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ABSTRACT 

This paper analyzes the FANNKUCH benchmark, that was discussed on the comp.lang.lisp 
internet newsgroup during September 1994, and reviews the performance issues underlying it. 
This benchmark involves operations on integers and vectors of integers so one might expect that 
Lisp and C versions could have comparable performance. However, the original benchmark 
suggested that the Lisp version was at least 10 times slower than the C version. While this 
version appeared to be optimized, several important improvements are possible. 

The improved version is between 24 and 116 percent slower than C when run on several Lisp 
implementations. This can be accounted for by differences in the quality of the compiled code of 
the inner loops of the benchmark, not by an essential difference between the two languages. The 
GNU C compiler, gcc,  produces a loop with a larger overall size (footprint) but with a smaller 
loop body than the current Lisp compilers. In principle, a Lisp compiler can produce these loops 
with the same or fewer number of instructions. 

It is easy to write benchmarks that make Lisp appear slower than C. However, as with any highly 
tuned benchmark, a small change can have a profound effect on performance, even in C. For 
example, replacing/2  by >>1 makes a 40% improvement. Also changing the representation of 
integers and arrays of integers among C's built in types varies the performance by 80%. 

HISTORY 

This benchmark came out of a thread on comp.lang.lisp in September 1994 originated by Bruno 
Haible (haible@ma2s2.mathematik.uni-karlsruhe.de). The original post introduced the language 
Beta to the news group and in passing mentioned an "integer hacking" benchmark that indicated 
that some Lisp implementations were much slower (50 to 100 times) on the benchmark than C. 

Haible describes the benchmark as follows: Take a permutation of { 1 ..... n}, for example: 
{4,2,1,5,3}. Take the first element, here 4, and reverse the order of the first 4 elements: 
{5,1,2,4,3}. Repeat this until the first element is a 1, so flipping won't change anything more: 
{3,4,2,1,5}, {2,4,3,1,5}, {4,2,3,1,5}, { 1,3,2,4,5}, Count the number of flips, here 5. Do this for 
all n! permutations, and record the maximum number of flips needed for any permutation. The 
conjecture is that this maximum count is approximated by n*log(n) when n goes to infinity. 
FANNKUCH" is an abbreviation for the German word "Pfannkuchen", or pancakes, in analogy 
to flipping pancakes. The first few fannkuch numbers and their corresponding permutation are 
shown in Exhibit 0. 

This is a good benchmark because it can easily be programmed in different languages and only 
uses common language features like manipulation of small integers and vectors of them. The 
original Lisp version of this benchmark is shown in Exhibit 1. 
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Exhibit 0 - The first few FANNKUCH numbers and their permutations. 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

F 

0 
i 
2 
4 
7 

I0 
16 
22 
30 
38 
51 
65 
80 

Permutation 

(I) 
(2 1) 
(2 3 I) 
(3 1 4 2) 
(3 1 .4 5 2) 
(5 6 4 1 3 2) 
(3 1 4 6 7 5 2) 
(6 1 5 7 8 3 2 4) 
(6 1 5 9 7 2 8 3 4) 
(5 9 1 8 6 2 i0 4 7 3) 
(4 9 ii 6 i0 7 8 2 1 3 5) 
(2 6 1 I0 Ii 8 12 3 4 7 9 5) 
(2 9 4 5 Ii 12 I0 1 8 13 3 6 7) 

Exhibit 1 - The original Lisp version of the FANNKUCH benchmark. 

(defun fannkuch-0 (&optional (n (progn 
(format *query-io* "n = ?") 
(parse-integer (read-line *query-io*))))) 

(unless (and (> n 0) (<= n i00)) (return-from fannkuch-l)) 
(let ((n n)) 

(declare (fixnum n) ) 
(let ((perm (make-array n :element-type 'fixnum)) 

(perml (make-array n :element-type ' fixnum) ) 
(zaehl (make-array n :element-type 'fixnum)) 
(permmax (make-array n :element-type 'fixnum)) 
(bishmax -i)) 

(declare (type (simple-array fixnum (*)) perm perml zaehl permmax)) 
(declare (fixnum bishmax) ) 
(dotimes (i n) (setf (svref perml i) i)) 
(prog 
((r n)) 
(declare (fixnum r) ) 
Kreuz 
(when (= r I) (go standardroutine)) 
(setf (svref zaehl (-r I)) r) 
(decf r) 
(go Kreuz) 
Dollar 
(when (= r n) (go fertig)) 
(let ((perm0 (svref perml 0))) 

(dotimes (i r) (serf (svref perml i) (svref perml (+ i i)))) 
(setf (svref perml r) perm0)) 

(when (plusp (decf (svref zaehl r))) (go Kreuz)) 
(incf r) 
(go Dollar) 
standardroutine 
(dotimes (i n) (setf (svref perm i) (svref perml i))) 
(let ((Spiegelungsanzahl 0) (k 0)) 

(declare (fixnum Spiegelungsanzahl k) ) 
(loop 
(when (= (setq k (svref perm 0)) 0) (return)) 
(let ((k2 (ceiling k 2))) 

(declare (fixnum k2)) 
(dotimes (i k2) (rotatef (svref perm i) (svref perm (- k i))))) 



(incf Spiegelungsanzahl)) 
(when (> Spiegelungsanzahl bishmax) 

(setq bishmax Spiegelungsanzahl) 
(dotimes (i n) (setf (svref permmax 

(go Dollar) 
fertig) 
(format t "The maximum was ~D.~% at 
(format t "(") 
(dotimes (i n) 
(when (> i 0) (format t .... )) 
(format t "~D" (+ (svref permmax i) 

(format t ")") 
(terpri) 
(values)))) 

i) (svref 

"- bishmax) 

i))) 

perml i))))) 

Several people studied the benchmark. Lawrence Mayka (lgm@polaris.ih.att.com) produced a 
properly optimized Lisp version (these and other optimizations are described below). Jacob 
Seligmann (jacobse@daimi.aau.dk) provided Haible's C version and a Beta version. Several 
people complained about the old fashioned "spaghetti" style of using a pros and go. However, it 
is straight forward to unwind the spaghetti into several nested loops. Another complaint was that 
the benchmark involved array creation and formatted output in addition to integer and vector 
operations which might contaminate the results. 

The following exhibit shows the time in seconds for running various versions of the fannkuch 
function, where N = 9 or 10, for various Lisp and C implementations on a Sun Sparc 10: 

Exhibit 2: Time in seconds for various versions of the Fannkuch benchmark. The 
nghtmost column shows the time relative to gee -o2. Each Lisp used an optimization 
setting of (optimize (speed 3) (safety i) ). 

Original Final 
Language Compile Info N = 9 N = 9 

C gcc -02 1.70 
C cc -02 1.80 
Lisp Allegro 13.58 2.00 
Lisp CMU 8.49 2.36 
Lisp Lispworks 15.29 2.74 
Lisp Lucid 2 
Lisp Lucid 1 7.38 3.75 
C cc 5.90 
C gcc 6.40 

Final 
N= i0 

20 60 
22 I0 
25 62 
27 22 
32 56 
35 74 
44 ,57 
70 90 
76.70 

Relative 
N= I0 

1.00 
1.07 
1.24 
1.32 
1.58 
1.73 
2.16 
3.44 
3.72 

The original Lisp version is about 10 times slower than best C time, while the optimized Lisp 
version is only between 24 and 116% slower. While the original Lisp version, fannkuoh-0,  
looked optimized, there were several important improvements in the optimized version. To 
understand them, we review how integer and vector objects are represented in Lisp and C. 

In C, type information is associated with each variable name at compile time, not with the datum 
actually stored there. Lisp takes the opposite approach, the type of a datum is associated with the 
datum itself, not with a variable name (compile time variable declarations are optional). So, in C 
you can't tell the data without a program, while in Lisp you can. The C approach is referred to as 
"static typing" while the Lisp approach is referred to as "dynamic typing". However, this is only 
from the point of view of the variables. From the point of view of the data, it is the other way 
around. 



C's numeric types closely match what can be easily manipulated by computer hardware. There is 
an i n t  type which is a machine integer, and several modifiers such as "shor t" ,  "long",and 
"uns igned"  that can be used to describe subsets of machine integers. For example, the integers 
used in the C version of the benchmark are declared to be " u n s i g n e d  in t " ,  or unsigned integers 
of the standard word size. Integer operations simply overflow and integer division is truncation. 

In Lisp, an object is typically represented by a machine word-sized "object description" that 
contains some information about the object's identity and type. The actual representation is 
implementation specific, see [Gudeman] for the range of possibilities. Thus when describing 
such details we refer to a typical implementation, not a specific one. For example, on a 32-bit 
RISC machine, two to four of the low order bits could provide type information, and the 
remaining high order bits could provide either the object itself, or a pointer to the actual object. 
For a small, "immediate object", such as a fixnum, character, or short-float, the object itself can 
fit entirely in the data portion of its description. For a larger "indirect" object, such as a bignum, 
or array, the data field of the description is a pointer to the object itself. 

Lisp supports infinite precision integers, and integer division produces infinite precision ratios. 
The abstract type i n t e g e r  is typically implemented using two different representations, fixnum 
for small integers and bignum for large integers. 

A two bit type tag of #bOO is commonly used for fixnums because it has several advantages. 
Such a fixnum looks like a machine integer multiplied by four. Thus adding one to a fixnum is 
the same as adding four to its machine integer representation. This is convenient for indexing 
through an array of word-sized elements in a byte addressed machine. Also, RISC machines 
provide instructions for doing operations on such integers that provide some automatic t y p e  
checking. 

In Lisp, the main performance consideration when using integers is to use fixnums whenever 
appropriate. Also, declaring a variable to be a fixnum can allow the compiler to use machine 
instructions rather than costlier generic operations. However, declaring arguments to the 
functions +, -, *, and t r u n c a t e  tO be fixnums is not enough since there are cases where each 
function could produce a bignum given only fixnum arguments. One must either declare the 
output of the functions to be a fixnum, such as (the fixnum (- k i) ) , or provide a more 
restrictive declaration on the arguments. The function d e f t y p e  is convenient for this. For 
example, since all integers used in this benchmark are between 0 and 100: 

(deftype small () '(integer 0 i00)) 

A fna l  point about integer arithmetic is that the function / produces a ratio while t r u n c a t e  
produces an integer. Be careful with this when converting software from C to Lisp. For 
example, 5/3 in C produces 1, while (/ 5 3) in Lisp produces 5 /3 .  While this is 
mathematically correct, accidental use of ratios can make an algorithm significantly slower. 

Now, we can understand several of the improvements that can be made to the original version of 
the benchmark: 

IMPI: Operations on fixnum arguments should be declared to return fixnum results 
when appropriate. Alternatively, declare variables to be a subset of the fixnum range. 

The second problem has to do with dotimes. It is obvious from the definition of (dotimes (i 
N) ... ) where N is a positive fixnum, that i is alSO a positive fixnum between 0 and (- N I). 
Unfortunately, not all compilers can deduce this fact, so to be safe you should declare it so. One 
can use a specialized dotimes macro for this purpose. Without such a declaration, more general, 
but slower, increment and comparison operations are done. 
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IMP2: Declare the index and limit of dotimes to be flxnums when they are. 

To understand the next performance issue, we need to review arrays. In C, an array is simply a 
pointer to a block of memory. Each element of the block is of the same data type and occupies 
same amount of space. 

Lisp provides several types of arrays. Fixed length arrays are referred to as type simple-array. 
Other array types can be variable length or be displaced on top of another array. Generally, an 
array element can be an object of any type (actually any object description), however, elements 
can be restricted to be of certain types, such as (unsigned-byte 32), an unsigned thirty two bit 
integer, or s i n q l e - f l o a t ,  a single precision floating point number. 

Two reasons for using such arrays are 1) Lisp can refer to such objects without heap allocating 
(bignums or single-floats in the cases mentioned above), and 2) such arrays can be used to 
interface with other languages, such as C. 

Fannkuch-O creates array of type (simple-array fixnum (*)). Such an array is like an int 
a~Tay in C, each array element is stored as a machine integer. However, the array is accessed 
using svref which should only be used on arrays of type (simple-array t (*)), alSO knOW as 
type simple-vector. While Lisp warns about this declaration conflict, it treats the array as a 
s imple -vec to r .  Since the routine never returns the arrays involved, the bug goes unnoticed. 

To be consistent, one should use either a (simple-array fixnum (*)) or a simple-vector. 
However, each has a slightly different effect on performance. When a fixnum array is used the 
compiler can use the fact that each element is a fixnum. However, the array elements are stored 
as machine integers. This requires an extra shift instruction when the array is accessed. 

Using a simple-vector will avoid this overhead. However, when storing a fixnum into a simple- 
vector, one should be sure that the compiler knows that the value being stored is a flxnum. The 
reason for this has to do with the generational garbage collector used in some Lisp systems, also 
referred to as a ephemeral garbage collector, or EGC. Such garbage collectors focus their 
attention on recently created objects under the assumption that they are likely to become garbage. 
This can substantially reduce the total effort involved in garbage collection. However, a 
reference from an old object to a new one must be recorded. While this can be done efficiently, 
this overhead can be avoided when an immediate object, such as a flxnum is stored. 

To summarize, consideration of arrays leads to the following improvements: 

IMP3: Use s v r e f  only on simple-vectors. Better yet, declare the array and use a r e f .  

IMP4: For an array of fixnum's use type simple-vector when dealing only with Lisp, 
and use type (s imple-ar ray  fixnum (*)) when deafing with another language, like C. 

IMP5: When storing a fixnum into a simple-vector be sure the compiler knows that 
the value being stored is a fixnum. 

A major functional difference between the Lisp and C versions of the original benchmark is that 
the Lisp version has ( c e i l i n q  k 2) while the C version has the hand optimized equivalent 
(k+l ) /2 ,  which is optimized by the compiler to (k+l) >>1 since k is an unsigned int. (This/2 
-> >>l optimization makes a 40% improvement in the C version.) While Lisp provides a ceiling 
function that works for one required and one optional argument, C only provides one for a single 
double argument, c e i l .  Using c e i l  instead of the optimized version makes the C version of 
the benchmark 2.88 times slower. There is a similar effect in Lisp. The time difference between 
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the different Lisp's on the original benchmark is largely due to their treatment of c e i l i n g .  It is 
simply not possible for either a Lisp. or a C compiler to produce code as good as the hand 
optimized version which uses informauon not shared with the compiler. 

Profiling tools can be used to identify such bottle necks. For example, the profiler in Allegro 
Common Lisp show that at least 60% of the time of the original benchmark was spent inside 
ceiling. 

IMP6: Identify performance bottlenecks using profiling tools and minimize their effect, 
for example by inlining. 

The algorithm generates each of the n! permutations of n integers and computes the number of 
flips. It would be better, of course, to generate the permutations in a way that poorer ones can be 
immediately eliminated from further consideration. For example, the heuristic, "The best 
permutation can not start with 1 or end with n", leads to a simple check that saves about nineteen 
percent of the effort. 

IMP7: Thinking about the algorithm can lead to improvement. 

RESULTS OF THE IMPROVEMENTS 

Exhibit 3 and 4 show the Lisp and C version of comparable benchmarks. Both versions were 
written in similar styles to allow easy comparison. The Lisp version uses macros to help in t2(pe 
declaration. Such heavy handed declarations are not required by most Lisp's but makes porting 
the benchmark easier. Lisp macros such as r o t a t e f  are avoided, as are C constructs such as ++ 
or r e g i s t e r  declarations. 

These improvements lead to a dramatic improvement in the Lisp performance on this benchmark. 
Lisp is within 24% and 116% of the best C tirne. 

So why are the Lisp versions slower? Lisp and C implementations produce essentially the same 
number of machine instructions, 106 for cc, and 108 for Allegro, for example (see the leftmost 
column of Exhibit 5). Exhibit 3 includes counts of the number of times key blocks of code are 
entered (referred to as "Weights" in Exhibit 5). The three innermost loops account for over 80% 
of the execution time. 

Exhibit 3. Fannkuch benchmark in Lisp. 

(deftype small () ' (integer 0 i01))) 
(defmacro small (a) " (the small ,a)) 
(defmacro s+ (a b) " (small (+ (small ,a) (small ,b)))) 
(defmacro s- (a b) " (small (- (small ,a) (small ,b)))) 
(defmacro s> (a b) " (> (small ,a) (small ,b))) 
(defmacro s = (a b) " (= (small ,a) (small ,b))) 
(defmacro sref (a i) " (small (svref ,a ,i))) 
(defmacro setfs (a b) " (setf ,a (small ,b))) 
(defmacro dotimess ((i n) &body body) 

(dotimes (,i ,n) (declare (type small ,i)) ,@body)) 

7                                                    



(defun fannkuch (n perm perml zaehl permmax) 
(declare (optimize (safety 0) (speed 3) (space 0) (debug 0)) 

(type simple-vector perm perml zaehl permmax) 
(type (integer 1 I00) n)) 

(dotimess (i n) 
(setfs (sref perml i) i)) ; FILL-I 

(let ((bishmax -I) 
(r n) ) 

(loop ; 1.00 
(loop ; 1.72 KREUZ 

(when (s = r I) (return)) 
(let ((i (s- r I))) 

(setfs (sref zaehl i) r) 
(setq r i))) 

(when (not (or (zerop (sref perml 0)) 
(let ((i (s- n I))) 

(s = (sref perml i) i)))) 
(dotimesS (i n) ; 0.81 
(setfs (sref perm i) (3ref perml i))) ; 8.11 COPY 

(let ((Spiegelungsanzahl 0) 
(k 0)) 

(loop ; 6.39 COUNT 
(when (s= (setq k (sref perm 0)) 0) (return)) 
(let ((k2 (the small (ash (s+ k I) -I)))) 

(dotimes3 (i k2) 
(let* ((temp (sref perm i)) ; 14.73 FLIP 

(j (s- k i))) 
(setf3 (3ref perm i) (sref perm j)) 
(setf3 (sref perm j) temp)))) 

(setq Spiegelungsanzahl (s+ Spiegelungsanzahl i))) 
(when (s> Spiegelungsanzahl bishmax) 

(setq bishmax Spiegelungsanzahl) 
(dotimesS (i n) 
(3etfs (sref permmax i) (3vref perml i)))))) 

(loop ; 1.72 
(when (s = r n) (return-from fannkuch-10 bishmax)) 
(let ((perm0 (3ref perml 0))) 

(let ((i 0)) 
(loop ; 4.44 SHIFT 

(if (s= i r) (return)) 
(let ((k (3+ i i))) 

(setfs (3ref perml i) (3ref perml k)) 
(setq i k)))) 

(setfs (svref perml r) perm0)) 
(when (3> (setfs (sref zaehl r) (3- (3ref zaehl r) I)) 0) 

(return)) 
(setq r (s+ r I)))))) 

8 



Exhibit 4. Fannkuch benchmark in C. 

#define ASMALL unsigned int 
#define SMALL unsigned int 
#define Length i00 

long fannkuch(n, Perm, Perml, Zaehl, PermMax) 
SMALL n; 
ASMALL Perm[], Perml[], Zaehl[], PermMax[]; 

{ 
long BishMax=-l, Spiegelungsanzahl; 
SMALL r, i, k; 
for (i=0; i<n; i++) 

Perml [i] =i; 
r=n; 
while (I) { 

while (r != i) { 
Zaehl [r-l] =r; 
r=r-i ; 

} 
if (! (Perml[0] == 0 I I (i=n-l, Perml[i] == i))) { 

for (i = 0; i < n; i = i + I) 
Perm[i] = Perml[i]; 

Spiegelungsanzahl=0 ; 
while (! ((k=Perm[0]) == 0)) { 

SMALL k2=(k+l)>>l; 
for (i = 0; i < k2; i = i + i) { 

SMALL temp = Perm[i] ; 
Perm[i] = Perm[k - i]; 
Perm[k - i] = temp; 

} 
Spiegelungsanzahl = Spiegelungsanzahl + I; 

} 
if (Spiegelungsanzahl > BishMax) { 

BishMax = Spiegelungsanzahl; 
for (i = 0; i < n; i = i + l) 

PermMax[i] = Perml[i] ; 
} 

} 
while (I) { 

if (r == n) return(BishMax); 
{ SMALL Perm0; 

Perm0 = Perml[0] ; 
i= 0; 
while (i < r) { 

k = i + I; 
Perml [i] =Perml [k] ; 
i = k; 

} 
Perml [r] =Perm0 ; 

if ((Zaehl[r] = Zaehl[r]-l) > 0) break; 
r=r+l; 



Several loops were disassembled to compare the quality of the compiled code, as shown in 
Exhibit 5. The row labeled "Weights" show the relative importance of each loop in the 
computation, and the column labeled "Dot" shows the dot product of the weights and the lines of 
code. It correlates well with relative performance, except for Lucid, which will be discussed 
below. 

Exhibit 5: Lines of code for the fannkuch function and several loops. 

Fannkuch Fill-i Shift Copy Flip Kreuz Dot 
cc 106 5 9 6 8 6 217 

gcc -02 117 5 8 5 I0 5 232 
Allegro 108 5 8 7 12 6 279 

CMUCL 123 7 9 8 14 10 328 

Lispworks 132 9 11 12 18 9 427 

Lucid 139 6 9 8 13 8 310 
Weight 0.00 4.44 8.11 14.73 1.72 

The bodies of the loops are smaller for C than for Lisp, while the overall footprint of a loop is 
smaller for Lisp than for C. Take a loop like (dotimes (i  n) . . .  ) .  In a simple C-like 
assembly language, the loop is coded as something like: (Each line corresponds to a RISC 
machine instruction, except that i f  < c o n d i t i o n >  g o t o  <address> corresponds to two 
instructions.) 

GCC loop Typical Lisp loop 

top 

end 

i = 0 i = 0 

if (i >= N) goto end goto test 

• . . top . . . 

... i = i + 4 
i = i + 1 test if (i < N) 

if (i < N) goto top 
goto top 

The difference is a matter of style, rather than language. The gcc compiler does a test and starts 
executing the body of the loop, while the typical Lisp code jumps to the test which is at the end 
of the loop body. 

The number of instructions in the body of the loop varies between the different Lisps. The Lisps 
with the higher instruction counts are typically due to one or more redundant instructions that 
could be removed. There is no reason such deficiencies could not be corrected. 

The loop body for fill-i, for example, shows the influence of the two languages: 

In C: In Lisp: 
for (i=0; i< N; i = i + i) (dotimes (i N) 

p[i] = i; (setf (aref p i) i)) 

Compiled C Compiled Lisp 

1 i = 0 i= 0 

2 goto test goto test 

3 top temp = i << 2 top temp = i + ARRAYOFFSET 

4 p[temp] = i p[temp] = i 

5 i = i + 1 i = i + 4 

6 test if (i < N) goto top test if (i < N) goto top 
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The loops have been written in the same style for ease of comparison. While both take the same 
number of instructions, there are two differences. Lisp uses fixnums, while C uses machine 
integers. We can see the effect of this in line 5 where i is incremented by 4 rather than by 1, as 
in the C version. In C, where machine integer are used, an i n t  must be left shifted before it can 
be used as an array offsets (alternatively, another counter incremented by one could be used). 

On the other hand, when accessing a Lisp array, one must account for the array type tag. This is 
done by adding an offset (aRru~xorFszT) to the index to remove the tag. On CISC computers, 
like the M68000's, the offset and index can be added to the array pointer in one instruction, but 
on a RISC machine, two instructions are required. 

While ARRAYOFFSET is a loop constant, it is generally not pulled out of the loop if an interrupt 
could occur during the loop. If a GC occurs, it must be possible to recognize all pointers to an 
array as Lisp values, so that the pointers can be changed if the array changes location. Removing 
the ARRAYOFFSET removes the tag information. On the other hand,when a loop is 
noninterruptable, the compiled Lisp code could be smaller than the compiled C code. 

One final issue is register versus stack allocation of variables. In a function call on a SPARC, the 
first six arguments are passed in registers, while any additional arguments are passed on the 
stack. Internal to a subroutine, 24 registers may be used (after a save instruction). An argument 
on the stack must be moved to a register before its value can be used. Thus an important 
optimization is to move a stacked variable into a register whenever possible. Unfortunately, 
Lucid Common Lisp does a register analysis, but it is suboptimum here. Important variables are 
kept on the stack, reducing its performance further. Unintuitively, performance can be improved 
by 20% by moving the inner count loop as a separate subroutine (Referred to as "Lucid 2" in 
Exhibit 2.). An earlier version of Allegro had a register allocation problem here as well, and the 
difference between the two C implementations is due to register/stack usage differences. 

CONCLUSIONS 

Lisp provides freedom that can be valuable during software development, but can get in the way 
of delivering performance if one is not careful. It might seem that recoding in C is a good way to 
deliver performance. However, it is the recoding process itself, and the analysis of perfomance 
details that is important, not the language. Today's Lisp compilers provide advice that helps 
identify performance pitfalls. Such advice would have identified most of the improvements 
described above. Also in CMU Common Lisp, with low optimization settings, declarations are 
verified at runtime rather than simply trusted, while at higher settings, they are used to produce 
optimized code. This allows a fluid software development style where performance issues can 
be addressed at various stages. 

1MP8: Heed compiler advice. 

C requires the programmer to provide explicit information from the beginning, so it might seem 
straightforward to write efficient C here. However, C is not without performance pitfalls either. 
Using the floating point version of c e i l i n g ,  rather than a hand coded one makes a factor of three 
difference in performance and changing "/2" to ">>1" makes a 40% improvement. The hand 
optimized version might be fairly obvious here, but isn't in general [Bentley]. 

Other choices a C programmer could make could have performance effects that are difficult to 
predict [Bentley]. For example, the original C version of the benchmark used register 
declarations which reduced performance by a few percent. Also, by varying the definitions of 
ASMALL and SMALL among the types char, short, int, unsigned short, and unsigned int 
the performance of the algorithm ranges from 15% faster to 65% slower than the time in Exhibit 
2. The fastest combination is not particularly obvious: 
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#define ASMALL char 
#define SMALL unsigned int 

Gabriel [Gabriel, 85] teaches us that benchmarking without analysis is bogus. This benchmark is 
a perfect example. Had one accepted the original performance numbers without further analysis 
one would conclude that Lisp was significantly slower than C, and that certain implementations 
of Lisp were significantly slower than others. Both conclusions are false. It is easy to make Lisp 
look slow relative to C, and one Lisp implementation look slower than another simply by 
steering the benchmark away from one implementation's pitfalls and toward another's, 
intentionally or otherwise. 

How much difference should one expect between Lisp and C? This benchmark is quite sensitive 
to the number of instructions generated for the inner loops. The data shows that Lisp compilers 
can be improved here. (Three improvements were made to Allegro Common Lisp in the process 
of analyzing this benchmark.) Lisp itself provides little if any additional overhead in this 
benchmark as both integer operations and array manipulation are comparable in both languages. 
A benchmark with a different set of loop weights might have shown more comparable results. 
For example a uniform weighting would produce differences of less than 40% between the 
different language implementations. Other benchmarks suggest that Lisp programs can be quite 
comparable, even faster than C programs [Anderson]. It is reasonable to expect that Lisp should 
be within 20% or less of the C time for benchmarks like this one [Baker]. Anything worse might 
indicate a problem to be corrected, as was done here. 
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