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Maybe not as hot a topic in computer  architecture as it used to be, but  still of considerable 
interest, is parallelism. How do you make a faster computer? Just  strap 20 or 200 or 2000 processors 
together? As we have learned, the architectural and hardware difficulties are immense (How do 
you connect them? A shared bus? A network? Is there a single system clock or many clocks?), 
and after these have been solved there remains the mat te r  of programming. I 

You could just  add parallelism to an existing sequential language such as C, Pascal, Fortran, 
or Lisp by adding a few subroutines: one to spawn a new process, one to terminate a process, and 
perhaps send-message and wait-for-message; or instead of message-passing, one could rely on shared 
memory and a test-and-set procedure. This approach amounts to making you code parallelism at 
the conceptual level of assembly language, disguised by the fact that  the ari thmetic expressions, 
loops, and conditionals are writ ten in a higher-level language. 

More thoughtfully designed parallel languages begin with an idea about  how to use parallelism 
in a conceptually convenient and abstract  manner; the language is then organized to support  and 
complement the idea. But  if the rest of the language design is simply borrowed wholesale from an 
existing language, semantic clash may result. 

The "garbage-can" approach to language design is seldom successful. You can't  always simply 
add another feature. The whole may be less than the sum of its parts,  for, as we will see, the 
introduction of a new feature can diminish the expressive power of existing features or lay traps 
for the unwary. 

H o w  to Eva luate  a Paral le l  Language  Feature? 

There have been many ideas about  how to exploit parallelism in a programming language, some 
more successful than others. Many of these ideas have been tried out in Lisp, again 'with varying 
degrees of success. But  the measure of success has been largely subjective. How can we evaluate 
different features beyond a judgement  of "I find this one easier to use" or "That ' s  gross!"? 

One can analyze a programming language by dividing its features into three categories: primitive 
notions, combination, and abstraction. Combining features allow large ideas to be built up be 
aggregating smaller pieces. Abstract ion features allow these combinations to be packaged up and 
t reated as if they were primitive. 

The design of a programming language can then be evaluated on the generality and complete- 
ness of features in each category. For example, in Pascal [11] numerical constants and names are 
primitive. Arithmetic operators  can be regarded as combining features; one can build up such 
expressions as b * b - 4 . 0 * a * c .  Parentheses (and implicit parentheses introduced by the rules of 
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precedence) are an abstraction feature; an arithmetic expression, once packaged up in parenthe- 
ses, can be used almost anywhere a numerical constant or name can. However, the abstraction of 
parenthesization is not completely general. One may use the numerical constant 5 in a declaration 
such as 

c o n s t  P h i l o s o p h e r s  = 5; 

but one may not use an equivalent expression: 

const Stooges = 3; 

const Philosophers = (Stooges + 2); (* Illegal *) 

and this is an objective basis on which to criticize the design of Pascal. (This design defect was 
later corrected in Modula-2 [17].) 

Here we shall examine a number of different ideas for introducing parallelism into Lisp. The 
goal is not merely to enumerate a variety of approaches, but to judge how well the approach to 
parallelism fits into the rest of the language. Parallelism is a method of combination: it arranges 
for a number of program fragments to execute concurrently. Our yardstick then is this: how well 
does the resulting language support abstraction? Does the particular approach to introducing 
parallelism enhance the abstraction mechanisms or violate them? 

Lisp as a Language Laboratory 

The Lisp language provides an effective and efficient framework for experimenting with and evalu- 
ating new language ideas. This is a result of two important  characteristics of Lisp. 

First, there is a standard representation of Lisp programs as Lisp data structures, and a standard 
way of writing an interpreter for Lisp programs in the Lisp language itself. This means that  you 
can invent a new dialect of Lisp simply by taking an existing Lisp interpreter, changing it a bit, 
and then executing that  interpreter within an existing Lisp system. The interpreter can be written 
so that  the new dialect has access to most of the facilities of the existing dialect. This means that  
only a small effort is required to try out a small change to the language. It is not necessary to write 
a new parser, or new mathematical  functions, or new runtime I /O procedures. 

Second, the number of absolutely essential concepts in the language is small. A production- 
quality dialect of Lisp, such as Common Lisp [13], may contain hundreds of operations. But a 
dialect is still recognizably Lisp even if it contains only the data  types symbol and l i s t ;  the 
programming primitives lambda, i f ,  quotation, function call, variable reference, and perhaps s e t  ! 
for assigning to variables; and the primitive functions cons, car ,  cdr,  atom, and eq. (The Scheme 
dialect of Lisp [15, 10] started out almost this small; but, indeed, even this short list of features is 
not absolutely minimal.) An interpreter for such a tiny dialect requires only one page of code, and 
yet addresses most of the interesting issues of how to execute Lisp programs. This means that  a 
proposed new feature for Lisp can often be judged by its interaction with only a dozen constructs. 

We are interested in how parallelism interacts with abstraction in Lisp. If we restrict our 
attention to our tiny dialect, we see that  there are two means of abstraction. First, anywhere a 
variable reference can occur, an arbitrary expression may appear instead. (This corresponds to 
the parenthetical abstraction in Pascal that  we discussed above.) Second, lambda may be used to 
package up an arbitrarily complex expression as a primitive procedure. If we believe (as many Lisp 
experts do) that  our tiny dialect does indeed capture most of the important  aspects of Lisp, then we 
need consider only these two abstraction mechanisms when judging features for parallelism. (We 
note in passing that  it is possible to make do with only one means of abstraction; the arbitrary 



nesting of expressions may be avoided by writing Lisp code in the so-called continuation-passing 
style. However, we are interested in the customary style of expression rather  than the theoretical 
minimum. Because nested expressions are convenient and customary, we do wish to analyze their 
interaction with parallel features.) 

One note of caution is in order. Some approaches to parallelism rely on using side effects, such 
as assignment to variables, to communicate among processes. In these cases we must recognize 
that  side effects themselves can violate both forms of abstraction, and then determine whether  the 
particular approach to parallelism ameliorates or exacerbates the problem of side effects. 

Idea 1: C o m p l e t e l y  I n d e p e n d e n t  Processes  

The most obvious way to add parallelism to Lisp is simply to organize a system as a set of com- 
pletely independent sequential Lisp processes augmented with access to some sort of interprocess 
communication facility. By "independent" we mean not only that  execution within each process 
proceeds asynchronously with respect to other processes, but that  the da ta  structures belonging to 
one process are not directly accessible to other processes. In other words, different processes have 
disjoint address spaces. 

Suitable means of interprocess communication include message-passing (either synchronized 
or buffered), I /O streams (such as UNIX pipes), and remote procedure calls. If the da ta  to be 
t ransmit ted  between processes has a simple structure,  such as numbers or character  strings, this 
approach is not so bad: communicating with another process and having an effect on it is not 
particularly much worse than the side effect produced by an assignment s tatement .  However, 
Lisp supports a rich set of da ta  structures that  cannot be t ransmit ted  to an independent address 
space without destroying certain properties, such as object identity, that  are important  to Lisp 
programming style. This prevents certain procedures that  must operate on such da ta  structures 
from making effective use of parallelism. 

For this reason most approaches to parallelism in Lisp have supported the illusion of a single 
address space. In such a model every process has access to the same da ta  structures. (It may be, 
however, that  one process can access a given data  structure more efficiently than ano the r - - t ha t  is, 
da ta  may be "belong" to a process and be considered "local" to it.) 

Idea 2: Processes  in a Shared Address  Space 

For concreteness, consider a version of Scheme augmented with a primitive function start-process 
that  takes a thunk (a piece of code encapsulated as a function of no arguments ) and spawns a new 
process to invoke the thunk. The old process ( that  called s t a r t - p r o c e s s )  continues execution; it 
sees the value # t  returned from the call to s t a r t - p r o c e s s .  The new process proceeds to execute 
the code in the thunk concurrently. If the thunk ever completes execution, then the value it re turned 
is discarded and its process effectively ceases to exist. 

By itself s t a r t - p r o c e s s  is not very useful. It allows new processes to be created, but without 
a way for them to communicate.  The new processes can share da ta  structures,  but rules must be 
established for simultaneous access. An obvious rule to establish is that  references to any given 
variable, and assignments to that  variable using s e t  !, are in effect serialized; the system behaves as 
if each process is made to wait its turn. (Although this may be an obvious solution, it is of utmost  
importance to state it explicitly, because it may affect the underlying implementation. Imagine an 
implementation of Lisp on a 16-bit microprocessor with a 24-bit address space. Two processes A 



(define (sieve integers) 
(begin (sieve-loop integers (sqrt 

(remove #f integers))) 
(last integers))) 

(define (sieve-loop integers limit) 
(if (first integers) 

(if (not (> (first integers) limit)) 
(begin (sieve-step (first integers) (rest integers)) 

(sieve-loop (rest integers) limit))))) 

(define (sieve-step candidate integers) 
(if (not (empty? integers)) 

(begin (if (first integers) 
(if (= (mod (first integers) candidate) O) 

(set-first! integers #f))) 
(sieve-step candidate (rest integers))))) 

Figure 1: Sieve of Eratosthenes Using Side Effects with One Process 

and B at tempting to store the address of a Lisp data structure into the doubleword at location V 
might proceed as follows: 

process 
process 
process 

process 

A stores into location V 
B stores into location V 
B stores into location V+I 

A stores into location V+I 

The net result would be garbled data in the doubleword at location V.) 
We will assume that  variable references and assignments are serialized, and therefore may be 

regarded as atomic actions. We will furthermore assume that  references to elements of lists, and 
alterations of such elements using the procedure s e t - c a r  ! (which alters a list to have a different 
first element), are also serialized. Then we can write a parallel version of the Sieve of Eratosthenes. 

It is easiest to explain the parallel algorithm by first discussing a serial version of the algorithm 
(see Figure 1). The procedure s i e v e  takes a list of integers of the form (2 3 4 5 6 . . .  n) .  It 
modifies the list by changing every non-prime element to #f,  and then produces a list of primes by 
removing the #f elements from the modified list. 

The procedure s i e v e - l o o p  is essentially a loop that  calls s i e v e - s t e p  once for every candidate 
value between 2 and x/q. The job of s i e v e - s t e p  is to remove all multiples of the candidate from 
the list of integers by overwriting such multiples with #f. The code of s i e v e - l o o p  is complicated 
by the fact that  the candidate value may have been a multiple of a previous candidate, and so may 
already have been set to #f. The same complication arises in s i e v e - s t e p ,  where the next potential 
multiple may already have been overwritten because it was a multiple of a previous candidate. 

As an example, if the original argument list is 

(2 3 4 5 6 7 8 9 10 II 12 13 14 lS) 

then the first call to s i e v e - s t e p  from s i e v e - l o o p  modifies the argument list to be 

4 



(2 3 #f S #f 7 #f 9 #f 11 #f 13 #f 15) 

and the next call modifies it to be 

(2 3 #f  5 #f  7 # f  #f  #f  11 #f  13 #f  # f )  

The next candidate, 5, is larger than v / ~ ,  and so the iteration ends and all occurrences of #f  are 
removed to produce 

(2 3 5 7 11 13) 

which is re turned as the result. 
Two stylistic oddities arise from the use of side effects ( that  is, the use of s e t - f i r s t  ! to alter 

the list of integers). The first oddity is that  b e g i n  is used in order to perform first one expression 
and then another,  discarding the value of the first. (If the value of an expression is discarded, 
then its execution cannot affect the overall computat ion unless it causes a side effect.) The second 
oddity is that  a form of i f  is used that  has no "else" part: ( i f  E0 E l )  evaluates E0, and if the 
result is true then E1 is executed and its value is discarded. Whether  or not E1 is executed, the 
value of the i f  expression is unspecified. This kind of i f  expression is useful only when executing 
E1 may produce a side effect. 

A parallel version of this algorithm may be produced by running each call to s i e v e - s t e p  in a 
separate process (see Figure 2). This is achieved roughly by replacing the call 

( s i e v e - s t e p  . . . )  

with the code 

(start-process (lambda () (sieve-step ...))) 

However, there are two complications. The first stems from having many processes performing side 
effects on the same list. To see this, consider the procedure s i e v e - l o o p .  As shown in Figure 1, it 
examines the first element of the list of integers three times: once to see whether  it is false, once to 
see whether  it is greater than v/~ (the l i m i t ) ,  and once to pass it to s i e v e - s t e p .  This works in 
the seriM case, but with parallel processes it can fail miserably if, for example, some other process 
sets that  element of the list to #f  after the test for falsehood but before the comparison to v/n; 
the effect would be to apply the > operation to the value #f.  To avoid this error we must rewrite 
the code as shown in Figure 2 so as to read the first element of the list only once, not three times, 
saving the value in a temporary  variable (here named c a n d i d a t e ) .  The same trick must also be 
employed in s i e v e - s t e p .  

We pause here to observe that  expression abstraction has been sadly violated. We cannot 
write ( f i r s t  i n t e g e r s )  wherever we please; we must write it exactly once and subsequently use 
a variable in its place. This violation arises from the use of side effects, but the problem is greatly 
exacerbated by the parallelism. It is not merely that  a side effect can occur - -we  want it to occur - -  
but that  we cannot predict when it will occur, and that  is the fault of the particular approach to 
parallelism. 

The second complication is that ,  having spawned many processes to strike out non-primes in 
the list, we must somehow wait for all these processes to terminate  before a t tempt ing to remove #f 
values from the list to produce the final result. Figure 2 shows one way to do this, by introducing 
additional code into s i e v e - l o o p .  For every process spawned there is a new binding of a variable 
named done; this variable is initialized to false, and is set to true when the spawned process has 
completed its work. The procedure wa i t  is used to busy-wait until a thunk passed to it yields a 



(define (sieve integers) 
(begin (sieve-loop integers (sqrt (last integers))) 

(remove #f integers))) 

(define (sieve-loop integers limit) 
(let ((candidate (first integers)) 

(done #f)) 
(if candidate 

(if (not (> candidate limit)) 
(begin (start-process 

(lambda () 
(begin (sieve-step candidate 

(rest integers)) 
(set! done #t)))) 

(begin (sieve-loop (rest integers) limit) 
(wait (lambda () done)))))))) 

(define (sieve-step candidate integers) 
(if (not (empty? integers)) 

(begin (let ((next (first integers))) 
(if next 

(if (= (mod next candidate) O) 
(set-first! integers #f)))) 

(sieve-step candidate (rest integers))))) 

(define wait 
(lambda (thunk) (if (not (thunk)) (wait thunk)))) 

Figure 2: Sieve of Eratosthenes Using Side Effects with Asynchronous Processes 

true value. Note that the recursive code of sieve-loop is arranged so that all the processes are 
spawned before waiting for any of them to be completed. 

This may be regarded as a violation of procedural abstraction. One of the expected properties 
of a procedure created by lambda is that once you invoke it, the procedure will have finished doing 
its duty by the time you resume execution. The use of start-process violates this notion. It can 
cause a procedure no longer to appear to be primitive; its caller can perceive that the procedure is 
made up of specific smaller parts. 

While Scheme augmented with start-process and a rule of serialization makes it easy to 
execute many processes in parallel, it facilitates neither process synchronization nor interprocess 
communication. Communication must be expressed in terms of side effects, and synchronizing 
process termination is particularly clumsy. (Most Lisp implementations, such as Zetalisp [16], that 
provide parallel processes of this kind also provide more powerful synchronization primitives, such 
as test-and-set or compare-and-swap.) 

Particularly annoying is the fact that  the value of an expression executed in another process is 
discarded (another violation of procedural abstraction). This makes it impossible to write programs 



(define (sieve integers) 
(sieve-loop integers (sqrt (last integers)))) 

(define (sieve-loop integers limit) 
(if (> (first integers) limit) 

integers 
(cons (first integers) 

(sieve-loop (sieve-step (first integers) 
(rest integers)) 

limit)))) 

(define (sieve-step candidate integers) 
(if (empty? integers) 

,() 

(let ((x (sieve-step candidate (rest integers)))) 
(if (= (mod (first integers) candidate) O) 

x 
(cons (first integers) x))))) 

Figure 3: Purely Functional Sieve of Eratosthenes with One Process 

that  use s t a r t - p r o c e s s  in a style that  is truly Lisp-like, that  is, functional. 

I d e a  3: F u t u r e s  

A different primitive that  may be added to Scheme for parallel processing is m a k e - f u t u r e ,  which 
takes a thunk and spawns a process in which to invoke it. Thus far it is exactly like s t a r t - p r o c e s s .  
However, instead of returning #t ,  m a k e - f u t u r e  returns to its caller a future, a da ta  object  consti- 
tuting a promise to deliver the value of the thunk "someday." The Multilisp dialect [7], which has 
been implemented on more than one hardware multiprocessor, relies on the use of futures (with a 

slightly different syntax).  
A future value can be t reated as the real thing for certain purposes, such as passing it as an 

argument,  returning it as a value, or making it an element of a list. Think of it as a dry-cleaning 
ticket, and bet ter  than the usual kind because the cleaner will replace it with the actual suit (when 
it has been cleaned) wherever the ticket happens to be at the time. If you want to give your suit 
to someone else, you can just  hand him the ticket; he can hand it back to you; and you can even 
hang it in your closet in place of a suit. The only problem comes when you want to wear it. You 
can't  wear a ticket; you have to wait for it to become an actual suit. Same thing for a future. A 
future number can be put  into a list, but  if you try to take its square root you have to wait for it 
to become an actual number,  which means waiting for the process computing the number to finish. 

In one stroke the future solves two problems: it avoids discarding the value computed by another 
process, and it provides a simple way to synchronize process termination. Eliminating these two 
problems allows parallel programs to be writ ten in a functional style, without  side effects. 

Figure 3 contains a version of the s i e v e  program that  is sequential and uses no side effects. 
Instead of modifying its argument,  it repeatedly makes copies of the list, eliminating all the multiples 
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(define (sieve integers) 
(sieve-loop integers (sqrt (last integers)))) 

(define (sieve-loop integers limit) 
(if (> (first integers) limit) 

integers 
(cons (first integers) 

(sieve-loop (sieve-step 

limit)))) 

(first integers) 
(rest integers)) 

(define (sieve-step candidate integers) 
(make-future 

(lambda () 
(if (empty? integers) 

,() 

(let ((x (sieve-step candidate (rest integers)))) 
(if (= (mod (first integers) candidate) O) 

x 

(cons (first integers) x))))))) 

Figure 4: Purely Functional Sieve of Eratosthenes using Futures 

of some prime during each copy operation. 
For example, if the original argument list is 

(2 3 4 5 6 7' 8 9 10 11 12 13 14 15) 

(We call such a selective copying operation a filter.) 

then the first call to s i e v e - s t e p  from s i e v e - l o o p  returns the value 

(2 3 ,5 7 9 11 13 15) 

and the second call returns the value 

(2 3 5 7 11 13) 

which is then returned from s ieve .  
Figure 4 is shows a parallel version of this algorithm that  uses futures. Figure 4 is identical to 

Figure 3 except that  a call to m a k e - f u t u r e  has been introduced into s i e v e - s t e p .  This means that  
a call to s i e v e - s t e p  will return immediately with a promise to deliver a filtered list later. This 
means that  s i e v e - l o o p  does not need to wait for s i e v e - s t e p  to finish making its filtered copy 
of the argument list before going on to the next iteration. This allows all of the filtering steps to 
begin their work in parallel. It also allows s i e v e - s t e p  to make each element of its result available 
immediately, without waiting for the rest of the elements to be computed. Therefore the filtering 
operations may proceed in parallel, each hot on the heels of its predecessor, rather than requiring 
one filtering operation to finish before the next begins. 

We can conclude that  although the m a k e - f u t u r e  construct may be superficially similar to the 
s t a r t - p r o c e s s  construct, it is sufficiently different to permit a strikingly different pat tern of use. 



Because m a k e - f u t u r e  does not discard the value of its argument thunk, side effects are not needed 
to deliver results from the spawned process. 

Indeed, it is not difficult to show that  futures may be introduced anywhere in a functional (side- 
effect-free) Lisp program without affecting its correctness. Only its speed will be affected (possibly 
adversely, because the use of futures involves some overhead). But what if side effects are used 
anyway in conjunction with futures? Ah, then we still have a distressing violation of procedural 
abstraction. The process created for a future may survive long after the return of control from the 
procedure that  created the future. If the process for the future performs a side effect, there is still 
no way to predict when it will occur; it may happen arbitrarily far in the future (no pun intended). 
We may summarize the problem thus: while a future allows a spawned process to deliver a value, 
it places no constraint on how long it can take to do so. 

One way to solve this is to introduce a primitive t ouch  that  simply returns its argument after 
making sure that  it has completed if it is a future. It is usually awkward, however, to introduce calls 
to touch  in all the necessary places in a program. And yet, one common pat tern of using touch  in 
conjunction with futures suggests another, more constrained, approach to functional parallelism. 

Idea 4: Parallel  A r g u m e n t  Evaluat ion  

The construct p c a l l  performs a function call by first performing all the argument computations 
in parallel and then passing them to the called function only when all the arguments are available. 
One may describe the action of ( p c a l l  f al a2 . . .  an) as 

(let ((vl (future al)) 
(v2 (future a2)) 

(vn (future an))) 
(touch al) 
( touch  a2) 
. , . 

(touch an) 
(f vl v2 ... vn)) 

The parallelism afforded by p c a l l  is limited in duration; it guarantees that  spawned processes 
will complete before certain other actions (the call to the function and all subsequent actions) are 
begun. This limitation is sufficiently stringent, however, that  it is difficult to render the sieving 
method of Figure 4 using only p c a l l .  

An alternative approach is shown in Figure 5. The idea is not to limit the filtering processes to 
eliminating primes, because that  implies that  a new filtering step cannot begin until a new prime 
is found (by the preceding filtering step). Instead we have a filtering process for every value in the 
original argument list (up to the square root limit), whether prime or composite. These filtering 
processes can proceed completely independently; the results are then merged by another series of 
parallel processes. The function merge2 simply takes two lists of numbers, each in ascending order, 
and produces a list of numbers appearing in both input lists. The function s i eve -merge  takes a 
list of many lists and organizes them into a binary tree with a merge2 computat ion at each parent 
node. It does this by grouping the lists into pairs and performing merge2 on each pair in parallel, 
producing half as many result lists; the pairing process is then iterated until only one list remains. 
(This pairing method allows much more parallelism than the more obvious approach of starting 
with the first list and successively merging in the others.) 
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(define (sieve integers) 
(first (sieve-merge (sieve-loop integers 

(sqrt (last integers)))))) 

(define (sieve-loop integers limit) 
(if (> (first integers) limit) 

(list integers) 
(pcall cons 

(sieve-step (first integers) (rest integers)) 
(sieve-loop (rest integers) limit)))) 

(define (sieve-step candidate integers) 
(if (empty? integers) 

,() 

(let ((x (sieve-step candidate (rest integers)))) 
(if (= (mod (first integers) candidate) O) 

x 
(cons (first integers) x))))) 

(define (sieve-merge lists) 
(if (or (empty? lists) 

(empty? (rest lists))) 
lists 
(sieve-merge 
(pcall cons 

(merge2 (first lists) 
(first (rest lists))) 

(sieve-merge (rest (rest lists))))))) 

(define (merge2 listl list2) 
(cond ((empty? listl) list2) 

((empty? list2) listl) 
((<? (first listl) (first list2)) 
(merge2 (rest listl) list2)) 

((>? (first listl) (first list2)) 
(merge2 listl (rest list2))) 

(else (cons (first list1) 
(merge2 (rest listl) (rest list2)))))) 

Figure 5: Functional Sieve with Independent Filtering Processes 
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This is a much more brute force approach than previous algorithms. The idea is to gain speed 
at the expense of efficiency. By increasing the parallelism and throwing a much larger amount  of 
computat ion at the problem, knowing that  some of it is redundant  and therefore wasted, we can 
hope to get the answer with less net delay. The tradeoff between speed and efficiency is one of the 
puzzling problems in the design of parallel algorithms. 

The p c a l l  primitive, like m a k e - f u t u r e ,  can be introduced anywhere in place of an ordinary 
function call without affecting the correctness of a program that  has no side effects. (It has fre- 
quently been suggested that  Lisp, or some other language, be parallelized simply by making every 
function call behave as a p c a l l .  Unfortunately,  this can lead to a combinatorial explosion of pro- 
cesses whose overhead swamps the speed saving gained from the parallelism. Finer control by the 
programmer is needed.) 

If spawned processes to compute the arguments do produce side effects, the t ime interval within 
which the side effects take place is limited; they will occur before the function is called. This means 
that  a procedure abstraction built from p c a l l  will properly contain (in time) any side effects 
of procedures it invokes. We can fairly say, then, that  p c a l l  does less violence to procedural 
abstraction than make- fuZure  or s Z a r Z - p r o c e s s .  

Idea 5: The  Data-Paral le l  Approach  

The pat terns in which p c a l l  is used in Figure 5 suggest an even higher level of parallel abstractions. 
Suppose that  certain primitive procedures were defined to operate on all elements of a list in parallel. 
Obvious candidates for such definitions are operations that  take functions as arguments,  such as 
map, r educe ,  and r e m o v e - i f .  Define (map f x) to apply the function f to every element of the 
list x, spawning a new process for each application, and return a list of the results. Define ( r e d u c e  
g x) to use a function g of two arguments to combine elements of the list x. For example, the 
value of ( r e d u c e  + ' (1 4 3 2))  is 10. (This can be done in parallel in the manner  of the function 
merge2 of Figure 5.) Define ( r e m o v e - i f  f x) to apply the test function f to every element of x in 
parallel and return a copy of x in which those elements have been eliminated for which f did not 
return the false value #f.  For example, the value of ( r e m o v e - i f  even? ' (1 4 3 2))  is (1 3). 

With such primitives lists can be t reated as if they were arrays whose elements can be processed 
in parallel. (One might actually use arrays in the actual programs instead of lists. Alternatively, 
there are ways to process linked lists in time logarithmic in the length of the list if one has a 
processor for every cell of the list [8].) Figure 6 shows a version of the sieve program writ ten in 
this manner.  

Idea 6: The  SIMD Approach  

Observe that  operations such as map and r e d u c e  apply the same operation to a number of da ta  
items. The amount  of parallelism is therefore governed more by the structure of the da ta  in the 
program than by the structure of the code; the more data,  the more parallelism. If the same 
operation is to be performed on many pieces of data, it may be wasteful to reinterpret the same 
piece of program text over and over again, once for each data  item. In lower level terms, memory  
bandwidth may be wasted fetching the same instruction for each data  item. A SIMD (Single 
Instruction Multiple Data) architecture may be more effective for executing programs organized in 
this way. 

In such an architecture a single instruction, once fetched, is applied to many pieces of da ta  
before the next instruction is fetched. The advantage of such an architecture is tha t  instruction 
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(define (sieve integers) 
(reduce merge2 

(map (lambda (candidate) 
(sieve-step candidate integers)) 

(remove-if (lambda (x) 
(> x (sqrt (last integers)))) 

integers)))) 

(define (sieve-step candidate integers) 
(remove-if (lambda (integer) 

(= (mod integer candidate) 0)) 
integers)) 

;The function merge2 is as in figure 5. 

Figure 6: Functional Sieve with Independent Filtering Processes 

fetch and decode hardware need not be replicated, and so for the same cost more hardware can be 
devoted to the processing of data; and less memory bandwidth is consumed by instruction fetching, 
and so more memory bandwidth can be devoted to the fetching of data. 

The disadvantage of a SIMD architecture is that it is not possible to execute the then part of 
an if expression for some data and concurrently execute the else part for other data. Because 
there is only one instruction decoder, one must process first one kind of data and then the other. 

This may cause some data processors to idle while others are executing the "other branch" of a 
conditional, resulting is wasted resources. If conditional expressions are nested then the problem is 
compounded exponentially. 

The program of Figure 6 may be regarded as a SIMD program without change; the only dif- 
ferences will be in its execution characteristics and the cost of the hardware. Another approach is 

represented by Connection Machine Lisp [14], which introduces special data structures and opera- 
tors for expressing SIMD-style parallelism. 

A programming language organized around a SIMD model of computation (whether or not it 
is actually implemented on hardware of SIMD architecture) has an important software engineering 

advantage. It is easier to reason about the behavior of such programs--to prove them correct, for 
example, or to predict their behavior when debugging--for the very simple reason that there is 
a single thread of control. In other words, control is always at exactly one place in the program 

text at a time. This means that it is not necessary to think about interactions that can arise from 
control being in more than one place in the program simultaneously. 

The SIMD model still permits the use of side effects, but their behavior is even more constrained. 
If several processes perform a side effect, then they all perform their side effects at the same time, 
and all the side effects are of the same type. 

Idea  7: Para l l e l i sm w i t h  N o  Side  Effects  

As the programs of Figures 3 through 6 indicate, if a programming language is designed with 
sufficient care it is possible to exploit parallelism in various ways without any use of side effects. 
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One might then propose to design a language for parallel programming so that  there are no side 
effects, or so that  any side effects in the language cannot have bad interactions with parallelism. 
The best existing examples of such language design are not Lisp dialects per se, but may be regarded 
respectively as first and second cousins to Lisp: the functional programming languages FP [1] and 
Haskell [9] and the array-oriented language APL [5]. Such a language makes the use of parallelism 
completely safe and avoids any violation of the abstraction mechanisms of the language. The 
parallelism is so completely packaged as to be inaccessible to the user. The net effect is a language 
that  is amenable to speedier execution by parallel hardware, but is to all intents and purposes a 
sequential language as seen by the programmer. 

C o n c l u s i o n s  

We have by no means examined all the ways that  have been tried to introduce parallelism into 
the Lisp framework, nor have we mentioned all the variants of ideas we have touched upon. (In 
particular, we have not already mentioned QLISP [4, 6], Paralation Lisp [12], and NESL [3, 2], which 
are worth looking up and studying.) But we can see from our few examples that  the tradeoffs 
are not unlike those in the all too famous debate about the use of the go to  statement.  There 
are certainly many useful patterns of control that  are easily expressed explicitly using go to  that  
cannot be expressed easily using only sequencing, conditionals, and whi le  loops. On the other hand, 
renouncing the use of goto  makes every use of i f  or whi le  implicitly more expressive, because one 
can rely on the notion that  if control flows into the top of such a statement then control will flow 
out the bottom, not jump out from the middle. 

We have seen that  what destroys abstraction is not parallelism per se but side effects. To the 
extent that  a paradigm for parallel programming requires or encourages the use of side effects, it wilt 
violate abstraction mechanisms, making programs harder to write, understand, and debug. There is 
a tradeoff between abstraction and flexibility: the more one can say explicitly with side effects, the 
less one can imply through the use of abstraction. The language designer must weigh the usefulness 
of explicit expressiveness against the more subtle advantages of such implicit expressiveness. 
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