified value, 
- -  the writing of an evaluator for the above semantics 
and, - -  the potential for infinite evaluations [Lac92]. 

The Revised 4 Report explicitly allows an other 
kind of indeterminacy: 

[R4 RS  1.3.2] If the value of an expression is 
said to be "unspecified", then the expression must 
evaluate to some object without signaling an error, 
but the value depends on the implementation; this 
report explicitly does not say what value should be 
returned. 

[R 4 RS  7.2.2] Here and elsewhere, any expressed 
value other than undefined may be used in place 
of unspecified. 

The "unspecified" value is not required to be the 
same in every context. We can adopt the same tech- 
niques developed in this paper (see sections 3.2, 3.3, 
3.4) for the specification of the meaning of this "un- 
specified value". For instance and similarly to section 
3.3, the global semantics can be parameterized by an- 
other implementation-defined function which goal is 
to return an unspecified value that might be chosen 
according to the context of execution i.e. p n o'. 

A nice evaluator would try to show all the various 
possible answers an expression yields. But this eval- 
uator would also have to return the multiple corre- 
sponding stores. In a toplevel-based implementation, 
different choices are possible, for instance - -  to let 
the user choose which solution is the base for the next 
toplevel iteration or, - -  to evaluate exhaustively the 
new expression in all the previously obtained stores. 
The latter leads to a combinatorial explosion but the 
former is already very expensive. 

The previous nice evaluator requires an Answer do- 
main able to represent collections of values. The sim- 
plest solution is to use sequences of values as in A*. 
But there is no reason to impose an order on the an- 
swers so a set would be more appropriate. But sets 
require elements (i.e., functions) to be comparable to 
ensure that elements do not belong more than once 
to a given set. Bags will be more useful but sequences 
are a good comnpromise. 

To use sequences of answers also raises the prob- 
lem of infinite evaluations. A clever and fair [LL92] 
evaluator should produce first the finitely computable 
values. 

5 C o n c l u s i o n s  

We showed in this paper how to precisely define an 
undefined evaluation order. We propose it for R'~RS 
which should at least clarify the meaning of "proce- 
dure call". Note that our approach does not impose 
(but does not exclude either) to choose the order of 
evaluation at run-time, it allows multiple occurrences 
of a single combination to have different but statically 
chosen order of evaluations. As such our proposal 
leaves entire freedom within indeterminacy. 
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