
Performing Lisp
Analysis of the FANNKUCH Benchmark

Kenneth R. Anderson
BBN STD,10 Moulton St. Cambridge, MA ,02174, KAnderson@bbn.com

Duane Rettig ~
Franz Inc., 1995 University Ave., Berkeley CA, 94704, Duane@franz.com

ABSTRACT

This paper analyzes the FANNKUCH benchmark, that was discussed on the comp.lang.lisp
internet newsgroup during September 1994, and reviews the performance issues underlying it.
This benchmark involves operations on integers and vectors of integers so one might expect that
Lisp and C versions could have comparable performance. However, the original benchmark
suggested that the Lisp version was at least 10 times slower than the C version. While this
version appeared to be optimized, several important improvements are possible.

The improved version is between 24 and 116 percent slower than C when run on several Lisp
implementations. This can be accounted for by differences in the quality of the compiled code of
the inner loops of the benchmark, not by an essential difference between the two languages. The
GNU C compiler, gcc, produces a loop with a larger overall size (footprint) but with a smaller
loop body than the current Lisp compilers. In principle, a Lisp compiler can produce these loops
with the same or fewer number of instructions.

It is easy to write benchmarks that make Lisp appear slower than C. However, as with any highly
tuned benchmark, a small change can have a profound effect on performance, even in C. For
example, replacing/2 by >>1 makes a 40% improvement. Also changing the representation of
integers and arrays of integers among C's built in types varies the performance by 80%.

HISTORY

This benchmark came out of a thread on comp.lang.lisp in September 1994 originated by Bruno
Haible (haible@ma2s2.mathematik.uni-karlsruhe.de). The original post introduced the language
Beta to the news group and in passing mentioned an "integer hacking" benchmark that indicated
that some Lisp implementations were much slower (50 to 100 times) on the benchmark than C.

Haible describes the benchmark as follows: Take a permutation of { 1 n}, for example:
{4,2,1,5,3}. Take the first element, here 4, and reverse the order of the first 4 elements:
{5,1,2,4,3}. Repeat this until the first element is a 1, so flipping won't change anything more:
{3,4,2,1,5}, {2,4,3,1,5}, {4,2,3,1,5}, { 1,3,2,4,5}, Count the number of flips, here 5. Do this for
all n! permutations, and record the maximum number of flips needed for any permutation. The
conjecture is that this maximum count is approximated by n*log(n) when n goes to infinity.
FANNKUCH" is an abbreviation for the German word "Pfannkuchen", or pancakes, in analogy
to flipping pancakes. The first few fannkuch numbers and their corresponding permutation are
shown in Exhibit 0.

This is a good benchmark because it can easily be programmed in different languages and only
uses common language features like manipulation of small integers and vectors of them. The
original Lisp version of this benchmark is shown in Exhibit 1.

2

Exhibit 0 - The first few FANNKUCH numbers and their permutations.

N

1
2
3
4
5
6
7
8
9

10
11
12
13

F

0
i
2
4
7

I0
16
22
30
38
51
65
80

Permutation

(I)
(2 1)
(2 3 I)
(3 1 4 2)
(3 1 .4 5 2)
(5 6 4 1 3 2)
(3 1 4 6 7 5 2)
(6 1 5 7 8 3 2 4)
(6 1 5 9 7 2 8 3 4)
(5 9 1 8 6 2 i0 4 7 3)
(4 9 ii 6 i0 7 8 2 1 3 5)
(2 6 1 I0 Ii 8 12 3 4 7 9 5)
(2 9 4 5 Ii 12 I0 1 8 13 3 6 7)

Exhibit 1 - The original Lisp version of the FANNKUCH benchmark.

(defun fannkuch-0 (&optional (n (progn
(format *query-io* "n = ?")
(parse-integer (read-line *query-io*)))))

(unless (and (> n 0) (<= n i00)) (return-from fannkuch-l))
(let ((n n))

(declare (fixnum n))
(let ((perm (make-array n :element-type 'fixnum))

(perml (make-array n :element-type ' fixnum))
(zaehl (make-array n :element-type 'fixnum))
(permmax (make-array n :element-type 'fixnum))
(bishmax -i))

(declare (type (simple-array fixnum (*)) perm perml zaehl permmax))
(declare (fixnum bishmax))
(dotimes (i n) (setf (svref perml i) i))
(prog
((r n))
(declare (fixnum r))
Kreuz
(when (= r I) (go standardroutine))
(setf (svref zaehl (-r I)) r)
(decf r)
(go Kreuz)
Dollar
(when (= r n) (go fertig))
(let ((perm0 (svref perml 0)))

(dotimes (i r) (serf (svref perml i) (svref perml (+ i i))))
(setf (svref perml r) perm0))

(when (plusp (decf (svref zaehl r))) (go Kreuz))
(incf r)
(go Dollar)
standardroutine
(dotimes (i n) (setf (svref perm i) (svref perml i)))
(let ((Spiegelungsanzahl 0) (k 0))

(declare (fixnum Spiegelungsanzahl k))
(loop
(when (= (setq k (svref perm 0)) 0) (return))
(let ((k2 (ceiling k 2)))

(declare (fixnum k2))
(dotimes (i k2) (rotatef (svref perm i) (svref perm (- k i)))))

(incf Spiegelungsanzahl))
(when (> Spiegelungsanzahl bishmax)

(setq bishmax Spiegelungsanzahl)
(dotimes (i n) (setf (svref permmax

(go Dollar)
fertig)
(format t "The maximum was ~D.~% at
(format t "(")
(dotimes (i n)
(when (> i 0) (format t))
(format t "~D" (+ (svref permmax i)

(format t ")")
(terpri)
(values))))

i) (svref

"- bishmax)

i)))

perml i)))))

Several people studied the benchmark. Lawrence Mayka (lgm@polaris.ih.att.com) produced a
properly optimized Lisp version (these and other optimizations are described below). Jacob
Seligmann (jacobse@daimi.aau.dk) provided Haible's C version and a Beta version. Several
people complained about the old fashioned "spaghetti" style of using a pros and go. However, it
is straight forward to unwind the spaghetti into several nested loops. Another complaint was that
the benchmark involved array creation and formatted output in addition to integer and vector
operations which might contaminate the results.

The following exhibit shows the time in seconds for running various versions of the fannkuch
function, where N = 9 or 10, for various Lisp and C implementations on a Sun Sparc 10:

Exhibit 2: Time in seconds for various versions of the Fannkuch benchmark. The
nghtmost column shows the time relative to gee -o2. Each Lisp used an optimization
setting of (optimize (speed 3) (safety i)).

Original Final
Language Compile Info N = 9 N = 9

C gcc -02 1.70
C cc -02 1.80
Lisp Allegro 13.58 2.00
Lisp CMU 8.49 2.36
Lisp Lispworks 15.29 2.74
Lisp Lucid 2
Lisp Lucid 1 7.38 3.75
C cc 5.90
C gcc 6.40

Final
N= i0

20 60
22 I0
25 62
27 22
32 56
35 74
44 ,57
70 90
76.70

Relative
N= I0

1.00
1.07
1.24
1.32
1.58
1.73
2.16
3.44
3.72

The original Lisp version is about 10 times slower than best C time, while the optimized Lisp
version is only between 24 and 116% slower. While the original Lisp version, fannkuoh-0,
looked optimized, there were several important improvements in the optimized version. To
understand them, we review how integer and vector objects are represented in Lisp and C.

In C, type information is associated with each variable name at compile time, not with the datum
actually stored there. Lisp takes the opposite approach, the type of a datum is associated with the
datum itself, not with a variable name (compile time variable declarations are optional). So, in C
you can't tell the data without a program, while in Lisp you can. The C approach is referred to as
"static typing" while the Lisp approach is referred to as "dynamic typing". However, this is only
from the point of view of the variables. From the point of view of the data, it is the other way
around.

C's numeric types closely match what can be easily manipulated by computer hardware. There is
an i n t type which is a machine integer, and several modifiers such as "shor t" , "long",and
"uns igned" that can be used to describe subsets of machine integers. For example, the integers
used in the C version of the benchmark are declared to be " u n s i g n e d in t " , or unsigned integers
of the standard word size. Integer operations simply overflow and integer division is truncation.

In Lisp, an object is typically represented by a machine word-sized "object description" that
contains some information about the object's identity and type. The actual representation is
implementation specific, see [Gudeman] for the range of possibilities. Thus when describing
such details we refer to a typical implementation, not a specific one. For example, on a 32-bit
RISC machine, two to four of the low order bits could provide type information, and the
remaining high order bits could provide either the object itself, or a pointer to the actual object.
For a small, "immediate object", such as a fixnum, character, or short-float, the object itself can
fit entirely in the data portion of its description. For a larger "indirect" object, such as a bignum,
or array, the data field of the description is a pointer to the object itself.

Lisp supports infinite precision integers, and integer division produces infinite precision ratios.
The abstract type i n t e g e r is typically implemented using two different representations, fixnum
for small integers and bignum for large integers.

A two bit type tag of #bOO is commonly used for fixnums because it has several advantages.
Such a fixnum looks like a machine integer multiplied by four. Thus adding one to a fixnum is
the same as adding four to its machine integer representation. This is convenient for indexing
through an array of word-sized elements in a byte addressed machine. Also, RISC machines
provide instructions for doing operations on such integers that provide some automatic t y p e
checking.

In Lisp, the main performance consideration when using integers is to use fixnums whenever
appropriate. Also, declaring a variable to be a fixnum can allow the compiler to use machine
instructions rather than costlier generic operations. However, declaring arguments to the
functions +, -, *, and t r u n c a t e tO be fixnums is not enough since there are cases where each
function could produce a bignum given only fixnum arguments. One must either declare the
output of the functions to be a fixnum, such as (the fixnum (- k i)) , or provide a more
restrictive declaration on the arguments. The function d e f t y p e is convenient for this. For
example, since all integers used in this benchmark are between 0 and 100:

(deftype small () '(integer 0 i00))

A fna l point about integer arithmetic is that the function / produces a ratio while t r u n c a t e
produces an integer. Be careful with this when converting software from C to Lisp. For
example, 5/3 in C produces 1, while (/ 5 3) in Lisp produces 5 /3 . While this is
mathematically correct, accidental use of ratios can make an algorithm significantly slower.

Now, we can understand several of the improvements that can be made to the original version of
the benchmark:

IMPI: Operations on fixnum arguments should be declared to return fixnum results
when appropriate. Alternatively, declare variables to be a subset of the fixnum range.

The second problem has to do with dotimes. It is obvious from the definition of (dotimes (i
N) ...) where N is a positive fixnum, that i is alSO a positive fixnum between 0 and (- N I).
Unfortunately, not all compilers can deduce this fact, so to be safe you should declare it so. One
can use a specialized dotimes macro for this purpose. Without such a declaration, more general,
but slower, increment and comparison operations are done.

5

IMP2: Declare the index and limit of dotimes to be flxnums when they are.

To understand the next performance issue, we need to review arrays. In C, an array is simply a
pointer to a block of memory. Each element of the block is of the same data type and occupies
same amount of space.

Lisp provides several types of arrays. Fixed length arrays are referred to as type simple-array.
Other array types can be variable length or be displaced on top of another array. Generally, an
array element can be an object of any type (actually any object description), however, elements
can be restricted to be of certain types, such as (unsigned-byte 32), an unsigned thirty two bit
integer, or s i n q l e - f l o a t , a single precision floating point number.

Two reasons for using such arrays are 1) Lisp can refer to such objects without heap allocating
(bignums or single-floats in the cases mentioned above), and 2) such arrays can be used to
interface with other languages, such as C.

Fannkuch-O creates array of type (simple-array fixnum (*)). Such an array is like an int
a~Tay in C, each array element is stored as a machine integer. However, the array is accessed
using svref which should only be used on arrays of type (simple-array t (*)), alSO knOW as
type simple-vector. While Lisp warns about this declaration conflict, it treats the array as a
s imple -vec to r . Since the routine never returns the arrays involved, the bug goes unnoticed.

To be consistent, one should use either a (simple-array fixnum (*)) or a simple-vector.
However, each has a slightly different effect on performance. When a fixnum array is used the
compiler can use the fact that each element is a fixnum. However, the array elements are stored
as machine integers. This requires an extra shift instruction when the array is accessed.

Using a simple-vector will avoid this overhead. However, when storing a fixnum into a simple-
vector, one should be sure that the compiler knows that the value being stored is a flxnum. The
reason for this has to do with the generational garbage collector used in some Lisp systems, also
referred to as a ephemeral garbage collector, or EGC. Such garbage collectors focus their
attention on recently created objects under the assumption that they are likely to become garbage.
This can substantially reduce the total effort involved in garbage collection. However, a
reference from an old object to a new one must be recorded. While this can be done efficiently,
this overhead can be avoided when an immediate object, such as a flxnum is stored.

To summarize, consideration of arrays leads to the following improvements:

IMP3: Use s v r e f only on simple-vectors. Better yet, declare the array and use a r e f .

IMP4: For an array of fixnum's use type simple-vector when dealing only with Lisp,
and use type (s imple-ar ray fixnum (*)) when deafing with another language, like C.

IMP5: When storing a fixnum into a simple-vector be sure the compiler knows that
the value being stored is a fixnum.

A major functional difference between the Lisp and C versions of the original benchmark is that
the Lisp version has (c e i l i n q k 2) while the C version has the hand optimized equivalent
(k+l) /2 , which is optimized by the compiler to (k+l) >>1 since k is an unsigned int. (This/2
-> >>l optimization makes a 40% improvement in the C version.) While Lisp provides a ceiling
function that works for one required and one optional argument, C only provides one for a single
double argument, c e i l . Using c e i l instead of the optimized version makes the C version of
the benchmark 2.88 times slower. There is a similar effect in Lisp. The time difference between

6

the different Lisp's on the original benchmark is largely due to their treatment of c e i l i n g . It is
simply not possible for either a Lisp. or a C compiler to produce code as good as the hand
optimized version which uses informauon not shared with the compiler.

Profiling tools can be used to identify such bottle necks. For example, the profiler in Allegro
Common Lisp show that at least 60% of the time of the original benchmark was spent inside
ceiling.

IMP6: Identify performance bottlenecks using profiling tools and minimize their effect,
for example by inlining.

The algorithm generates each of the n! permutations of n integers and computes the number of
flips. It would be better, of course, to generate the permutations in a way that poorer ones can be
immediately eliminated from further consideration. For example, the heuristic, "The best
permutation can not start with 1 or end with n", leads to a simple check that saves about nineteen
percent of the effort.

IMP7: Thinking about the algorithm can lead to improvement.

RESULTS OF THE IMPROVEMENTS

Exhibit 3 and 4 show the Lisp and C version of comparable benchmarks. Both versions were
written in similar styles to allow easy comparison. The Lisp version uses macros to help in t2(pe
declaration. Such heavy handed declarations are not required by most Lisp's but makes porting
the benchmark easier. Lisp macros such as r o t a t e f are avoided, as are C constructs such as ++
or r e g i s t e r declarations.

These improvements lead to a dramatic improvement in the Lisp performance on this benchmark.
Lisp is within 24% and 116% of the best C tirne.

So why are the Lisp versions slower? Lisp and C implementations produce essentially the same
number of machine instructions, 106 for cc, and 108 for Allegro, for example (see the leftmost
column of Exhibit 5). Exhibit 3 includes counts of the number of times key blocks of code are
entered (referred to as "Weights" in Exhibit 5). The three innermost loops account for over 80%
of the execution time.

Exhibit 3. Fannkuch benchmark in Lisp.

(deftype small () ' (integer 0 i01)))
(defmacro small (a) " (the small ,a))
(defmacro s+ (a b) " (small (+ (small ,a) (small ,b))))
(defmacro s- (a b) " (small (- (small ,a) (small ,b))))
(defmacro s> (a b) " (> (small ,a) (small ,b)))
(defmacro s = (a b) " (= (small ,a) (small ,b)))
(defmacro sref (a i) " (small (svref ,a ,i)))
(defmacro setfs (a b) " (setf ,a (small ,b)))
(defmacro dotimess ((i n) &body body)

(dotimes (,i ,n) (declare (type small ,i)) ,@body))

7

(defun fannkuch (n perm perml zaehl permmax)
(declare (optimize (safety 0) (speed 3) (space 0) (debug 0))

(type simple-vector perm perml zaehl permmax)
(type (integer 1 I00) n))

(dotimess (i n)
(setfs (sref perml i) i)) ; FILL-I

(let ((bishmax -I)
(r n))

(loop ; 1.00
(loop ; 1.72 KREUZ

(when (s = r I) (return))
(let ((i (s- r I)))

(setfs (sref zaehl i) r)
(setq r i)))

(when (not (or (zerop (sref perml 0))
(let ((i (s- n I)))

(s = (sref perml i) i))))
(dotimesS (i n) ; 0.81
(setfs (sref perm i) (3ref perml i))) ; 8.11 COPY

(let ((Spiegelungsanzahl 0)
(k 0))

(loop ; 6.39 COUNT
(when (s= (setq k (sref perm 0)) 0) (return))
(let ((k2 (the small (ash (s+ k I) -I))))

(dotimes3 (i k2)
(let* ((temp (sref perm i)) ; 14.73 FLIP

(j (s- k i)))
(setf3 (3ref perm i) (sref perm j))
(setf3 (sref perm j) temp))))

(setq Spiegelungsanzahl (s+ Spiegelungsanzahl i)))
(when (s> Spiegelungsanzahl bishmax)

(setq bishmax Spiegelungsanzahl)
(dotimesS (i n)
(3etfs (sref permmax i) (3vref perml i))))))

(loop ; 1.72
(when (s = r n) (return-from fannkuch-10 bishmax))
(let ((perm0 (3ref perml 0)))

(let ((i 0))
(loop ; 4.44 SHIFT

(if (s= i r) (return))
(let ((k (3+ i i)))

(setfs (3ref perml i) (3ref perml k))
(setq i k))))

(setfs (svref perml r) perm0))
(when (3> (setfs (sref zaehl r) (3- (3ref zaehl r) I)) 0)

(return))
(setq r (s+ r I))))))

8

Exhibit 4. Fannkuch benchmark in C.

#define ASMALL unsigned int
#define SMALL unsigned int
#define Length i00

long fannkuch(n, Perm, Perml, Zaehl, PermMax)
SMALL n;
ASMALL Perm[], Perml[], Zaehl[], PermMax[];

{
long BishMax=-l, Spiegelungsanzahl;
SMALL r, i, k;
for (i=0; i<n; i++)

Perml [i] =i;
r=n;
while (I) {

while (r != i) {
Zaehl [r-l] =r;
r=r-i ;

}
if (! (Perml[0] == 0 I I (i=n-l, Perml[i] == i))) {

for (i = 0; i < n; i = i + I)
Perm[i] = Perml[i];

Spiegelungsanzahl=0 ;
while (! ((k=Perm[0]) == 0)) {

SMALL k2=(k+l)>>l;
for (i = 0; i < k2; i = i + i) {

SMALL temp = Perm[i] ;
Perm[i] = Perm[k - i];
Perm[k - i] = temp;

}
Spiegelungsanzahl = Spiegelungsanzahl + I;

}
if (Spiegelungsanzahl > BishMax) {

BishMax = Spiegelungsanzahl;
for (i = 0; i < n; i = i + l)

PermMax[i] = Perml[i] ;
}

}
while (I) {

if (r == n) return(BishMax);
{ SMALL Perm0;

Perm0 = Perml[0] ;
i= 0;
while (i < r) {

k = i + I;
Perml [i] =Perml [k] ;
i = k;

}
Perml [r] =Perm0 ;

if ((Zaehl[r] = Zaehl[r]-l) > 0) break;
r=r+l;

Several loops were disassembled to compare the quality of the compiled code, as shown in
Exhibit 5. The row labeled "Weights" show the relative importance of each loop in the
computation, and the column labeled "Dot" shows the dot product of the weights and the lines of
code. It correlates well with relative performance, except for Lucid, which will be discussed
below.

Exhibit 5: Lines of code for the fannkuch function and several loops.

Fannkuch Fill-i Shift Copy Flip Kreuz Dot
cc 106 5 9 6 8 6 217

gcc -02 117 5 8 5 I0 5 232
Allegro 108 5 8 7 12 6 279

CMUCL 123 7 9 8 14 10 328

Lispworks 132 9 11 12 18 9 427

Lucid 139 6 9 8 13 8 310
Weight 0.00 4.44 8.11 14.73 1.72

The bodies of the loops are smaller for C than for Lisp, while the overall footprint of a loop is
smaller for Lisp than for C. Take a loop like (dotimes (i n) . . .) . In a simple C-like
assembly language, the loop is coded as something like: (Each line corresponds to a RISC
machine instruction, except that i f < c o n d i t i o n > g o t o <address> corresponds to two
instructions.)

GCC loop Typical Lisp loop

top

end

i = 0 i = 0

if (i >= N) goto end goto test

• . . top . . .

... i = i + 4
i = i + 1 test if (i < N)

if (i < N) goto top
goto top

The difference is a matter of style, rather than language. The gcc compiler does a test and starts
executing the body of the loop, while the typical Lisp code jumps to the test which is at the end
of the loop body.

The number of instructions in the body of the loop varies between the different Lisps. The Lisps
with the higher instruction counts are typically due to one or more redundant instructions that
could be removed. There is no reason such deficiencies could not be corrected.

The loop body for fill-i, for example, shows the influence of the two languages:

In C: In Lisp:
for (i=0; i< N; i = i + i) (dotimes (i N)

p[i] = i; (setf (aref p i) i))

Compiled C Compiled Lisp

1 i = 0 i= 0

2 goto test goto test

3 top temp = i << 2 top temp = i + ARRAYOFFSET

4 p[temp] = i p[temp] = i

5 i = i + 1 i = i + 4

6 test if (i < N) goto top test if (i < N) goto top

10

The loops have been written in the same style for ease of comparison. While both take the same
number of instructions, there are two differences. Lisp uses fixnums, while C uses machine
integers. We can see the effect of this in line 5 where i is incremented by 4 rather than by 1, as
in the C version. In C, where machine integer are used, an i n t must be left shifted before it can
be used as an array offsets (alternatively, another counter incremented by one could be used).

On the other hand, when accessing a Lisp array, one must account for the array type tag. This is
done by adding an offset (aRru~xorFszT) to the index to remove the tag. On CISC computers,
like the M68000's, the offset and index can be added to the array pointer in one instruction, but
on a RISC machine, two instructions are required.

While ARRAYOFFSET is a loop constant, it is generally not pulled out of the loop if an interrupt
could occur during the loop. If a GC occurs, it must be possible to recognize all pointers to an
array as Lisp values, so that the pointers can be changed if the array changes location. Removing
the ARRAYOFFSET removes the tag information. On the other hand,when a loop is
noninterruptable, the compiled Lisp code could be smaller than the compiled C code.

One final issue is register versus stack allocation of variables. In a function call on a SPARC, the
first six arguments are passed in registers, while any additional arguments are passed on the
stack. Internal to a subroutine, 24 registers may be used (after a save instruction). An argument
on the stack must be moved to a register before its value can be used. Thus an important
optimization is to move a stacked variable into a register whenever possible. Unfortunately,
Lucid Common Lisp does a register analysis, but it is suboptimum here. Important variables are
kept on the stack, reducing its performance further. Unintuitively, performance can be improved
by 20% by moving the inner count loop as a separate subroutine (Referred to as "Lucid 2" in
Exhibit 2.). An earlier version of Allegro had a register allocation problem here as well, and the
difference between the two C implementations is due to register/stack usage differences.

CONCLUSIONS

Lisp provides freedom that can be valuable during software development, but can get in the way
of delivering performance if one is not careful. It might seem that recoding in C is a good way to
deliver performance. However, it is the recoding process itself, and the analysis of perfomance
details that is important, not the language. Today's Lisp compilers provide advice that helps
identify performance pitfalls. Such advice would have identified most of the improvements
described above. Also in CMU Common Lisp, with low optimization settings, declarations are
verified at runtime rather than simply trusted, while at higher settings, they are used to produce
optimized code. This allows a fluid software development style where performance issues can
be addressed at various stages.

1MP8: Heed compiler advice.

C requires the programmer to provide explicit information from the beginning, so it might seem
straightforward to write efficient C here. However, C is not without performance pitfalls either.
Using the floating point version of c e i l i n g , rather than a hand coded one makes a factor of three
difference in performance and changing "/2" to ">>1" makes a 40% improvement. The hand
optimized version might be fairly obvious here, but isn't in general [Bentley].

Other choices a C programmer could make could have performance effects that are difficult to
predict [Bentley]. For example, the original C version of the benchmark used register
declarations which reduced performance by a few percent. Also, by varying the definitions of
ASMALL and SMALL among the types char, short, int, unsigned short, and unsigned int
the performance of the algorithm ranges from 15% faster to 65% slower than the time in Exhibit
2. The fastest combination is not particularly obvious:

11

#define ASMALL char
#define SMALL unsigned int

Gabriel [Gabriel, 85] teaches us that benchmarking without analysis is bogus. This benchmark is
a perfect example. Had one accepted the original performance numbers without further analysis
one would conclude that Lisp was significantly slower than C, and that certain implementations
of Lisp were significantly slower than others. Both conclusions are false. It is easy to make Lisp
look slow relative to C, and one Lisp implementation look slower than another simply by
steering the benchmark away from one implementation's pitfalls and toward another's,
intentionally or otherwise.

How much difference should one expect between Lisp and C? This benchmark is quite sensitive
to the number of instructions generated for the inner loops. The data shows that Lisp compilers
can be improved here. (Three improvements were made to Allegro Common Lisp in the process
of analyzing this benchmark.) Lisp itself provides little if any additional overhead in this
benchmark as both integer operations and array manipulation are comparable in both languages.
A benchmark with a different set of loop weights might have shown more comparable results.
For example a uniform weighting would produce differences of less than 40% between the
different language implementations. Other benchmarks suggest that Lisp programs can be quite
comparable, even faster than C programs [Anderson]. It is reasonable to expect that Lisp should
be within 20% or less of the C time for benchmarks like this one [Baker]. Anything worse might
indicate a problem to be corrected, as was done here.

REFERENCES

Anderson, Kenneth R. "Courage in Profiles", Lisp Users and Vendors Conference, (1994).

Baker, H.G. "Critique of DIN Kernel Lisp Definition Version 1.2", Lisp and Symbolic
Computation,, 4,4 (march 1992), 371-398.

Bentley, Kernighan and VanWyk, "An elementary C cost model", Unix Review, 9,2, p. 38-48.

Gabriel R.P.,Performance and Evaluation of Lisp Systems.. MIT Press, Cambridge, MA, 1985.

Gabriel R.P., "Lisp: Good News, Bad News, How to Win Big", AI Expert, June, 1991, p. 31-39.

Gudeman, David. "Representing Type Information in Dynamically Typed Languages", TR 93-
27, Dept. Computer Science, University of Arizona, Tucson, 1993. FTP from ftp.cs.arizona.edu
reports/1993/TR93-27.ps.Z.

12

