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1 In troduc t ion  

The : future  construct is used in many shared-memory parallel Lisp systems to express concurrency. There 
are several problems in the language definition (specification of semantics) that  must be solved in a Lisp 
system that incorporates the : fu ture  construct: 

• scope and extent of (lexical and special) variables 

• what other mechanisms for synchronization and concurrency to introduce, if any 

• whether to allow non-local exit ( c a t ch  and throw, b l o c k  and r e t u r n - f r o m ,  t agbody  and go in Com- 
mon Lisp; c a l l / c c  in Scheme) to cross process boundaries 

Moreover, the implementation must be devised for each of the semantic specification decided upon. 
In this paper we address one of such problems, that  of coexistence of the : fu ture  construct and the 

multiple value facility in Lisp (Common Lisp and Scheme). We examined the problem and outlined our 
approach in [7]. We will explore this problem more fully and present two solutions, both of which have been 
tested in TOP-1 Common Lisp, an implementation of a parallel Common Lisp on the TOP-1 multiprocessor 
workstation [7]. TOP-1 Common Lisp is a parallel modification of Kyoto Common Lisp (KCL) [9] featuring 
a real-time multiprocessor garbage collector [8]. 

The problem caused by the coexistence of futures and multiple values is essentially the same for Common 
Lisp and Scheme. Therefore we use Common Lisp terminology and notation in the main body of the paper, 
and address problems specific to Scheme in the special subsection. 

2 Futures  and mult ip le  values in Lisp 

2 . 1  F u t u r e s  

A future was first used in the Lisp language in Multilisp [3]. A future is a placeholder for the value being 
computed by the process associated with the future. When a form ( : fu ture  ]orm) is executed, a new process 
is created and the evaluation o f / o r m  begins immediately in the new process. The f u t u r e  special form 
returns a placeholder, called a ]uture, to the process that  called the : future.  

When the evaluation o f / o r m  completes and the value is determined, we say that  the future has resolved. 
If a process needs to know the value of an unresolved future (e.g., in order to do an addition) the process is 
blocked until the future resolves. (This is described as, "The process touched the future.") Thus, a future 
is never visible to the programmer, and future is not a data  type. Touching can be done implicitly by strict 
(value-requiring) functions or explicitly by the t o u ch  special form. 

In many situations an unresolved future can be used as a placeholder for the real value: it can be passed 
as an argument to a function, returned as a value of a function, assigned to a variable, or placed within a 
data  structure. 

The : fu ture  construct can be thought of as a declaration: its use asserts that  a form can be executed 
concurrently without changing the result of the computation. No semantic aspect of the program changes 
except introduction of concurrency. 

2 . 2  M u l t i p l e  v a l u e s  i n  C o m m o n  L i s p  a n d  S c h e m e  

The motivation for providing a multiple value facility in a programming language are as follows: 

1. A computation often involves simultaneous computation of some related values (e.g., the coordinates of 
a point). It is natural and convenient to return them simultaneously rather than having to recompute 
each. 

. It is sometimes necessary to indicate the occurrence of a special (or abnormal) case in an access 
function. This is sometimes done with certain distinguished values, such as an "eof object" in Scheme 
[5]. In Common Lisp this is done by returning the second, diagnostic value (such as for hashtable and 
package lookup functions). It is more uniform to provide the multiple value facility to the user. 
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3. The effect of returning multiple values is sometimes simulated by storing them in special (or global) 
variables or by returning a list or vector containing the values. Having the facility provided in the 
system avoids this clumsy simulation. 

Multiple values in Common Lisp are produced with the v a l u e s  function. Multiple values are received with 
multiple-values-accepting special forms and macros, namely m u l t i p l e - v a l u e - l i s t ,  m u l t i p l e - v a l u e - c a l l ,  
m u l t i p l e - v a l u e - b i n d ,  and m u l t i p l e - v a l u e - s e t q .  There are also v a l u e s - l i s t  and m u l t i p l e - v a l u e - p r o g l .  
If there are more values produced than requested, the excess values are ignored. If there are fewer values 
produced than requested, the absent values default to n i l .  Only one value is requested when an expression 
is evaluated as an argument to a function, and when an expression is evaluated to be bound or assigned to 
a variable. 

The introduction of the multiple value facility is currently being discussed for the Scheme dialect of 
Lisp. According to a report on the discussion [1], inclusion of two special constructs are being considered: 
v a l u e s  and c a l l - w i t h - v a l u e s .  The procedure v a l u e s  is the same as in Common Lisp. The procedure 
c a l l - w i t h - v a l u e s  takes two arguments, a thunk (a procedure of no arguments) that  produces some number 
of values; and a procedure that  take those values as arguments, the result of which becomes the result of 
the c a l l - w i t h - v a l u e s  form. An important  difference in the handling of multiple values in Scheme is that  
there is a proposal to make a mismatch between the number of values expected and produced an error. 

2 .3  The goal: the  coexistence of fu tures  and mult iple  values 

The f u t u r e  construct can be thought of as a declaration: its use asserts that a form can be executed 
concurrently without changing the result of the computation. N o  semantic aspect of the program changes 
except introduction of concurrency. Our goal is to preserve this characteristics of futures even with the 
multiple value facility in the language. 

Other semantic specifications involving the f u t u r e  construct are possible: (1) exactly one value returns 
from ( f u t u r e  <form>); or (2) whenever f u t u r e  is used in a program, multiple-value receiving constructs 
may receive more values than the same program without the f u t u r e  constructs. However, such specifications 
violate the nature of futures as declarations. 

T h e  n e c e s s i t y  o f  m u l t i p l e - v a l u e - r e t u r n i n g  f u t u r e s  

The necessity of multiple-value-returning futures depends on the multiple-value handling primitives provided 
in the language. 

For example, assume that  v a l u e s  and m u l t i p l e - v a l u e - l i s t  are the the only multiple-value handling 
primitives. Then no future will ever need to return multiple values, for even if evaluation of <form> in 
( m u l t i p l e - v a l u e - l i s t  <form>) resulted in a future, no concurrency is possible between the child process 
evaluating <form> and the parent process, so that  the f u t u r e  construct can be ignored, and the creation of 
such redundant futures can be avoided using a mechanism similar to future chain elimination described in 
a later section. 

On the other hand, if there is m u l t i p l e - v a l u e - c a l l  special form (as in Common Lisp), then multiple- 
value-returning futures are necessary to ensure that  inserting futures into a program introduces concurrency 
if the concurrency can benefit the overall execution time, in addition to the condition that  inserting futures 
into a program does not change the result of the computation. For example, while evaluating the expression 
(multiple-value-call <fn> <forml> <form2>), if <forml> evaluates to a future, then the parent process 
may go on to evaluate <form2> concurrently, and that future must be able to return multiple values. 

By similar reasoning, multiple-value-progl (Common Lisp) and call-with-values (Scheme) re- 
quire multiple-value-returning futures, whereas multiple-value-bind and multiple-value-setq (Com- 
mon Lisp) do not, if a mechanism similar to future chain elimination is employed. 
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3 The implementat ion  of  futures with mult iple  values 

3.1 T h e  p r o b l e m  w i t h  t h e  s t r a i g h t f o r w a r d  i m p l e m e n t a t i o n :  w r o n g  n u m b e r  o f  
v a l u e s  

Futures must resolve to multiple values in some situations. For example, when 3valsf is defined as 

(defun 3valsf () 
(future (values I 2 3))) 

the evaluation of (multiple-value-list (3valsf)) must proceed as follows: first (3valsf) is evaluated 
to return a resolved or unresolved future, then, after the values are determined, a list of the three values is 
created and returned by multiple-value-list. The three values must be carried by the futureJ 

Now, let us consider the following example. 

(defun foo () 
(let ((x (3valsf))) 
x)) 

While evaluating (multiple-value-list (foo)), the result of the argument form (foo) is a future that 
will eventually resolve to I, 2, and 3 as in the last example, but this time, the correct value of 

(multiple-value-list (foo)) is (i), not (i 2 3). This is because programs containing future constructs 
should produce the same result as when they are absent, and if future were not present in the definition of 
3valsf, during the evaluation of (foo) only the first value returned by 3valsf would be bound to x and 
hence returned by foo. 

3.2 T h e  i m p l e m e n t a t i o n  o f  f u t u r e s  w i t h o u t  m u l t i p l e  v a l u e s  

Before we provide our solutions, of which there are basically two approaches, we describe the original im- 
plementation of futures without multiple values. The description here closely follows the implementation in 
TOP-1 Common Lisp. 

An object of type future contains the following fields: 

r e s o l v e d - p  . . . . . .  flag that indicates if the future has resolved already 

wa i t q  . . . . . .  queue of processes waiting on this future 

l oc k  . . . . . .  (boolean) lock which is locked while wa i tq  is manipulated 

v a l u e  . . . . . .  slot for storing the value of the future when it is determined 

The f u t u r e  construct is a macro defined as 

(defmacro future (form) 
(let ((newvar (gensym))) 

c (let ((,newvar (make-future))) 
(process-funcall 

#'(lambda () (eval-set-future-1 ,newvar ,form))) 
, newvar) ) ) 

so that (future <form>) expands to 

(let ((#:gO01 (make-future))) 
(process-funcall 

#'(lambda () (eval-set-future-1 #:gO01 <form>))) 
#:gO01) 

IAs described in the last subsection, the creation of this future can be avoided. However, the point here is that if a 
future is created in this case, it must carry multiple number of values. Creation of futures is necessary for some uses of 
mult iple-value-call. 
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The internal function m a k e - f u t u r e  returns a new future object. When a future is newly created, r e s o l v e d - p  
is initialized to false, p r o c e s s - f u n c a l l  creates a new process and calls the argument  function in a new 
process. The e v a l - s e t - f u t u r e - 1  special form evaluates the argument  expression, stores the value in the 
value slot of the argument  future object,  sets r e s o l v e d - p  to true, and wakes up all the processes waiting 
on this future. Exact ly  one value is stored regardless of the number of values that  actually resulted from 
the form: if one or more values results from the form, only the first value is stored; if the form produces no 
values, n i l  is stored. # :g001 is a new and uninterned symbol. 

Whenever a real value of a future is required the following internal function t o u c h  is called. 

(defun  t o u c h  ( f u t u r e )  
;;  <<<pseudo-Lisp  code . . .  i t  i s  a c t u a l l y  in  t h e  C language>>> 
;;  The argument  FUTURE may or  may not  be a f u t u r e .  
; ;  Re tu rn s  a n o n - f u t u r e  v a l u e .  
(loop 
(when (not (future-p future)) 

(return-from touch future)) 
(when (not (future-resolved-p future)) 

(enqueue *the-current-process* (future-waitq future)) 
(sleep-and-schedule-another-process)) 

;; FUTURE is a resolved future. 
(setq future (future-value future)))) 

This is the slightly simplified version (for example, it does not include the lock and unlock operations) of 
the corresponding C function in TOP-1  Common Lisp. 

3 . 3  T h e  m y - c o n t e x t  m e t h o d  

We now describe the m y - c o n t e x t  method,  which was implemented and tested in a prototype version of T O P -  
1 Common Lisp. We observe that  every expression is evaluated in a multiple value context (my-context), 
the context of how many values are expected from the evaluation of the expression. Therefore if this da ta  
is available when evaluating an expression, then the appropr ia te  number  of values can be set to the future 
object. 

In this method the following two fields are added to a future object. 

m y - c o n t e x t  . . . . . .  contains one of ignore, single, or multiple (see below) 

2+va lues  . . . . . .  slot for storing the list of all subsequent values after the first one 

At run t ime the correct value of mv-context  is maintained in the m y - c o n t e x t  slot whenever an expression 
is evaluated. For a function call ( foo  <forml> <form2>),  <forml> and <form2> are evaluated in an mv- 
context of single regardless of the mv-context  of the entire form. For a p rogn  form (p rogn  <forml> <form2> 
<form3>) evaluated in some my-context  c, <form1> and <form2> are evaluated in ignore, and then <form3> 
is evaluated in c. The predicate expression of an i f  form and expressions evaluated to be bound or assigned 
to variables are all evaluated in an mv-context  single. In general, the expressions in the tail positions [2] 
inherit the mv-context  of the entire expression, and expressions in the other positions are associated with 
the mv-context  of single or ignore. 

The details of maintaining the correct mv-context  value for a small subset of Common Lisp are as follows. 
At the top level, the input form is evaluated with m v - c o n t e x t  of m u l t i p l e ,  as ( e v a l  < t o p - l e v e l - i n p u t - f o r m >  
< i n i t i a l - e n v i r o n m e n t >  m u l t i p l e ) .  Throughout  this paper  descriptions of algorithms will refer to interpretive- 
mode evaluation. The compiled-mode evaluation requires the same steps to be performed at run-time. 

(defun eval (form env my-context) 

; ; mv-context: one of MULTIPLE, SINGLE, IGNORE 

(cond ((constant-p form) 
(constant-value form) ) 

( (va r i ab le -p  form) 
( lookup-variable-value form env)) 
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;;; special forms 
;; progn 
((eq (first form) progn) 
(let ((subforms (butlast (cdr form))) 

(last-form (last (cdr form)))) 
(dolist (e subforms) (eval e env IGNORE)) 
(eval last-form env my-context))) 

;; if 
((eq (first form) if) 
(let ((pred-form (second form)) 

(then-form (third form)) 
(else-form (fourth form))) 

(if (eval pred-form env SINGLE) 
(eval then-form env my-context) 
(eval else-form env my-context)))) 

;; setq 
((eq (first form) setq) 
(let* ((vat (second form)) 

(val-form (third form)) 
(val (eval val-form env SINGLE))) 

(assign-vat var val))) 

;; function application 
((function-p (first form)) 
(let* ((fun (car form)) 

(args (cdr form)) 
(ev-args (mapcar #(lambda (e) (eval e env SINGLE) args)))) 

(if (primitive-function-p fun) 
(primitive-apply fun ev-args) 
(let ((lambda-def (function-lambda-definition fun))) 

(eval (lambda-body lambda-def) 
(extend-env env (param-list lambda-def) ev-args) 
my-context))))) )) 

This mv-context is available at run-time, so that when the value(s) of the argument form to future are 
calculated, the process evaluating the form can store the appropriate number of values in the future object. 
The expansion for (future <form>) is therefore 

(case (my-context) 
((ignore) 
(process-funcall #'(lambda () <form>))) 

((single) 
( let  ((#:gO01 (make-future))) 

(process-funcall 
#'(lambda () (eval-set-future-1 #:gOO1 <form>))) 

#:gO01)) 
((multiple) 
(let ((#:gO01 (make-future))) 

(process-funcall 
#'(lambda () (eval-set-future-m #:gO01 <form>))) 

#:g001))) 

The internal function my-context returns the current my-context. The eval-set-future-I special form 
stores exactly one value in the future object~ and 2+values slot is lea to nil. The eval-set-future-m 
special form stores all of the values resulting ~om the form in the future object. 

The my-context can be determined at compile-time in some cases, in which case the run-time dispatch 
on the my-context can be avoided. 
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The internal t ouch  function is the same as presented earlier. The multiple-value-receiving constructs call 
the following my- touch function when its argument form evaluates to a single future, mv-touch chases the 
chain of futures and returns the "last" future in the chain. The "last" future is defined as the first future 
encountered in the chain that  does not have exactly one future value, in other words, the first future that  
has either multiple (2 or more, or 0) values, or one non-future value. 

(defun my-touch ( future)  
;; <<<pseudo-Lisp code ... it is actually in the C language>>> 
;; FUTURE is a future. 
(let ((value nil)) 

(loop 
;; sleep if not resolved-p 
(when (not (future-resolved-p future)) 

(enqueue *the-current-process* (future-waitq future)) 
(sleep-and-schedule-another-process)) 

;; FUTURE is a resolved future. 
(setq value (future-value future)) 
(cond ((and (future-p value) 

(null (future-2+values future))) 
(setq future value)) 

(t 
(return-from mv-touch future)))))) 

3 . 4  T h e  mv-p  f l a g  m e t h o d  

The mv-p flag method, which is implemented in the final version of TOP-1 Common Lisp, is an optimization 
of the my-con tex t  method. The first observation is that  the mv-context ignore is only used to avoid allocation 
of needless future object and is not necessary for ensuring that  the correct number of values be returned. 
This means that actually only one bit of information is necessary. The basic idea is that  instead of passing 
around the mv-context for each expression, the fact that  a future form appeared in a single context (which 
makes the future lose its ability to return multiple values) is recorded in a special flag of the future object. 
Then at future-chain chasing time, if any of the futures in the chain has this flag disabled, it will mean that 
only a single value may result in that  case. 

In this method, a future contains the mv-p flag field instead of the m y - c o n t e x t  field. The flag indicates 
that the future is capable of returning multiple values. When a future object is created, this flag is set on. 
The flag is cleared when the future goes through contexts in special forms that  invalidate all but the first 
value: when it is assigned or bound to a variable, and when it is passed as an argument to a function. It 
follows from this rule that  the flag is also cleared when a future is returned from certain places within macro 
forms, such as a singleton clause of a cond form, one of the subforms (except the last one) of or ,  the first 
form of p rog l ,  and the second form of prog2. 

The expansion for ( f u t u r e  <form>) is 

(let ((#:g001 (make-future))) 

(my-on #:g001) 

(process-funcall 

#'(lambda () (eval-set-future-m #:g001 <form>))) 

#:g001) 

The call to the my-on internal function sets the mv-p flag in a future object. It is necessary because the 

variable binding in the line above clears the flag. 
The internal t ouch  function is the same as presented earlier. The my-touch function in this method is 

as follows. 

(defun mv-touch ( future)  
;; <<<pseudo-Lisp code ... it is actually in the C language>>> 
; ; FUTURE is a future. 
(let ((value nil) 
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(any-mv-off-p nil)) 
(loop 
(when (null future-mv-p future) 

(setq any-mv-off-p t)) 
;; sleep if not resolved-p 
(when (not (future-resolved-p future)) 

(enqueue *the-current-process* (future-waitq future)) 
(sleep-and-schedule-another-process)) 

;; FUTURE is a resolved future. 
(setq value (future-value future)) 
(cond ((and (future-p value) 

(null (future-2+values future))) 
(setq future value)) 

(t 
(when any-mv-off-p 

(setf (future-2+values future) nil)) 
(return-from my-touch future)))))) 

3 . 5  F u t u r e  c h a i n  e l i m i n a t i o n  

If an expression of the form ( f u t u r e  ( f u t u r e  <form>)) appears in a program, it can be automatically and 
safely rewritten as ( f u t u r e  <form>) without changing the meaning of the program, including the level of 
concurrency produced. The only difference is an extra (and redundant) process and future object are not 
created. 

While programmers would not write a piece of code such as ( f u t u r e  ( f u t u r e  <form>)) ,  the same effect 
can arise even if the second f u t u r e  is not lexically within the first one, which may occur when different 
modules or program segments are combined. Sometimes the short-circuiting is possible for such cases also. 
An expression ( f u t u r e  <form>) can be replaced with <form> if the result of the expression will be taken 
as the result of another future form, and a new future object and a process need not to be created. 

The expansion for ( f u t u r e  <form>) taking this observation into consideration is 

(if (evaluating-for-future-p) 
;; omit the creation of redundant future chain 

<form> 
; ; regular case 
(let ( (# :gO01 (make-future))) 

(process-funcall 
#'(lambda () (eval-set-future-m #:gO01 <form>))) 

#:gO01) ) 

The internal function e v a l u a t i n g - f o r - f u t u r e - p  returns a value indicating if the form ( f u t u r e  <form>) 
is being evaluated as a value for a future. At run-time this piece of data  must be available for evaluation 
of each form. This data  can be maintained as follows, where the top-level input form is evaluated with 
e v a l u a t i n g - f o r - f u t u r e - p  of n i l ,  as ( e v a l  < t o p - l e v e l - i n p u t - f o r m >  < i n i t i a l - e n v i r o n m e n t >  n i l ) .  

(defun eval (form env evaluating-for-future-p) 
(cond ((constant-p form) 

(constant-value form) ) 
( (variable-p form) 
(lookup-variable-value form env)) 

;;; special forms 
;; progn 
((eq (first form) progn) 
(let ((subforms (butlast (cdr form))) 

(last-form (last (cdr form)))) 
(dolist (e subforms) (eval e env NIL)) 
(eval last-form env evaluating-for-future-p))) 
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;;  if 
((eq (first form) if) 
(let ((pred-form (second form)) 

(then-form (third form)) 
(else-form (fourth form))) 

(if (eval pred-form env NIL) 
(eval then-form env evaluating-for-future-p) 
(eval else-form env evaluating-for-future-p)))) 

; ;  s e t q  
( ( eq  ( f i r s t  form) se tq )  

( l e t *  ( ( v a t  (second form))  
(va l - fo rm ( t h i r d  form))  
(va l  ( eva l  v a l - f o r m  env NIL)))  

( a s s i g n - v a r  va r  v a l ) ) )  

; ; function application 
((function-p (first form)) 
(let* ((fun (car form)) 

(args (cdr form)) 
(ev-args (mapcar #(lambda (e) (eval e env NIL) ares)))) 

(if (primitive-function-p fun) 
(primitive-apply fun ev-args) 
(let ((lambda-def (function-lambda-definition fun))) 

(eva1 (lambda-body lambda-def) 
(extend-env env (param-list lambda-def) ev-args) 
evaluating-for-future-p) ) ) ) ) ) ) 

The e v a l u a t i n g - f o r - f u t u r e - p  flag is set when evaluating a form for a future. This requires 
( e v a l - s e t - f u t u r e - m  # : g001 <:form>) to be modified so that  <form>) is evaluated as ( e v a l  <form> env T), 
and then the values are set to the future object. 

This technique ensures that  a chain (the situation where a future's value is another future) is never 
created in the context where multiple values are requested. Therefore the argument future to my- touch is 
now always the last one, so that process requesting the values does not need to do any chasing, and the code 
for looping can be removed from my-touch.  Future-chain chasing is still necessary for touch.  

(defun my-touch (future) 
;; <<<pseudo-Lisp code ... it is actually in the C language>>> 
;; FUTURE is a future. 
;; sleep if not resolved-p 
(when (not (future-resolved-p future)) 

(enqueue *the-current-process* (future-waitq future)) 
(sleep-and-schedule-another-process)) 

;; FUTURE is a resolved future. 
future) 

Either of the my-con t ex t  method or the mv-p flag method can be used in conjunction with future chain 
elimination. 

3.6 Considera t ions  specific to  Scheme 

As we discussed in Section 2.3, the Scheme multiple-value constructs v a l u e s  and c a l l - w i t h - v a l u e s  call 
for multiple-value-returning futures. 

P r o b l e m s  r e l a t e d  to  c a l l / c c  

In [4] Katz and Weise studies and the problem caused by the coexistence of futures and c a l l / c c .  They 
present solutions to the two types of problem that  arise: that  of multiple resolving of a future, and that  
of runaway parallelism. The mechanism proposed in this paper (the m y - c o n t e x t  method, the mv-p flag 
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method, and future chain elimination) can be incorporated with their solution without causing any unex- 
pected complications. 

Errors  due  to m i s m a t c h  of  the  n u m b e r  of  values 

According to one proposal for introducing multiple values into Scheme, a mismatch between the number of 
values expected and produced is an error. To accommodate this the algorithms in the my-context  method 
or the mv-p flag method should be modified so that whenever a mismatch is detected, an error is signalled 
instead of the supplying the missing values or ignoring the excess values. 

Scheme provides primitives de lay  and fo rce  to enable lazy evaluation. We note that (in the absence 
of implicit forcing) promises act just like closures (in fact, they are sometimes implemented as function 
closures), and present no complications related to those discussed in this paper. 

4 Conc lus ions  

We examined the problems involved in introducing the f u t u r e  construct to the multiple value facility in Lisp 
(Common Lisp and Scheme), and presented two methods of implementing futures with multiple values: the 
my-context  method and the mv-p flag method. We also proposed the technique of future chain elimination, 
which is the future's analogue of tail recursion elimination. 
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