
Paral le l ism in Lisp
Guy L. Steele Jr.

Sun Microsystems Laboratories*
2 Elizabeth Drive

Chelmsford, Massachusetts 01824

Guy. Steele~East. Sun. com

Maybe not as hot a topic in computer architecture as it used to be, but still of considerable
interest, is parallelism. How do you make a faster computer? Just strap 20 or 200 or 2000 processors
together? As we have learned, the architectural and hardware difficulties are immense (How do
you connect them? A shared bus? A network? Is there a single system clock or many clocks?),
and after these have been solved there remains the mat te r of programming. I

You could just add parallelism to an existing sequential language such as C, Pascal, Fortran,
or Lisp by adding a few subroutines: one to spawn a new process, one to terminate a process, and
perhaps send-message and wait-for-message; or instead of message-passing, one could rely on shared
memory and a test-and-set procedure. This approach amounts to making you code parallelism at
the conceptual level of assembly language, disguised by the fact that the ari thmetic expressions,
loops, and conditionals are writ ten in a higher-level language.

More thoughtfully designed parallel languages begin with an idea about how to use parallelism
in a conceptually convenient and abstract manner; the language is then organized to support and
complement the idea. But if the rest of the language design is simply borrowed wholesale from an
existing language, semantic clash may result.

The "garbage-can" approach to language design is seldom successful. You can't always simply
add another feature. The whole may be less than the sum of its parts, for, as we will see, the
introduction of a new feature can diminish the expressive power of existing features or lay traps
for the unwary.

H o w to Eva luate a Paral le l Language Feature?

There have been many ideas about how to exploit parallelism in a programming language, some
more successful than others. Many of these ideas have been tried out in Lisp, again 'with varying
degrees of success. But the measure of success has been largely subjective. How can we evaluate
different features beyond a judgement of "I find this one easier to use" or "That ' s gross!"?

One can analyze a programming language by dividing its features into three categories: primitive
notions, combination, and abstraction. Combining features allow large ideas to be built up be
aggregating smaller pieces. Abstract ion features allow these combinations to be packaged up and
t reated as if they were primitive.

The design of a programming language can then be evaluated on the generality and complete-
ness of features in each category. For example, in Pascal [11] numerical constants and names are
primitive. Arithmetic operators can be regarded as combining features; one can build up such
expressions as b * b - 4 . 0 * a * c . Parentheses (and implicit parentheses introduced by the rules of

*Most of this article was written while the author was at Thinking Machines Corporation. The article was
originally prepared in 1987 for BYTE magazine, whose editors accepted the article for publication as part of a special
issue and then decided, at the last minute, not to use this one article for reasons of space. BYTE cordially returned
the rights to the article so that it could be published elsewhere. I have further revised the article slightly with Lisp
Pointers and the progress of the last seven years in mind.

precedence) are an abstraction feature; an arithmetic expression, once packaged up in parenthe-
ses, can be used almost anywhere a numerical constant or name can. However, the abstraction of
parenthesization is not completely general. One may use the numerical constant 5 in a declaration
such as

c o n s t P h i l o s o p h e r s = 5;

but one may not use an equivalent expression:

const Stooges = 3;

const Philosophers = (Stooges + 2); (* Illegal *)

and this is an objective basis on which to criticize the design of Pascal. (This design defect was
later corrected in Modula-2 [17].)

Here we shall examine a number of different ideas for introducing parallelism into Lisp. The
goal is not merely to enumerate a variety of approaches, but to judge how well the approach to
parallelism fits into the rest of the language. Parallelism is a method of combination: it arranges
for a number of program fragments to execute concurrently. Our yardstick then is this: how well
does the resulting language support abstraction? Does the particular approach to introducing
parallelism enhance the abstraction mechanisms or violate them?

Lisp as a Language Laboratory

The Lisp language provides an effective and efficient framework for experimenting with and evalu-
ating new language ideas. This is a result of two important characteristics of Lisp.

First, there is a standard representation of Lisp programs as Lisp data structures, and a standard
way of writing an interpreter for Lisp programs in the Lisp language itself. This means that you
can invent a new dialect of Lisp simply by taking an existing Lisp interpreter, changing it a bit,
and then executing that interpreter within an existing Lisp system. The interpreter can be written
so that the new dialect has access to most of the facilities of the existing dialect. This means that
only a small effort is required to try out a small change to the language. It is not necessary to write
a new parser, or new mathematical functions, or new runtime I /O procedures.

Second, the number of absolutely essential concepts in the language is small. A production-
quality dialect of Lisp, such as Common Lisp [13], may contain hundreds of operations. But a
dialect is still recognizably Lisp even if it contains only the data types symbol and l i s t ; the
programming primitives lambda, i f , quotation, function call, variable reference, and perhaps s e t !
for assigning to variables; and the primitive functions cons, car , cdr, atom, and eq. (The Scheme
dialect of Lisp [15, 10] started out almost this small; but, indeed, even this short list of features is
not absolutely minimal.) An interpreter for such a tiny dialect requires only one page of code, and
yet addresses most of the interesting issues of how to execute Lisp programs. This means that a
proposed new feature for Lisp can often be judged by its interaction with only a dozen constructs.

We are interested in how parallelism interacts with abstraction in Lisp. If we restrict our
attention to our tiny dialect, we see that there are two means of abstraction. First, anywhere a
variable reference can occur, an arbitrary expression may appear instead. (This corresponds to
the parenthetical abstraction in Pascal that we discussed above.) Second, lambda may be used to
package up an arbitrarily complex expression as a primitive procedure. If we believe (as many Lisp
experts do) that our tiny dialect does indeed capture most of the important aspects of Lisp, then we
need consider only these two abstraction mechanisms when judging features for parallelism. (We
note in passing that it is possible to make do with only one means of abstraction; the arbitrary

nesting of expressions may be avoided by writing Lisp code in the so-called continuation-passing
style. However, we are interested in the customary style of expression rather than the theoretical
minimum. Because nested expressions are convenient and customary, we do wish to analyze their
interaction with parallel features.)

One note of caution is in order. Some approaches to parallelism rely on using side effects, such
as assignment to variables, to communicate among processes. In these cases we must recognize
that side effects themselves can violate both forms of abstraction, and then determine whether the
particular approach to parallelism ameliorates or exacerbates the problem of side effects.

Idea 1: C o m p l e t e l y I n d e p e n d e n t Processes

The most obvious way to add parallelism to Lisp is simply to organize a system as a set of com-
pletely independent sequential Lisp processes augmented with access to some sort of interprocess
communication facility. By "independent" we mean not only that execution within each process
proceeds asynchronously with respect to other processes, but that the da ta structures belonging to
one process are not directly accessible to other processes. In other words, different processes have
disjoint address spaces.

Suitable means of interprocess communication include message-passing (either synchronized
or buffered), I /O streams (such as UNIX pipes), and remote procedure calls. If the da ta to be
t ransmit ted between processes has a simple structure, such as numbers or character strings, this
approach is not so bad: communicating with another process and having an effect on it is not
particularly much worse than the side effect produced by an assignment s tatement . However,
Lisp supports a rich set of da ta structures that cannot be t ransmit ted to an independent address
space without destroying certain properties, such as object identity, that are important to Lisp
programming style. This prevents certain procedures that must operate on such da ta structures
from making effective use of parallelism.

For this reason most approaches to parallelism in Lisp have supported the illusion of a single
address space. In such a model every process has access to the same da ta structures. (It may be,
however, that one process can access a given data structure more efficiently than ano the r - - t ha t is,
da ta may be "belong" to a process and be considered "local" to it.)

Idea 2: Processes in a Shared Address Space

For concreteness, consider a version of Scheme augmented with a primitive function start-process
that takes a thunk (a piece of code encapsulated as a function of no arguments) and spawns a new
process to invoke the thunk. The old process (that called s t a r t - p r o c e s s) continues execution; it
sees the value # t returned from the call to s t a r t - p r o c e s s . The new process proceeds to execute
the code in the thunk concurrently. If the thunk ever completes execution, then the value it re turned
is discarded and its process effectively ceases to exist.

By itself s t a r t - p r o c e s s is not very useful. It allows new processes to be created, but without
a way for them to communicate. The new processes can share da ta structures, but rules must be
established for simultaneous access. An obvious rule to establish is that references to any given
variable, and assignments to that variable using s e t !, are in effect serialized; the system behaves as
if each process is made to wait its turn. (Although this may be an obvious solution, it is of utmost
importance to state it explicitly, because it may affect the underlying implementation. Imagine an
implementation of Lisp on a 16-bit microprocessor with a 24-bit address space. Two processes A

(define (sieve integers)
(begin (sieve-loop integers (sqrt

(remove #f integers)))
(last integers)))

(define (sieve-loop integers limit)
(if (first integers)

(if (not (> (first integers) limit))
(begin (sieve-step (first integers) (rest integers))

(sieve-loop (rest integers) limit)))))

(define (sieve-step candidate integers)
(if (not (empty? integers))

(begin (if (first integers)
(if (= (mod (first integers) candidate) O)

(set-first! integers #f)))
(sieve-step candidate (rest integers)))))

Figure 1: Sieve of Eratosthenes Using Side Effects with One Process

and B at tempting to store the address of a Lisp data structure into the doubleword at location V
might proceed as follows:

process
process
process

process

A stores into location V
B stores into location V
B stores into location V+I

A stores into location V+I

The net result would be garbled data in the doubleword at location V.)
We will assume that variable references and assignments are serialized, and therefore may be

regarded as atomic actions. We will furthermore assume that references to elements of lists, and
alterations of such elements using the procedure s e t - c a r ! (which alters a list to have a different
first element), are also serialized. Then we can write a parallel version of the Sieve of Eratosthenes.

It is easiest to explain the parallel algorithm by first discussing a serial version of the algorithm
(see Figure 1). The procedure s i e v e takes a list of integers of the form (2 3 4 5 6 . . . n) . It
modifies the list by changing every non-prime element to #f, and then produces a list of primes by
removing the #f elements from the modified list.

The procedure s i e v e - l o o p is essentially a loop that calls s i e v e - s t e p once for every candidate
value between 2 and x/q. The job of s i e v e - s t e p is to remove all multiples of the candidate from
the list of integers by overwriting such multiples with #f. The code of s i e v e - l o o p is complicated
by the fact that the candidate value may have been a multiple of a previous candidate, and so may
already have been set to #f. The same complication arises in s i e v e - s t e p , where the next potential
multiple may already have been overwritten because it was a multiple of a previous candidate.

As an example, if the original argument list is

(2 3 4 5 6 7 8 9 10 II 12 13 14 lS)

then the first call to s i e v e - s t e p from s i e v e - l o o p modifies the argument list to be

4

(2 3 #f S #f 7 #f 9 #f 11 #f 13 #f 15)

and the next call modifies it to be

(2 3 #f 5 #f 7 # f #f #f 11 #f 13 #f # f)

The next candidate, 5, is larger than v / ~ , and so the iteration ends and all occurrences of #f are
removed to produce

(2 3 5 7 11 13)

which is re turned as the result.
Two stylistic oddities arise from the use of side effects (that is, the use of s e t - f i r s t ! to alter

the list of integers). The first oddity is that b e g i n is used in order to perform first one expression
and then another, discarding the value of the first. (If the value of an expression is discarded,
then its execution cannot affect the overall computat ion unless it causes a side effect.) The second
oddity is that a form of i f is used that has no "else" part: (i f E0 E l) evaluates E0, and if the
result is true then E1 is executed and its value is discarded. Whether or not E1 is executed, the
value of the i f expression is unspecified. This kind of i f expression is useful only when executing
E1 may produce a side effect.

A parallel version of this algorithm may be produced by running each call to s i e v e - s t e p in a
separate process (see Figure 2). This is achieved roughly by replacing the call

(s i e v e - s t e p . . .)

with the code

(start-process (lambda () (sieve-step ...)))

However, there are two complications. The first stems from having many processes performing side
effects on the same list. To see this, consider the procedure s i e v e - l o o p . As shown in Figure 1, it
examines the first element of the list of integers three times: once to see whether it is false, once to
see whether it is greater than v/~ (the l i m i t) , and once to pass it to s i e v e - s t e p . This works in
the seriM case, but with parallel processes it can fail miserably if, for example, some other process
sets that element of the list to #f after the test for falsehood but before the comparison to v/n;
the effect would be to apply the > operation to the value #f. To avoid this error we must rewrite
the code as shown in Figure 2 so as to read the first element of the list only once, not three times,
saving the value in a temporary variable (here named c a n d i d a t e) . The same trick must also be
employed in s i e v e - s t e p .

We pause here to observe that expression abstraction has been sadly violated. We cannot
write (f i r s t i n t e g e r s) wherever we please; we must write it exactly once and subsequently use
a variable in its place. This violation arises from the use of side effects, but the problem is greatly
exacerbated by the parallelism. It is not merely that a side effect can occur - -we want it to occur - -
but that we cannot predict when it will occur, and that is the fault of the particular approach to
parallelism.

The second complication is that , having spawned many processes to strike out non-primes in
the list, we must somehow wait for all these processes to terminate before a t tempt ing to remove #f
values from the list to produce the final result. Figure 2 shows one way to do this, by introducing
additional code into s i e v e - l o o p . For every process spawned there is a new binding of a variable
named done; this variable is initialized to false, and is set to true when the spawned process has
completed its work. The procedure wa i t is used to busy-wait until a thunk passed to it yields a

(define (sieve integers)
(begin (sieve-loop integers (sqrt (last integers)))

(remove #f integers)))

(define (sieve-loop integers limit)
(let ((candidate (first integers))

(done #f))
(if candidate

(if (not (> candidate limit))
(begin (start-process

(lambda ()
(begin (sieve-step candidate

(rest integers))
(set! done #t))))

(begin (sieve-loop (rest integers) limit)
(wait (lambda () done))))))))

(define (sieve-step candidate integers)
(if (not (empty? integers))

(begin (let ((next (first integers)))
(if next

(if (= (mod next candidate) O)
(set-first! integers #f))))

(sieve-step candidate (rest integers)))))

(define wait
(lambda (thunk) (if (not (thunk)) (wait thunk))))

Figure 2: Sieve of Eratosthenes Using Side Effects with Asynchronous Processes

true value. Note that the recursive code of sieve-loop is arranged so that all the processes are
spawned before waiting for any of them to be completed.

This may be regarded as a violation of procedural abstraction. One of the expected properties
of a procedure created by lambda is that once you invoke it, the procedure will have finished doing
its duty by the time you resume execution. The use of start-process violates this notion. It can
cause a procedure no longer to appear to be primitive; its caller can perceive that the procedure is
made up of specific smaller parts.

While Scheme augmented with start-process and a rule of serialization makes it easy to
execute many processes in parallel, it facilitates neither process synchronization nor interprocess
communication. Communication must be expressed in terms of side effects, and synchronizing
process termination is particularly clumsy. (Most Lisp implementations, such as Zetalisp [16], that
provide parallel processes of this kind also provide more powerful synchronization primitives, such
as test-and-set or compare-and-swap.)

Particularly annoying is the fact that the value of an expression executed in another process is
discarded (another violation of procedural abstraction). This makes it impossible to write programs

(define (sieve integers)
(sieve-loop integers (sqrt (last integers))))

(define (sieve-loop integers limit)
(if (> (first integers) limit)

integers
(cons (first integers)

(sieve-loop (sieve-step (first integers)
(rest integers))

limit))))

(define (sieve-step candidate integers)
(if (empty? integers)

,()

(let ((x (sieve-step candidate (rest integers))))
(if (= (mod (first integers) candidate) O)

x
(cons (first integers) x)))))

Figure 3: Purely Functional Sieve of Eratosthenes with One Process

that use s t a r t - p r o c e s s in a style that is truly Lisp-like, that is, functional.

I d e a 3: F u t u r e s

A different primitive that may be added to Scheme for parallel processing is m a k e - f u t u r e , which
takes a thunk and spawns a process in which to invoke it. Thus far it is exactly like s t a r t - p r o c e s s .
However, instead of returning #t , m a k e - f u t u r e returns to its caller a future, a da ta object consti-
tuting a promise to deliver the value of the thunk "someday." The Multilisp dialect [7], which has
been implemented on more than one hardware multiprocessor, relies on the use of futures (with a

slightly different syntax).
A future value can be t reated as the real thing for certain purposes, such as passing it as an

argument, returning it as a value, or making it an element of a list. Think of it as a dry-cleaning
ticket, and bet ter than the usual kind because the cleaner will replace it with the actual suit (when
it has been cleaned) wherever the ticket happens to be at the time. If you want to give your suit
to someone else, you can just hand him the ticket; he can hand it back to you; and you can even
hang it in your closet in place of a suit. The only problem comes when you want to wear it. You
can't wear a ticket; you have to wait for it to become an actual suit. Same thing for a future. A
future number can be put into a list, but if you try to take its square root you have to wait for it
to become an actual number, which means waiting for the process computing the number to finish.

In one stroke the future solves two problems: it avoids discarding the value computed by another
process, and it provides a simple way to synchronize process termination. Eliminating these two
problems allows parallel programs to be writ ten in a functional style, without side effects.

Figure 3 contains a version of the s i e v e program that is sequential and uses no side effects.
Instead of modifying its argument, it repeatedly makes copies of the list, eliminating all the multiples

7

(define (sieve integers)
(sieve-loop integers (sqrt (last integers))))

(define (sieve-loop integers limit)
(if (> (first integers) limit)

integers
(cons (first integers)

(sieve-loop (sieve-step

limit))))

(first integers)
(rest integers))

(define (sieve-step candidate integers)
(make-future

(lambda ()
(if (empty? integers)

,()

(let ((x (sieve-step candidate (rest integers))))
(if (= (mod (first integers) candidate) O)

x

(cons (first integers) x)))))))

Figure 4: Purely Functional Sieve of Eratosthenes using Futures

of some prime during each copy operation.
For example, if the original argument list is

(2 3 4 5 6 7' 8 9 10 11 12 13 14 15)

(We call such a selective copying operation a filter.)

then the first call to s i e v e - s t e p from s i e v e - l o o p returns the value

(2 3 ,5 7 9 11 13 15)

and the second call returns the value

(2 3 5 7 11 13)

which is then returned from s ieve .
Figure 4 is shows a parallel version of this algorithm that uses futures. Figure 4 is identical to

Figure 3 except that a call to m a k e - f u t u r e has been introduced into s i e v e - s t e p . This means that
a call to s i e v e - s t e p will return immediately with a promise to deliver a filtered list later. This
means that s i e v e - l o o p does not need to wait for s i e v e - s t e p to finish making its filtered copy
of the argument list before going on to the next iteration. This allows all of the filtering steps to
begin their work in parallel. It also allows s i e v e - s t e p to make each element of its result available
immediately, without waiting for the rest of the elements to be computed. Therefore the filtering
operations may proceed in parallel, each hot on the heels of its predecessor, rather than requiring
one filtering operation to finish before the next begins.

We can conclude that although the m a k e - f u t u r e construct may be superficially similar to the
s t a r t - p r o c e s s construct, it is sufficiently different to permit a strikingly different pat tern of use.

Because m a k e - f u t u r e does not discard the value of its argument thunk, side effects are not needed
to deliver results from the spawned process.

Indeed, it is not difficult to show that futures may be introduced anywhere in a functional (side-
effect-free) Lisp program without affecting its correctness. Only its speed will be affected (possibly
adversely, because the use of futures involves some overhead). But what if side effects are used
anyway in conjunction with futures? Ah, then we still have a distressing violation of procedural
abstraction. The process created for a future may survive long after the return of control from the
procedure that created the future. If the process for the future performs a side effect, there is still
no way to predict when it will occur; it may happen arbitrarily far in the future (no pun intended).
We may summarize the problem thus: while a future allows a spawned process to deliver a value,
it places no constraint on how long it can take to do so.

One way to solve this is to introduce a primitive t ouch that simply returns its argument after
making sure that it has completed if it is a future. It is usually awkward, however, to introduce calls
to touch in all the necessary places in a program. And yet, one common pat tern of using touch in
conjunction with futures suggests another, more constrained, approach to functional parallelism.

Idea 4: Parallel A r g u m e n t Evaluat ion

The construct p c a l l performs a function call by first performing all the argument computations
in parallel and then passing them to the called function only when all the arguments are available.
One may describe the action of (p c a l l f al a2 . . . an) as

(let ((vl (future al))
(v2 (future a2))

(vn (future an)))
(touch al)
(touch a2)
. , .

(touch an)
(f vl v2 ... vn))

The parallelism afforded by p c a l l is limited in duration; it guarantees that spawned processes
will complete before certain other actions (the call to the function and all subsequent actions) are
begun. This limitation is sufficiently stringent, however, that it is difficult to render the sieving
method of Figure 4 using only p c a l l .

An alternative approach is shown in Figure 5. The idea is not to limit the filtering processes to
eliminating primes, because that implies that a new filtering step cannot begin until a new prime
is found (by the preceding filtering step). Instead we have a filtering process for every value in the
original argument list (up to the square root limit), whether prime or composite. These filtering
processes can proceed completely independently; the results are then merged by another series of
parallel processes. The function merge2 simply takes two lists of numbers, each in ascending order,
and produces a list of numbers appearing in both input lists. The function s i eve -merge takes a
list of many lists and organizes them into a binary tree with a merge2 computat ion at each parent
node. It does this by grouping the lists into pairs and performing merge2 on each pair in parallel,
producing half as many result lists; the pairing process is then iterated until only one list remains.
(This pairing method allows much more parallelism than the more obvious approach of starting
with the first list and successively merging in the others.)

9

(define (sieve integers)
(first (sieve-merge (sieve-loop integers

(sqrt (last integers))))))

(define (sieve-loop integers limit)
(if (> (first integers) limit)

(list integers)
(pcall cons

(sieve-step (first integers) (rest integers))
(sieve-loop (rest integers) limit))))

(define (sieve-step candidate integers)
(if (empty? integers)

,()

(let ((x (sieve-step candidate (rest integers))))
(if (= (mod (first integers) candidate) O)

x
(cons (first integers) x)))))

(define (sieve-merge lists)
(if (or (empty? lists)

(empty? (rest lists)))
lists
(sieve-merge
(pcall cons

(merge2 (first lists)
(first (rest lists)))

(sieve-merge (rest (rest lists)))))))

(define (merge2 listl list2)
(cond ((empty? listl) list2)

((empty? list2) listl)
((<? (first listl) (first list2))
(merge2 (rest listl) list2))

((>? (first listl) (first list2))
(merge2 listl (rest list2)))

(else (cons (first list1)
(merge2 (rest listl) (rest list2))))))

Figure 5: Functional Sieve with Independent Filtering Processes

i0

This is a much more brute force approach than previous algorithms. The idea is to gain speed
at the expense of efficiency. By increasing the parallelism and throwing a much larger amount of
computat ion at the problem, knowing that some of it is redundant and therefore wasted, we can
hope to get the answer with less net delay. The tradeoff between speed and efficiency is one of the
puzzling problems in the design of parallel algorithms.

The p c a l l primitive, like m a k e - f u t u r e , can be introduced anywhere in place of an ordinary
function call without affecting the correctness of a program that has no side effects. (It has fre-
quently been suggested that Lisp, or some other language, be parallelized simply by making every
function call behave as a p c a l l . Unfortunately, this can lead to a combinatorial explosion of pro-
cesses whose overhead swamps the speed saving gained from the parallelism. Finer control by the
programmer is needed.)

If spawned processes to compute the arguments do produce side effects, the t ime interval within
which the side effects take place is limited; they will occur before the function is called. This means
that a procedure abstraction built from p c a l l will properly contain (in time) any side effects
of procedures it invokes. We can fairly say, then, that p c a l l does less violence to procedural
abstraction than make- fuZure or s Z a r Z - p r o c e s s .

Idea 5: The Data-Paral le l Approach

The pat terns in which p c a l l is used in Figure 5 suggest an even higher level of parallel abstractions.
Suppose that certain primitive procedures were defined to operate on all elements of a list in parallel.
Obvious candidates for such definitions are operations that take functions as arguments, such as
map, r educe , and r e m o v e - i f . Define (map f x) to apply the function f to every element of the
list x, spawning a new process for each application, and return a list of the results. Define (r e d u c e
g x) to use a function g of two arguments to combine elements of the list x. For example, the
value of (r e d u c e + ' (1 4 3 2)) is 10. (This can be done in parallel in the manner of the function
merge2 of Figure 5.) Define (r e m o v e - i f f x) to apply the test function f to every element of x in
parallel and return a copy of x in which those elements have been eliminated for which f did not
return the false value #f. For example, the value of (r e m o v e - i f even? ' (1 4 3 2)) is (1 3).

With such primitives lists can be t reated as if they were arrays whose elements can be processed
in parallel. (One might actually use arrays in the actual programs instead of lists. Alternatively,
there are ways to process linked lists in time logarithmic in the length of the list if one has a
processor for every cell of the list [8].) Figure 6 shows a version of the sieve program writ ten in
this manner.

Idea 6: The SIMD Approach

Observe that operations such as map and r e d u c e apply the same operation to a number of da ta
items. The amount of parallelism is therefore governed more by the structure of the da ta in the
program than by the structure of the code; the more data, the more parallelism. If the same
operation is to be performed on many pieces of data, it may be wasteful to reinterpret the same
piece of program text over and over again, once for each data item. In lower level terms, memory
bandwidth may be wasted fetching the same instruction for each data item. A SIMD (Single
Instruction Multiple Data) architecture may be more effective for executing programs organized in
this way.

In such an architecture a single instruction, once fetched, is applied to many pieces of da ta
before the next instruction is fetched. The advantage of such an architecture is tha t instruction

l l

(define (sieve integers)
(reduce merge2

(map (lambda (candidate)
(sieve-step candidate integers))

(remove-if (lambda (x)
(> x (sqrt (last integers))))

integers))))

(define (sieve-step candidate integers)
(remove-if (lambda (integer)

(= (mod integer candidate) 0))
integers))

;The function merge2 is as in figure 5.

Figure 6: Functional Sieve with Independent Filtering Processes

fetch and decode hardware need not be replicated, and so for the same cost more hardware can be
devoted to the processing of data; and less memory bandwidth is consumed by instruction fetching,
and so more memory bandwidth can be devoted to the fetching of data.

The disadvantage of a SIMD architecture is that it is not possible to execute the then part of
an if expression for some data and concurrently execute the else part for other data. Because
there is only one instruction decoder, one must process first one kind of data and then the other.

This may cause some data processors to idle while others are executing the "other branch" of a
conditional, resulting is wasted resources. If conditional expressions are nested then the problem is
compounded exponentially.

The program of Figure 6 may be regarded as a SIMD program without change; the only dif-
ferences will be in its execution characteristics and the cost of the hardware. Another approach is

represented by Connection Machine Lisp [14], which introduces special data structures and opera-
tors for expressing SIMD-style parallelism.

A programming language organized around a SIMD model of computation (whether or not it
is actually implemented on hardware of SIMD architecture) has an important software engineering

advantage. It is easier to reason about the behavior of such programs--to prove them correct, for
example, or to predict their behavior when debugging--for the very simple reason that there is
a single thread of control. In other words, control is always at exactly one place in the program

text at a time. This means that it is not necessary to think about interactions that can arise from
control being in more than one place in the program simultaneously.

The SIMD model still permits the use of side effects, but their behavior is even more constrained.
If several processes perform a side effect, then they all perform their side effects at the same time,
and all the side effects are of the same type.

Idea 7: Para l l e l i sm w i t h N o Side Effects

As the programs of Figures 3 through 6 indicate, if a programming language is designed with
sufficient care it is possible to exploit parallelism in various ways without any use of side effects.

12

One might then propose to design a language for parallel programming so that there are no side
effects, or so that any side effects in the language cannot have bad interactions with parallelism.
The best existing examples of such language design are not Lisp dialects per se, but may be regarded
respectively as first and second cousins to Lisp: the functional programming languages FP [1] and
Haskell [9] and the array-oriented language APL [5]. Such a language makes the use of parallelism
completely safe and avoids any violation of the abstraction mechanisms of the language. The
parallelism is so completely packaged as to be inaccessible to the user. The net effect is a language
that is amenable to speedier execution by parallel hardware, but is to all intents and purposes a
sequential language as seen by the programmer.

C o n c l u s i o n s

We have by no means examined all the ways that have been tried to introduce parallelism into
the Lisp framework, nor have we mentioned all the variants of ideas we have touched upon. (In
particular, we have not already mentioned QLISP [4, 6], Paralation Lisp [12], and NESL [3, 2], which
are worth looking up and studying.) But we can see from our few examples that the tradeoffs
are not unlike those in the all too famous debate about the use of the go to statement. There
are certainly many useful patterns of control that are easily expressed explicitly using go to that
cannot be expressed easily using only sequencing, conditionals, and whi le loops. On the other hand,
renouncing the use of goto makes every use of i f or whi le implicitly more expressive, because one
can rely on the notion that if control flows into the top of such a statement then control will flow
out the bottom, not jump out from the middle.

We have seen that what destroys abstraction is not parallelism per se but side effects. To the
extent that a paradigm for parallel programming requires or encourages the use of side effects, it wilt
violate abstraction mechanisms, making programs harder to write, understand, and debug. There is
a tradeoff between abstraction and flexibility: the more one can say explicitly with side effects, the
less one can imply through the use of abstraction. The language designer must weigh the usefulness
of explicit expressiveness against the more subtle advantages of such implicit expressiveness.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

Backus, John. Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs. Communications of the ACM 21, 8 (August 1978), 613-641. 1977
ACM Turing Award Lecture.

Blelloch, Guy E. NESL: A Nested Data-Parallel Language. Technical Report CMU-CSD-92-
103. School of Computer Science, Carnegie-Mellon University (Pit tsburgh, January 1992).

Blelloch, Guy E. Vector Models for Data-Parallel Computing. MIT Press (Cambridge, Mas-
sachusetts, 1990).

Gabriel, Richard P., and McCarthy, John. Queue-based multiprocessing Lisp. In Proc. 1984
ACM Symposium on Lisp and Functional Programming. ACM SIGPLAN/SIGACT/SIGART
(Austin, Texas, August 1984), 25-44.

Gilman, Leonard, and Rose, Allen J. APL: An Interactive Approach, second edition. Wiley
(New York, 1976).

13

[6] Goldman, Ron, and Gabriel, Richard P. Preliminary results with the initial implementation
of Qlisp. In Proc. 1988 ACM Conference on Lisp and Functional Programming. ACM SIG-
PLAN/SIGACT/SIGART (Snowbird, Utah, July 1988), 143-152.

[7] Halstead, Robert H., Jr. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems 7, 4 (October 1985), 501-538.

[8] Hillis, W. Daniel, and Steele, Guy L., Jr. Data parallel algorithms. Communications of the
ACM 29, 12 (December 1986), 1170-1183.

[9] Hudak, Paul, Peyton Jones, Simon, and Wadler, Philip, editors. Report on the Program-
ming Language Haskell: A Non-Strict, Purely Functional Language (Version 1.1). Technical
Report. Yale University and Glasgow University (New Haven and Glasgow (respectively),
August 1991).

[10] IEEE Standard for the Scheme Programming Language, ieee std 1178-1990 edition. IEEE
Computer Society (New York, 1991).

[11] Jensen, Kathleen, and Wirth, Niklaus. Pascal User Manual and Report. Springer-Verlag (New
York, 1974).

[12] Sabot, Gary W. The Paralation Model: Architecture-Independent Parallel Programming. MIT
Press (Cambridge, Massachusetts, 1988).

[13] Steele, Guy L., Jr., Fahlman, Scott E., Gabriel, Richard P., Moon, David A., and Weinreb,
Daniel L. Common Lisp: The Language. Digital Press (Burlington, Massachusetts, 1984).

[14] Steele, Guy L., Jr., and Hillis, W. Daniel. Connection Machine Lisp: Fine-grained parallel
symbolic processing. In Proc. 1986 ACM Conference on Lisp and Functional Programming.
ACM SIGPLAN/SIGACT/SIGART (Cambridge, Massachusetts, August 1986), 279-297.

[15] Sussman, Gerald Jay, and Steele, Guy Lewis, Jr. SCHEME: An Interpreter for Extended
Lambda Calculus. AI Memo 349. MIT Artificial Intelligence Laboratory (Cambridge, Mas-
sachusetts, December 1975).

[16] Weinreb, Daniel, and Moon, David. LISP Machine Manual, Fourth Edition. Symbolics, Inc.
(Cambridge, Massachusetts, July 1981).

[17] Wirth, Niklaus. Programming in Modula-2. Springer-Verlag (Berlin, 1982).

Connection Machine is a registered trademark of Thinking Machines Corporation. UNIX is a registered
trademark in the U.S. and other countries, licensed exclusively through X/Open Company Ltd.

14

