
PLT MzScheme: Language Manual

Matthew Flatt (mflatt@plt-scheme.org)

370
Released May 2007

Copyright notice

Copyright c©1995-2007 Matthew Flatt

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

libscheme: Copyright c©1994 Brent Benson. All rights reserved.

Conservative garbage collector: Copyright c©1988, 1989 Hans-J. Boehm, Alan J. Demers. Copyright c©1991-1996
by Xerox Corporation. Copyright c©1996-1999 by Silicon Graphics. Copyright c©1999-2001 by Hewlett Packard
Company. All rights reserved.

Collector C++ extension by Jesse Hull and John Ellis: Copyright c©1994 by Xerox Corporation. All rights reserved.

GNU MP Library: Copyright c©1992, 1993, 1994, 1996 by Free Software Foundation, Inc.

GNU lightning: Copyright c©1994, 1995, 1996, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for your
research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the fact on some
Web page, we would like to link to that page. Please drop us a line at scheme@plt-scheme.org. Evidence of interest
helps the DrScheme Project to maintain the necessary intellectual and financial support. We appreciate your help.

Thanks

Thanks to Brent Benson for libscheme, and to Hans Boehm for the conservative garbage collector and their help.

This manual was typeset using LATEX, SLATEX, and tex2page. Some typesetting macros were originally taken from
Julian Smart’s Reference Manual for wxWindows 1.60: a portable C++ GUI toolkit.

This manual was typeset on May 20, 2007.

Contents

1 Introduction 1

1.1 MrEd, DrScheme, and mzc . 1

1.2 Unicode, Locales, Strings, and Ports . 2

1.2.1 Unicode . 2

1.2.2 Locale . 2

1.2.3 Encodings and Ports . 3

1.3 Notation . 4

2 Basic Syntax Extensions 5

2.1 Evaluation Order . 5

2.2 Multiple Return Values . 5

2.3 Cond and Case . 5

2.4 When and Unless . 6

2.5 And and Or . 6

2.6 Sequences . 6

2.7 Quote and Quasiquote . 6

2.8 Binding Forms . 7

2.8.1 Definitions . 7

2.8.2 Local Bindings . 8

2.8.3 Assignments . 9

2.8.4 Fluid-Let . 9

2.8.5 Syntax Expansion and Internal Definitions . 9

2.9 Case-Lambda . 10

2.10 Procedure Application . 11

2.11 Variable Reference . 11

i

CONTENTS CONTENTS

2.12 Forcing Expression Parsing . 11

3 Basic Data Extensions 12

3.1 Void and Undefined . 12

3.2 Booleans . 12

3.3 Numbers . 13

3.4 Characters . 15

3.5 Strings . 17

3.6 Byte Strings . 19

3.7 Symbols . 23

3.8 Keywords . 23

3.9 Vectors . 24

3.10 Lists . 24

3.11 Boxes . 24

3.12 Procedures . 25

3.12.1 Arity . 25

3.12.2 Primitives . 26

3.12.3 Procedure Names . 26

3.12.4 Closure Equality . 26

3.13 Promises . 26

3.14 Hash Tables . 26

4 Structures 29

4.1 Defining Structure Types . 29

4.2 Creating Subtypes . 30

4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties 30

4.4 Structure Type Properties . 32

4.5 Structure Inspectors . 33

4.6 Structures as Procedures . 35

4.7 Structures as Synchronizable Events . 36

ii

CONTENTS CONTENTS

4.8 Structures as Ports . 37

4.9 Structure Utilities . 37

5 Modules 38

5.1 Module Expansion and Execution . 38

5.2 Module Bodies . 39

5.3 Modules and Macros . 41

5.4 Module Paths . 42

5.4.1 Module Name Resolver . 42

5.4.2 Module Names and Compilation . 43

5.5 Dynamic Module Access . 44

5.6 Re-declaring Modules . 45

5.7 Built-in Modules . 45

5.8 Modules and Load Handlers . 45

6 Exceptions and Control Flow 47

6.1 Exceptions . 47

6.1.1 Primitive Exceptions . 48

6.2 Errors . 50

6.2.1 Application Errors . 50

6.2.2 Syntax Errors . 51

6.2.3 Inferred Value Names . 51

6.3 Continuations . 52

6.4 Dynamic Wind . 53

6.5 Prompts and Composable Continuations . 54

6.6 Continuation Marks . 55

6.7 Breaks . 58

6.8 Error Escape Handler . 59

7 Threads 61

7.1 Suspending, Resuming, and Killing Threads . 61

iii

CONTENTS CONTENTS

7.2 Synchronizing Thread State . 62

7.3 Additional Thread Utilities . 63

7.4 Semaphores . 63

7.5 Channels . 64

7.6 Alarms . 65

7.7 Synchronizing Events . 65

7.8 Thread-Local Storage Cells . 68

7.9 Parameters . 69

7.9.1 Built-in Parameters . 71

7.9.2 Parameter Utilities . 77

8 Namespaces 78

8.1 Identifier Resolution in Namespaces . 79

8.2 Initial Namespace . 79

8.3 Namespace Utilities . 79

9 Security 82

9.1 Security Guards . 82

9.2 Custodians . 83

9.3 Thread Groups . 85

9.4 Inspectors and Modules . 85

10 Regular Expressions 87

11 Input and Output 95

11.1 Ports . 95

11.1.1 End-of-File Constant . 95

11.1.2 Current Ports . 95

11.1.3 Opening File Ports . 96

11.1.4 Pipes . 97

11.1.5 String Ports . 97

iv

CONTENTS CONTENTS

11.1.6 File-Stream Ports . 98

11.1.7 Custom Ports . 99

11.2 Reading and Writing . 111

11.2.1 Reading Bytes, Characters, and Strings . 112

11.2.2 Writing Bytes, Characters, and Strings . 115

11.2.3 Writing Structured Data . 117

11.2.4 Default Reader . 118

11.2.5 Default Printer . 122

11.2.6 Replacing the Reader . 124

11.2.7 Replacing the Printer . 124

11.2.8 Customizing the Reader through Readtables . 125

11.2.9 Reader-Extension Procedures . 129

11.2.10 Customizing the Printer through Custom-Write Procedures 131

11.3 Filesystem Utilities . 132

11.3.1 Paths . 132

11.3.2 Locating Paths . 136

11.3.3 Files . 138

11.3.4 Directories . 139

11.4 Networking . 139

11.4.1 TCP . 140

11.4.2 UDP . 142

12 Syntax and Macros 145

12.1 syntax-rules Extensions . 145

12.2 Syntax Objects . 147

12.2.1 Syntax Patterns . 148

12.2.2 Syntax Object Content . 151

12.3 Syntax and Lexical Scope . 153

12.3.1 Syntax Object Comparisons . 154

12.3.2 Syntax Object Bindings . 154

v

CONTENTS CONTENTS

12.3.3 Transformer Environments . 155

12.3.4 Module Environments . 156

12.3.5 Macro-Generated Top-Level and Module Definitions . 158

12.4 Binding Multiple Syntax Identifiers . 160

12.5 Special Syntax Identifiers . 161

12.6 Macro Expansion . 163

12.6.1 Expanding Expressions to Primitive Syntax . 167

12.6.2 Syntax Object Properties . 169

12.6.3 Certificates for Protected References . 170

12.6.4 Information on Structure Types . 174

12.6.5 Information on Expanded and Compiled Modules . 175

13 Memory Management 177

13.1 Weak Boxes . 177

13.2 Ephemerons . 177

13.3 Will Executors . 178

13.4 Garbage Collection . 179

14 Evaluation and Compilation 180

14.1 Eval and Load . 180

14.2 Exiting . 181

14.3 Compilation . 181

14.4 Dynamic Extensions . 182

15 System Utilities 183

15.1 Time . 183

15.1.1 Real Time and Date . 183

15.1.2 Machine Time . 183

15.1.3 Timing Execution . 184

15.2 Operating System Processes . 184

15.3 Windows Actions . 185

vi

CONTENTS CONTENTS

15.4 Operating System Environment Variables . 186

15.5 Runtime Information . 186

16 Library Collections and MzLib 189

17 Running MzScheme 191

17.1 Command-Line Conventions . 192

17.2 Executable Name . 192

17.3 Initialization . 193

18 Writing and Running Scripts 194

19 Honu 196

19.1 Honu Input Parsing . 196

19.1.1 Numbers . 197

19.1.2 Identifiers . 197

19.1.3 Strings . 197

19.1.4 Characters . 197

19.1.5 Parentheses, Brackets, and Braces . 198

19.1.6 Comments . 198

19.2 Honu Output Printing . 198

20 Platform-Specific Path Conventions 200

20.1 Unix and Mac OS X Path Conventions . 200

20.2 Windows Path Conventions . 200

License 204

Index 208

vii

CONTENTS CONTENTS

viii

1. Introduction

The core of the Scheme programming language is described in Revised5 Report on the Algorithmic Language Scheme.
This manual assumes familiarity with Scheme and only contains information specific to MzScheme. (Many sections
near the front of this manual simply clarify MzScheme’s position with respect to the standard report.)

MzScheme (pronounced “miz scheme”, as in “Ms. Scheme”) is mostly R5RS-compliant. Certain parameters in
MzScheme can change features affecting R5RS-compliance; for example, case-sensitivity is initially enabled (see
§7.9.1.3).

MzScheme provides several notable extensions to R5RS Scheme:

• A module system for namespace and compilation management (see Chapter 5).

• An exception system that is used for all primitive errors (see Chapter 6).

• Pre-emptive threads (see Chapter 7).

• A class and object system (see Chapter 6 of PLT MzLib: Libraries Manual).

• A unit system for defining and linking program components (see Chapter 55 of PLT MzLib: Libraries Manual).

• Extensive Unicode and character-encoding support (see §1.2).

MzScheme can be run as a stand-alone application, or it can be embedded within other applications. Most of this
manual describes the language that is common to all uses of MzScheme. For information about running the stand-
alone version of MzScheme, see Chapter 17.

1.1 MrEd, DrScheme, and mzc

MrEd is an extension of MzScheme for graphical programming. MrEd is described separately in PLT MrEd: Graphi-
cal Toolbox Manual.

DrScheme is a development environment for writing MzScheme- and MrEd-based programs. DrScheme provides
debugging and project-management facilities, which are not provided by the stand-alone MzScheme application, and
a user-friendly interface with special support for using Scheme as a pedagogical tool. DrScheme is described in PLT
DrScheme: Development Environment Manual.

The mzc compiler takes MzScheme (or MrEd) source code and produces either platform-independent byte code com-
piled files (.zo files) or platform-specific native code libraries (.so, .dll, or .dylib files) to be loaded into MzScheme
(or MrEd). The mzc compiler is described in PLT mzc: MzScheme Compiler Manual.

MzScheme and its extensions are available with two different variants that use slightly different approaches to memory
management. The default variant is MzScheme3m; its “precise” memory management usually provides better overall
performance than the alternative. The alternative is MzSchemeCGC; its “conservative” memory management allows
it to cooperate more easily with extension and embedding code written in C. See Inside PLT MzScheme for more
information.

1

1.2. Unicode, Locales, Strings, and Ports 1. Introduction

1.2 Unicode, Locales, Strings, and Ports

As explained in the following subsections, MzScheme distinguishes characters from bytes and character strings from
byte strings. MzScheme’s notion of “character” corresponds to a Unicode scalar value (i.e., a Unicode code point that
is not a surrogate), and many operations assume the UTF-8 encoding when converting between characters and bytes.
For a handful of conversions, the user’s chosen locale determines an encoding, instead. The chosen locale also affects
string case folding and comparison for operations whose name includes locale.

1.2.1 Unicode

Unicode defines a standard mapping between sequences of integers and human-readable “characters.” More precisely,
Unicode distinguishes between glyphs, which are printed for humans to read, and characters, which are abstract entities
that map to glyphs, sometimes in a way that’s sensitive to surrounding characters. Furthermore, different sequences
of integers—or code points in Unicode terminology—sometimes correspond to the same character. The relationships
among code points, characters, and glyphs are subtle and complex.

Despite this complexity, most things that a literate human would call a “character” can be represented by a single code
point in Unicode (though it may also be represented by other sequences). For example, Roman letters, Cyrillic letters,
Chinese characters, and Hebrew consonants all fall into this category. The “code point” approximation of “character”
thus works well for many purposes, and MzScheme defines the char datatype to correspond to a Unicode code point.
(More precisely, a char corresponds to a Unicode scalar value, which excludes surrogate code points that are used to
encode other code points in certain contexts.) For the remainder of this manual, we use “character” interchangeably
with “code point” or “MzScheme’s char datatype.”

Besides printing and reading characters, humans also compare characters or character strings, and humans perform
operations such as changing characters to uppercase. To make programs geographically portable, humans must agree to
compare or upcase characters consistently, at least in certain contexts. The Unicode standard provides such a standard
mapping on code points, and this mapping is used to case-normalize symbols in MzScheme. In other contexts, global
agreement is unnecessary, and the user’s culture should determine the operation, such as when displaying a list of file
names. Cultural dependencies are captured by the user’s locale, which is discussed in the next section.

Most computing devices are built around the concept of byte (an integer from 0 to 255) instead of character. To
communicate character sequences among devices, then, requires an encoding of characters into bytes. UTF-8 is one
such encoding; due to its nice properties, the UTF-8 encoding is in many ways hard-wired into MzScheme’s primitives,
such as read-char. Encodings are discussed further in the following sections. For byte-based communication,
MzScheme supports byte strings as a separate datatype from character strings (see §3.6).

For official information on the Unicode standard, see http://www.unicode.org/. For a thorough but more accessible
introduction, see Unicode Demystified by Richard Gillam.

1.2.2 Locale

A locale captures information about a user’s culture-specific interpretation of character sequences. In particular, a
locale determines how strings are “alphabetized,” how a lowercase character is converted to an uppercase character,
and how strings are compared without regard to case. String operations such as string-ci? are not sensitive to the
current locale, but operations such as string-locale-ci? (see §3.5) produce results consistent with the current
locale.

Under Unix, a locale also designates a particular encoding of code-point sequences into byte sequences. MzScheme
generally ignores this aspect of the locale, with a few notable exceptions: command-line arguments passed to
MzScheme as byte strings are converted to character strings using the locale’s encoding; command-line strings passed
as byte strings to other processes (through subprocess) are converted to byte strings using the locale’s encoding;
environment variables are converted to and from strings using the locale’s encoding; filesystem paths are converted

2

1. Introduction 1.2. Unicode, Locales, Strings, and Ports

to and from strings (for display purposes) using the locale’s encoding; finally, MzScheme provides functions such as
string->bytes/locale to specifically invoke a locale-specific encoding.

A Unix user selects a locale by setting environment variables, such as LC ALL. Under Windows and Mac OS X, the op-
erating system provides other mechanisms for setting the locale. Within MzScheme, the current locale can be changed
by setting the current-locale parameter (see §7.9 and §7.9.1.11). The locale name within MzScheme is a string,
and the available locale names depend on the platform and its configuration, but the "" locale means the current user’s
default locale; under Windows and Mac OS X, the encoding for "" is always UTF-8, and locale-sensitive opera-
tions use the operating system’s native interface.1 Setting the current locale to #f makes locale-sensitive operations
locale-insensitive, which means using the Unicode mapping for case operations and using UTF-8 for encoding.

1.2.3 Encodings and Ports

The UTF-8 encoding of characters to bytes has a number of important properties:

• Each code point from 0 to 127 (i.e., each ASCII character) is encoded by the corresponding byte from 0 to 127.

• Other code points are represented by a sequence of two to six bytes, where each byte is in the range 128 to 253.
Furthermore, the first byte in the sequence is between 192 and 253, and each subsequent byte is between 128
and 191.

• Not every sequence starting with 192-to-253 followed by 128-to-191 encodes a code point. The bytes 254 and
255 are never used to encode any code point.

• Every code-point sequence has a unique encoding in bytes, and every valid encoding in bytes has a unique
decoding into code points.

For a more complete description of UTF-8, see http://www.cl.cam.ac.uk/∼mgk25/unicode.html.

Another useful encoding is Latin-1, where every code point from 0 to 255 is encoded by the corresponding byte, and
no other code points can be encoded.2 Every byte sequence is therefore a valid encoding with a unique decoding, but
not every character string can be encoded.

MzScheme supports these two encodings through functions such as bytes->string/utf-8 and string->bytes/latin-1
(see §3.6). These functions accept an extra argument so that an un-encodable character or un-decodeable se-
quence is replaced by a specific character or byte, instead of raising an exception. MzScheme also provides
bytes->string/locale and string->bytes/locale; typically, a locale-specific encoding cannot encode
all characters, and not all byte sequences are valid encodings in the encoding.

All ports in MzScheme produce and consume bytes. When a port is provided to character-based operations, such as
read, the port’s bytes are interpreted as a UTF-8 encoding of characters. Moreover, when tracking position, line, and
column information for an input port, position and column are computed in terms of decoded characters, rather than
bytes.

Bytes streams that correspond to other encodings must be transformed to or from a UTF-8 byte stream, possibly using
a converter produced by bytes-convert (see §3.6). When an input port produces a sequence of bytes that is not a
valid UTF-8 encoding in a character-reading context, certain bytes in the sequence are converted to the character “?”
(see §11.1).

1In particular, setting the LC ALL and LC CTYPE environment variables do not affect the locale "" under Mac OS X. Use getenv and
current-locale to explicitly install the environment-specified locale, if desired.

2Technically, Latin-1 (as defined by ISO standard 8859) doesn’t include control characters in 0 to 31 and 127 to 159. Like much other software,
MzScheme uses an extended definition of Latin-1 that includes those control characters. Beware of encodings that claim to be Latin-1/ISO-8859-1
but that are actually Windows-1252, because Windows-1252 is an extension of Latin-1 that is not a subset of Unicode.

3

1.3. Notation 1. Introduction

1.3 Notation

Throughout this manual, the syntax for new forms is described using a pattern notation with ellipses. Plain, centered
ellipses (· · ·) indicate zero or more repetitions of the preceding pattern. Ellipses with a “1” superscript (· · ·1) indicate
one or more repetitions of the preceding pattern.

For example:

(let-values (((variable · · ·) expr) · · ·)
body-expr
· · ·1)

The first set of ellipses indicate that any number of variables, possibly none, can be provided with a single expr.
The second set of ellipses indicate that any number of ((variable · · ·) expr) combinations, possibly none,
can appear in the parentheses following the let-values syntax name. The last set of ellipses indicate that a
let-values expression can contain any number of body-expr expressions, as long as at least one expression is
provided. In describing parts of the let-values syntax, the name variable is used to refer to a single binding
variable in a let-values expression.

Some examples contain simple ellipses (...), which is an identifier, albeit one that has special meaning in syntax
patterns and templates.

Square brackets (“[” and “]”) are normally treated as parentheses by MzScheme, and this manual uses square brackets
as parentheses in example code. However, in describing a MzScheme procedure, this manual uses square brackets to
designate optional arguments. For example,

(regexp-match pattern string [start-k end-k])

describes the calling convention for a procedure regexp-match where the pattern and string arguments
are required, and the start-k and end-k arguments are optional (but start-k must be provided if end-k is
provided).

In grammar specifications for syntactic forms, variable and identifier are equivalent, but variable is often
used when the identifier corresponds to a location that holds a value at run time.

4

2. Basic Syntax Extensions

2.1 Evaluation Order

In an application expression, the procedure expression and the argument expressions are always evaluated left-to-right.
Similarly, expressions for let and letrec bindings are evaluated in sequence from left to right.

2.2 Multiple Return Values

MzScheme supports the R5RS values and call-with-values procedure, and also provides binding forms for
multiple-value expressions, discussed in §2.8.

Multiple return values are legal in MzScheme whenever the return value of an expression is ignored. For example,
all but the last expression in a begin form can legally return multiple values in any context. If a built-in procedure
takes a procedure argument, and the built-in procedure does not inspect the result of the supplied procedure, then the
supplied procedure can return multiple values. For example, the procedure supplied to for-each can return any
number of values, but the procedure supplied to map must return a single value.

When the number of values returned by an expression does not match the number of values expected by the expres-
sion’s context, the exn:fail:contract:arity exception is raised (at run time).

Examples:

(− (values 1)) ; ⇒ −1
(− (values 1 2)) ; ⇒ error: returned 2 values to single-value context
(− (values)) ; ⇒ error: returned 0 values to single-value context
(call-with-values
(lambda () (values 1 2))
(lambda (x y) y)) ; ⇒ 2

(call-with-values
(lambda () (values 1 2))
(lambda z z)) ; ⇒ (1 2)

(call-with-values
(lambda () (let/cc k (k 3 4)))
(lambda (x y) y)) ; ⇒ 4

(call-with-values
(lambda () (values ’hello 1 2 3 4))
(lambda (s . l)
(format "˜s = ˜s" s l))) ; ⇒ "hello = (1 2 3 4)"

2.3 Cond and Case

The else and => identifiers in a cond or case statement are handled specially only when they are not lexically
bound or module-bound:

5

2.4. When and Unless 2. Basic Syntax Extensions

(cond [1 => add1]) ; ⇒ 2
(let ([=> 5]) (cond [1 => add1])) ; ⇒ #<primitive:add1>

2.4 When and Unless

The when and unless forms conditionally evaluate a single body of expressions:

• (when test-expr expr · · ·1) evaluates the expr body expressions only when test-expr returns a
true value.

• (unless test-expr expr · · ·1) evaluates the expr body expressions only when test-expr returns
#f.

The result of a when or unless expression is the result of the last body expression if the body is evaluated, or void
(see §3.1) if the body is not evaluated.

2.5 And and Or

In an and or or expression, the last test expression can return multiple values (see §2.2). If the last expression is
evaluated and it returns multiple values, then the result of the entire and or or expression is the multiple values.
Other sub-expressions in an and or or expression must return a single value.

2.6 Sequences

As a top-level form, begin wraps each sub-expression but the last with a prompt (see §6.5) using the default prompt
tag and an abort handler that re-aborts. This wrapping helps maintains the equivalence between wrapping a sequence
top-level forms with a begin and splicing the sequence into the enclosing context.

The begin0 form is like begin, but the value of the first expression in the form is returned instead of the value of
the last expression:

(let ([x 4])
(begin0 x (set! x 9) (display x))) ; ⇒ displays 9 then returns 4

The first sub-expression in a begin0 expression is in tail position if and only if it is the only sub-expression.

2.7 Quote and Quasiquote

The quote form never allocates, so that the result of multiple evaluations of a single quote expression are always
eq?. Nevertheless, a quoted cons cell, vector, or list is mutable; mutations to the result of a quote application are
visible to future evaluations of the quote expression.

The quasiquote form allocates only as many fresh cons cells, vectors, and boxes as are needed without analyzing
unquote and unquote-splicing expressions. For example, in

‘(,1 2 3)

a single reader-allocated tail ’(2 3) is used for every evaluation of the quasiquote expression.

The standard Scheme quasiquote has been extended so that unquote and unquote-splicing work within
immediate boxes:

6

2. Basic Syntax Extensions 2.8. Binding Forms

‘#&(,(− 2 1) ,@(list 2 3)) ; ⇒ #&(1 2 3)

See §11.2.4 for more information about immediate boxes.

MzScheme defines the unquote and unquote-splicing identifiers as top-level syntactic forms that always
report a syntax error. The quasiquote form recognizes normal unquote and unquote-splicing uses via
module-identifier=?. (See §12.3.1 for more information on identifier comparisons.)

2.8 Binding Forms

2.8.1 Definitions

A procedure definition

(define variable (lambda formals expr · · ·1))

can be abbreviated

(define (variable . formals) expr · · ·1)

In addition to this standard Scheme abbreviation, MzScheme supports an MIT-style generalization, so that a definition

(define header (lambda formals expr · · ·1))

can be abbreviated

(define (header . formals) expr · · ·1))

even if header is itself a parenthesized procedure abbreviation. The general syntax of define is as follows:

(define variable expr)
(define (header . formals) expr · · ·1)

header is one of
variable
(header . formals)

formals is one of
variable
(variable · · ·)
(variable variable · · · . variable)

Multiple values can be bound to multiple variables at once using define-values:

(define-values (variable · · ·) expr)

The number of values returned by expr must match the number of variables provided, and the variables must
be distinct. No procedure-definition abbreviation is available for define-values.

Examples:

(define x 1)
x ; ⇒ 1
(define (f x) (+ x 1))

7

2.8. Binding Forms 2. Basic Syntax Extensions

(f 2) ; ⇒ 3
(define (((g x) y z) . w) (list x y z w))
(let ([h ((g 1) 2 3)])
(list (h 4 5) (h 6))) ; ⇒ ’((1 2 3 (4 5)) (1 2 3 (6)))

(define-values (x) 2)
x ; ⇒ 2
(define-values (x y) (values 3 4))
x ; ⇒ 3
y ; ⇒ 4
(define-values (x y) (values 5 (add1 x)))
y ; ⇒ 4
(define-values () (values)) ; same as (void)
(define x (values 7 8)) ; ⇒ error: 2 values for 1-value context
(define-values (x y) 7) ; ⇒ error: 1 value for 2-value context
(define-values () 7) ; ⇒ error: 1 value for 0-value context

2.8.2 Local Bindings

Local variables are bound with standard Scheme’s let, let∗, and letrec. MzScheme’s letrec form
guarantees sequential left-to-right evaluation of the binding expressions. (The letrec bound in the result of
(scheme-report-environment 5), however, is defined exactly as in R5RS.)

Multiple values are bound to multiple local variables at once with let-values, let∗-values, and
letrec-values. The syntax for let-values is:

(let-values (((variable · · ·) expr) · · ·) body-expr · · ·1)

As in define-values, the number of values returned by each expr must match the number of variables
declared in the corresponding clause. Each expr remains outside of the scope of all variables bound by the
let-values expression.

The syntax for let∗-values and letrec-values is the same as for let-values, and the binding semantics
for each form corresponds to the single-value binding form:

• In a let∗-values expression, the scope of the variables of each clause includes all of the remaining binding
clauses. The clause expressions are evaluated and bound to variables sequentially.

• In a letrec-values expression, the scope of the variables of each clause includes all of the binding clauses.
The clause expressions are evaluated and bound to variables sequentially.

When a letrec or letrec-values expression is evaluated, each variable binding is initially assigned the special
undefined value (see §3.1); the undefined value is replaced after the corresponding expression is evaluated.

Examples:

(define x 0)
(let ([x 5] [y x]) y) ; ⇒ 0
(let∗ ([x 5] [y x]) y) ; ⇒ 5
(letrec ([x 5] [y x]) y) ; ⇒ 5
(letrec ([x y] [y 5]) x) ; ⇒ undefined
(let-values ([(x) 5] [(y) x]) y) ; ⇒ 0
(let-values ([(x y) (values 5 x)]) y) ; ⇒ 0
(let∗-values ([(x) 5] [(y) x]) y) ; ⇒ 5

8

2. Basic Syntax Extensions 2.8. Binding Forms

(let∗-values ([(x y) (values 5 x)]) y) ; ⇒ 0
(letrec-values ([(x) 5] [(y) x]) y) ; ⇒ 5
(letrec-values ([(x y) (values 5 x)]) y) ; ⇒ undefined
(letrec-values ([(odd even) (values

(lambda (n) (if (zero? n) #f (even (sub1 n))))
(lambda (n) (if (zero? n) #t (odd (sub1 n)))))])

(odd 17)) ; ⇒ #t

2.8.3 Assignments

The standard set! form assigns a value to a single global, local, or module variable. Multiple variables can be
assigned at once using set!-values:

(set!-values (variable · · ·) expr)

The number of values returned by expr must match the number of variables provided.

The variables, which must be distinct, can be any mixture of global, local, and module variables. Assignments
are performed sequentially from the first variable to the last. If an error occurs in one of the assignments (perhaps
because a global variable is not yet bound), then the assignments for the preceding variables will have already
completed, but assignments for the remaining variables will never complete.

2.8.4 Fluid-Let

The syntax for a fluid-let expression is the same as for let:

(fluid-let ((variable expr) · · ·) body-expr · · ·1)

Each variable must be either a local variable or a global or module variable that is bound before the fluid-let
expression is evaluated. Before the body-exprs are evaluated, the bindings for the variables are set! to the
values of the corresponding exprs. Once the body-exprs have been evaluated, the values of the variables are
restored. The value of the entire fluid-let expression is the value of the last body-expr.

2.8.5 Syntax Expansion and Internal Definitions

All binding forms are syntax-expanded into define-values, let-values, letrec-values, define-syntaxes,
and letrec-syntaxes+values expressions. The set!-values form is expanded to let-values with
set!. See §12.6.1 for more information.

All define-values expressions that are inside only begin expressions are treated as top-level definitions.
Body define-values expressions in a module expression are handled specially as described in §5.1. Any
other define-values expression is either an internal definition or syntactically illegal. The same is true of
define-syntaxes expressions.

Internal definitions can appear at the start of a sequence of expressions, such as the start of a lambda, case-lambda,
or let body. At least one non-definition expression must follow a sequence of internal definitions. The first expression
in a begin0 expression cannot be an internal definition; for the purposes of internal definitions, the second expression
is the start of the sequence.

When a begin expression appears within a sequence, its content is inlined into the sequence (recursively, if the
begin expression contains other begin expressions). Like top-level begin expressions (and unlike other begin
expressions), a begin expression within an internal definition sequence can be empty.

9

2.9. Case-Lambda 2. Basic Syntax Extensions

An internal define-values or define-syntaxes expression is transformed, along with the expressions fol-
lowing it, into a letrec-syntaxes+values expression: the identifiers bound by the internal definitions become
the binding identifiers of the new letrec-syntaxes+values expression, and the expressions that follow the
definitions become the body of the new letrec-syntaxes+values expression.

Multiple adjacent definitions are collected into a single letrec-syntaxes+values transformation, so that the
definitions can be mutually recursive, but the definitions expressions must be adjacent. A non-definition marks the
start of a sequence of expressions to be moved into the body of the newly created letrec-syntaxes+values
form.

Internal definitions are detected after a partial syntax expansion that stops at core forms, and thus exposes begin,
define-values, and define-syntaxes. Forms are expanded left to right, and whenever a definition is discov-
ered, a binding is introduced immediately for further expansion, so a definition can shadow variables when later forms
are expanded. Furthermore, when a define-syntaxes form is discovered, the right-hand side is immediately
evaluated, and the result is bound as syntax to the corresponding identifier(s); thus, a locally defined macro can be
used to generate later definitions in the same internal-definition context.

2.9 Case-Lambda

The case-lambda form creates a procedure that dispatches to a particular body of expressions based on the number
of arguments that the procedure receives. The case-lambda form provides a mechanism for creating variable-arity
procedures with more control and efficiency than using a lambda “rest argument,” such as the x in (lambda (a
. x) expr · · ·1).

A case-lambda expression has the form:

(case-lambda
(formals expr · · ·1)
· · ·)

formals is one of
variable
(variable · · ·)
(variable · · · . variable)

Each (formals expr · · ·1) clause of a case-lambda expression is analogous to a lambda expression of the
form (lambda formals expr · · ·1). The scope of the variables in each clause’s formals includes only
the same clause’s exprs. The formals variables are bound to actual arguments in an application in the same way
that lambda variables are bound in an application.

When a case-lambda procedure is invoked, one clause is selected and its exprs are evaluated for the application;
the result of the last expr in the clause is the result of the application. The clause that is selected for an application is
the first one with a formals specification that can accommodate the number of arguments in the application.1

Examples:

(define f
(case-lambda
[(x) x]
[(x y) (+ x y)]
[(a . any) a]))

(f 1) ; ⇒ 1
(f 1 2) ; ⇒ 3

1It is possible that a clause in a case-lambda expression can never be evaluated because a preceding clause always matches the arguments.

10

2. Basic Syntax Extensions 2.10. Procedure Application

(f 4 5 6 7) ; ⇒ 4
(f) ; ⇒ raises exn:fail:contract:arity

The result of a case-lambda expression is a procedure, just like the result of a lambda expression. Thus, the
procedure? predicate returns #t when applied to the result of a case-lambda expression.

2.10 Procedure Application

The “empty application” form () expands to the quoted empty list ’().

2.11 Variable Reference

The #%variable-reference form returns a value representing the address of a top-level or module variable:

(#%variable-reference variable)
(#%variable-reference (#%top . variable))

For either form, a syntax error is reported if variable is not bound to a top-level or module variable.

The result of a #%variable-reference expression is opaque, with no useful operation in MzScheme. See Inside
PLT MzScheme for information on its use in low-level extensions to MzScheme.

2.12 Forcing Expression Parsing

In certain contexts, the expansion and parsing of a syntactic form can differ depending on whether it is parsed as an
expression or a top-level form. For example, at the top level, begin acts as a splicing form that wraps each sub-
expression evaluation with a prompt (see §6.5), but no such prompts are inserted for begin parsed as a sequencing
expression.

The #%expression form wraps a datum so that it must be parsed as an expression:

(#%expression expr)

A fully-expanded expression eliminates #%expression except as a top-level form.

11

3. Basic Data Extensions

3.1 Void and Undefined

MzScheme returns the unique void value — printed as #<void> — for expressions that have unspecified results in
R5RS. The procedure void takes any number of arguments and returns void:

• (void v · · ·) returns void.

• (void? v) returns #t if v is void, #f otherwise.

Variables bound by letrec-values that are accessible but not yet initialized are bound to the unique undefined
value, printed as #<undefined>.

3.2 Booleans

Unless otherwise specified, two instances of a particular MzScheme data type are equal? only when they are eq?.
Two values are eqv? only when they are either eq?, both +nan.0, or both = and have the same exactness and sign.
(The inexact numbers 0.0 and −0.0 are not eqv?, although they are =.)

The andmap and ormap procedures apply a test procedure to the elements of a list, returning immediately when the
result for testing the entire list is determined. The arguments to andmap and ormap are the same as for map, but a
single boolean value is returned as the result, rather than a list:

• (andmap proc list · · ·1) applies proc to elements of the lists from the first elements to the last,
returning #f as soon as any application returns #f. If no application of proc returns #f, then the result of
the last application of proc is returned; more specifically, the application of proc to the last elements in the
lists is in tail position with respect to the andmap call. If the lists are empty, then #t is returned.

• (ormap proc list · · ·1) applies proc to elements of the lists from the first elements to the last. If
any application returns a value other than #f, that value is immediately returned as the result of the ormap
application. If all applications of proc return #f, then the result is #f; more specifically, if proc is applied to
the last elements of the lists, the application is in tail position with respect to the ormap call. If the lists
are empty, then #f is returned.

Examples:

(andmap positive? ’(1 2 3)) ; ⇒ #t
(ormap eq? ’(a b c) ’(a b c)) ; ⇒ #t
(andmap positive? ’(1 2 a)) ; ⇒ raises exn:fail:contract
(ormap positive? ’(1 2 a)) ; ⇒ #t
(andmap positive? ’(1 -2 a)) ; ⇒ #f
(andmap + ’(1 2 3) ’(4 5 6)) ; ⇒ 9
(ormap + ’(1 2 3) ’(4 5 6)) ; ⇒ 5

12

3. Basic Data Extensions 3.3. Numbers

3.3 Numbers

A number in MzScheme is one of the following:

• a fixnum exact integer (30 bits1 plus a sign bit)

• a bignum exact integer (cannot be represented in a fixnum)

• a fraction exact rational (represented by two exact integers)

• a flonum inexact rational (double-precision floating-point number)

• a complex number; either the real and imaginary parts are both exact or inexact, or the number has an exact zero
real part and an inexact imaginary part; a complex number with an inexact zero imaginary part is a real number

MzScheme extends the number syntax of R5RS in three ways:

• All input radixes (#b, #o, #d, and #x) allow “decimal” numbers that contain a period or exponent marker. For
example, #b1.1 is equivalent to 1.5. In hexadecimal numbers, e and d always stand for a hexadecimal digit,
not an exponent marker.

• The mantissa of a number with an exponent marker can be expressed as a fraction. For example, 1/2e3 is
equivalent to 500.0, and 1/2e2+1/2e4i is equivalent to 50.0+5000.0i.

• The following are inexact numerical constants: +inf.0 (infinity), -inf.0 (negative infinity), +nan.0 (not
a number), and -nan.0 (same as +nan.0). These names can also be used within complex constants, as in
−inf.0+inf.0i. These names are case-insensitive.

The special inexact numbers +inf.0, −inf.0, and +nan.0 have no exact form. Dividing by an inexact zero
returns +inf.0 or −inf.0, depending on the sign of the dividend. The infinities are integers, and they answer #t
for both even? and odd?. The +nan.0 value is not an integer and is not = to itself, but +nan.0 is eqv? to
itself.2 Similarly, (= 0.0 −0.0) is #t, but (eqv? 0.0 −0.0) is #f.

All multi-argument arithmetic procedures operate pairwise on arguments from left to right.

The string->number procedure works on all number representations and exact integer radix values in the range
2 to 16 (inclusive). The number->string procedure accepts all number types and the radix values 2, 8, 10, and
16; however, if an inexact number is provided with a radix other than 10, the exn:fail:contract exception is
raised.

The add1 and sub1 procedures work on any number:

• (add1 z) returns z+1.

• (sub1 z) returns z−1.

The following procedures work on integers:

• (quotient/remainder n1 n2) returns two values: (quotient n1 n2) and (remainder n1
n2).

130 bits for a 32-bit architecture, 62 bits for a 64-bit architecture.
2This definition of eqv? technically contradicts R5RS, but R5RS does not address strange “numbers” like +nan.0.

13

3.3. Numbers 3. Basic Data Extensions

• (integer-sqrt n) returns the integer square-root of n. For positive n, the result is the largest positive
integer bounded by the (sqrt n). For negative n, the result is (∗ (integer-sqrt (− n)) 0+i).

• (integer-sqrt/remainder n) returns two values: (integer-sqrt n) and (− n (expt
(integer-sqrt n) 2)).

The following procedures work on exact integers in their (semi-infinite) two’s complement representation:

• (bitwise-ior n · · ·) returns the bitwise “inclusive or” of the ns. If no arguments are provided, the result
is 0.

• (bitwise-and n · · ·) returns the bitwise “and” of the ns. If no arguments are provided, the result is -1.

• (bitwise-xor n · · ·) returns the bitwise “exclusive or” of the ns. If no arguments are provided, the result
is 0.

• (bitwise-not n) returns the bitwise “not” of n.

• (arithmetic-shift n m) returns the bitwise “shift” of n. The integer n is shifted left by m bits; i.e., m
new zeros are introduced as rightmost digits. If m is negative, n is shifted right by −m bits; i.e., the rightmost m
digits are dropped.

• (integer-length n) returns the number of bits in the representation of n after removing all leading zeros
(for non-negative n) or ones (for negative n).

The random procedure generates pseudo-random numbers:

• (random k) returns a random exact integer in the range 0 to k−1 where k is an exact integer between 1 and
231 − 1, inclusive. The number is provided by the current pseudo-random number generator, which maintains
an internal state for generating numbers.3

• (random) returns a random inexact number between 0 and 1, exclusive, using the current pseudo-random
number generator.

• (random-seed k) seeds the current pseudo-random number generator with k, an exact integer between 0
and 231 − 1, inclusive. Seeding a generator sets its internal state deterministically; seeding a generator with a
particular number forces it to produce a sequence of pseudo-random numbers that is the same across runs and
across platforms.

• (pseudo-random-generator->vector generator) produces a vector that represents the complete
internal state of generator. The vector is suitable as an argument to vector->pseudo-random-generator
to recreate the generator in its current state (across runs and across platforms).

• (vector->pseudo-random-generator vec) produces a pseudo-random number generator whose in-
ternal state corresponds to vec. The vector vec must contain six exact integers; the first three integers must
be in the range 0 to 4294967086, inclusive; the last three integers must be in the range 0 to 4294944442,
inclusive; at least one of the first three integers must be non-zero; and at least one of the last three integers must
be non-zero.

• (current-pseudo-random-generator) returns the current pseudo-random number generator, and
(current-pseudo-random-generator generator) sets the current generator to generator.
See also §7.9.1.10.

• (make-pseudo-random-generator) returns a new pseudo-random number generator. The new gener-
ator is seeded with a number derived from (current-milliseconds).

3The random number generator uses a 54-bit version of L’Ecuyer’s MRG32k3a algorithm.

14

3. Basic Data Extensions 3.4. Characters

• (pseudo-random-generator? v) returns #t if v is a pseudo-random number generator, #f otherwise.

The following procedures convert between Scheme numbers and common machine byte representations:

• (integer-bytes->integer bytes signed? [big-endian?]) converts the machine-format num-
ber encoded in bytes to an exact integer. The bytes must contain either 2, 4, or 8 bytes. If signed? is
true, then the bytes are decoded as a two’s-complement number, otherwise it is decoded as an unsigned integer.
If big-endian? is true, then the first character’s ASCII value provides the most significant eight bits of the
number, otherwise the first character provides the least-significant eight bits, and so on. The default value of
big-endian? is the result of system-big-endian?.

• (integer->integer-bytes n size-n signed? [big-endian? to-bytes]) converts the
exact integer n to a machine-format number encoded in a byte string of length size-n, which must be 2,
4, or 8. If signed? is true, then the number is encoded with two’s complement, otherwise it is encoded as an
unsigned bit stream. If big-endian? is true, then the most significant eight bits of the number are encoded
in the first character of the resulting byte string, otherwise the least-significant bits are encoded in the first byte,
and so on. The default value of big-endian? is the result of system-big-endian?.

If to-bytes is provided, it must be a mutable byte string of length size-n; in that case, the encoding of n is
written into to-bytes, and to-bytes is returned as the result. If to-bytes is not provided, the result is a
newly allocated byte string.

If n cannot be encoded in a string of the requested size and format, the exn:fail:contract exception is
raised. If to-bytes is provided and it is not of length size-n, the exn:fail:contract exception is
raised.

• (floating-point-bytes->real bytes [big-endian?]) converts the IEEE floating-point number
encoded in bytes to an inexact real number. The bytes must contain either 4 or 8 bytes. If big-endian?
is true, then the first byte’s ASCII value provides the most significant eight bits of the IEEE representation,
otherwise the first byte provides the least-significant eight bits, and so on. The default value of big-endian?
is the result of system-big-endian?.

• (real->floating-point-bytes x size-n [big-endian? to-bytes]) converts the real
number x to its IEEE representation in a byte string of length size-n, which must be 4 or 8. If big-endian?
is true, then the most significant eight bits of the number are encoded in the first byte of the resulting byte
string, otherwise the least-significant bits are encoded in the first character, and so on. The default value of
big-endian? is the result of system-big-endian?.

If to-bytes is provided, it must be a mutable byte string of length size-n; in that case, the encoding of n is
written into to-bytes, and to-bytes is returned as the result. If to-bytes is not provided, the result is a
newly allocated byte string.

If to-bytes is provided and it is not of length size-n, the exn:fail:contract exception is raised.

• (system-big-endian?) returns #t if the native encoding of numbers is big-endian for the machine run-
ning MzScheme, #f if the native encoding is little-endian.

3.4 Characters

MzScheme characters range over Unicode scalar values (see §1.2.1), which includes characters whose values range
from #x0 to #x10FFFF, but not including #xD800 to #xDFFF. The procedure char->integer returns a charac-
ter’s code-point number, and integer->char converts a code-point number to a character. If integer->char
is given an integer that is either outside #x0 to #x10FFFF or in the excluded range #xD800 to #xDFFF, the
exn:fail:contract exception is raised.

15

3.4. Characters 3. Basic Data Extensions

Character constants include special named characters, such as #\newline, plus octal representations (e.g., #\251),
and Unicode-style hexadecimal representations (e.g., #\u03BB). See §11.2.4 for more information on character con-
stants.

The character comparison procedures char=?, char<?, char-ci=?, etc. take two or more character arguments
and check the arguments pairwise (like the numerical comparison procedures). Two characters are eq? whenever they
are char=?. The expression (char<? char1 char2) produces the same result as (< (char->integer
char1) (char->integer char2)), etc. The case-independent -ci procedures compare characters after case-
folding with char-foldcase (described below).

The character predicates produce results consistent with the Unicode database4 and (usually) SRFI-14. These proce-
dures are fully portable; their results do not depend on the current platform or locale.

• (char-alphabetic? char) — returns #t if char’s Unicode general category is Lu, Ll, Lt, Lm, or Lo,
#f otherwise.

• (char-lower-case? char) — returns #t if char has the Unicode “Lowercase” property.

• (char-upper-case? char) — returns #t if char has the Unicode “Uppercase” property.

• (char-title-case? char) — returns #t if char’s Unicode general category is Lt, #f otherwise.

• (char-numeric? char) — returns #t if char’s Unicode general category is Nd, #f otherwise.

• (char-symbolic? char) — returns #t if char’s Unicode general category is Sm, Sc, Sk, or So, #f
otherwise.

• (char-punctuation? char) — returns #t if char’s Unicode general category is Pc, Pd, Ps, Pe, Pi,
Pf, or Po, #f otherwise.

• (char-graphic? char) — returns #t if char’s Unicode general category is Mn, Mc, Me, or if
one of the following produces #t when applied to char: char-alphabetic?, char-numeric?,
char-symbolic?, or char-punctuation?.

• (char-whitespace? char) — returns #t if char’s Unicode general category is Zs, Zl, or Zp, or if
char is one of the following: #\tab, #\newline, #\vtab, #\page, #\return, or #\u0085.

• (char-blank? char) — returns #t if char’s Unicode general category is Zs or if char is #\tab.
(These correspond to horizontal whitespace.)

• (char-iso-control? char) — return #t if char is between #\u0000 and #\u001F inclusive or
#\u007F and #\u009F inclusive.

• (char-general-category char) — returns a symbol representing the character’s Unicode general cat-
egory, which is ’lu, ’ll, ’lt, ’lm, ’lo, ’mn, ’mc, ’me, ’nd, ’nl, ’no, ’ps, ’pe, ’pi, ’pf, ’pd,
’pc, ’po, ’sc, ’sm, ’sk, ’so, ’zs, ’zp, ’zl, ’cc, ’cf, ’cs, ’co, or ’cn.

Character conversions are also consistent with the 1-to-1 code point mapping defined by Unicode. String procedures
(see §3.5) handle the case where Unicode defines a locale-independent mapping from the code point to a code-point
sequence (in addition to the 1-1 mapping on scalar values).

• (char-upcase char) produces a character according to the upcase mapping provided by the Unicode
database for char; if char has no upcase mapping, char-upcase produces char.

• (char-downcase char) produces a character according to the downcase mapping provided by the Uni-
code database for char; if char has no downcase mapping, char-downcase produces char.

4The current version of MzScheme uses Unicode version 4.1.

16

3. Basic Data Extensions 3.5. Strings

• (char-titlecase char) produces a character according to the titlecase mapping provided by the Uni-
code database for char; if char has no titlecase mapping, char-titlecase produces char.

• (char-foldcase char) produces a character according to the case-folding mapping provided by the Uni-
code database for char.

(make-known-char-range-list) produces a list of three-element lists, where each three-element list rep-
resents a set of consecutive code points for which the Unicode standard specifies character properties. Each three-
element list contains two integers and a boolean; the first integer is a starting code-point value (inclusive), the second
integer is an ending code-point value (inclusive), and the boolean is #t when all characters in the code-point range
have identical results for all of the character predicates above. The three-element lists are ordered in the overall result
list such that later lists represent larger code-point values, and all three-element lists are separated from every other by
at least one code-point value that is not specified by Unicode.

(char-utf-8-length char) produces the same result as (bytes-length (string->bytes/utf-8
(string char))).

3.5 Strings

Since a string consists of a sequence of characters, a string in MzScheme is a Unicode code-point sequence. MzScheme
also provides byte strings, as well as functions to convert between byte strings and strings with respect to various
encodings, including UTF-8 and the current locale’s encoding. See §1.2 for an overview of Unicode, locales, and
encodings, and see §3.6 for more specific information on byte-string conversions.

A string can be mutable or immutable. When an immutable string is provided to a procedure like
string-set!, the exn:fail:contract exception is raised. String constants generated by read are im-
mutable. (string->immutable-string string) returns an immutable string with the same content as
string, and it returns string itself if string is immutable. (See also immutable? in §3.10.)

(substring string start-k [end-k]) returns a mutable string, even if the string argument is im-
mutable. The end-k argument defaults to (string-length string); otherwise, substring is as specified
by R5RS.

(string-copy! dest-string dest-start-k src-string [src-start-k src-end-k]) changes
the characters of dest-string from positions dest-start-k (inclusive) to dest-end-k (exclusive) to match
the characters in src-string from src-start-k (inclusive). If src-start-k is not provided, it defaults to
0. If src-end-k is not provided, it defaults to (string-length src-string). The strings dest-string
and src-string can be the same string, and in that case the destination region can overlap with the source region;
the destination characters after the copy match the source characters from before the copy. If any of dest-start-k,
src-start-k, or src-end-k are out of range (taking into account the sizes of the strings and the source and des-
tination regions), the exn:fail:contract exception is raised.

When a string is created with make-string without a fill value, it is initialized with the null character (#\nul) in
all positions.

The string comparison procedures string=?, string<?, string-ci=?, etc. take two or more string argu-
ments and check the arguments pairwise (like the numerical comparison procedures). String comparisons are per-
formed through pairwise comparison of characters; for the -ci operations, the two strings are first case-folded using
string-foldcase (described below). Comparisons using all of these functions are fully portable; the results do
not depend on the current platform or locale.

The following string-conversion procedures take into account Unicode’s locale-independent conversion rules that map
code-point sequences to code-point sequences (instead of simply mapping a 1-to-1 function on code points over the
string). In each case, the string produced by the conversion can be longer than the input string.

17

3.5. Strings 3. Basic Data Extensions

• (string-upcase string) returns a string whose characters are the upcase conversion of the characters
in string.

• (string-downcase string) returns a string whose characters are the downcase conversion of the char-
acters in string.

• (string-titlecase string) returns a string where the first character in each sequence of cased char-
acters in string (ignoring case-ignorable characters) is converted to titlecase, and all other cased characters
are downcased.

• (string-foldcase string) returns a string whose characters are the case-fold conversion of the char-
acters in string.

Examples:

(string-upcase "abc!") ; ⇒ "ABC!"
(string-upcase "Stra\xDFe") ; ⇒ "STRASSE"

(string-downcase "aBC!") ; ⇒ "abc!"
(string-downcase "Stra\xDFe") ; ⇒ "stra\xDFe"
(string-downcase "\u039A\u0391\u039F\u03A3") ; ⇒ "\u03BA\u03b1\u03BF\u03C2"
(string-downcase "\u03A3") ; ⇒ "\u03C3"

(string-titlecase "aBC twO") ; ⇒ "Abc Two"
(string-titlecase "y2k") ; ⇒ "Y2K"
(string-titlecase "main stra\xDFe") ; ⇒ "Main Stra\xDFe"
(string-titlecase "stra \xDFe") ; ⇒ "Stra Sse"

(string-foldcase "aBC!") ; ⇒ "abc!"
(string-foldcase "Stra\xDFe") ; ⇒ "strasse"
(string-foldcase "\u039A\u0391\u039F\u03A3") ; ⇒ "\u03BA\u03b1\u03BF\u03C3"

In addition to the character-based string procedures, MzScheme provides the following locale-sensitive procedures
(see also §1.2.2 and §7.9.1.11):

• (string-locale=? string1 string2 · · ·1)

• (string-locale<? string1 string2 · · ·1)

• (string-locale>? string1 string2 · · ·1)

• (string-locale-ci=? string1 string2 · · ·1)

• (string-locale-ci<? string1 string2 · · ·1)

• (string-locale-ci>? string1 string2 · · ·1)

• (string-locale-upcase string) — may produce a string that is longer or shorter than string if
the current locale has complex case-folding rules.

• (string-locale-downcase string) — like string-locale-upcase, may produce a string that
is longer or shorter than string

These procedures depend only on the current locale’s case-conversion and collation rules, and not on its encoding
rules.

MzScheme provides four Unicode-normalization procedures:

18

3. Basic Data Extensions 3.6. Byte Strings

• (string-normalize-nfd string) — returns a string that is the Unicode normalized form D of
string.

• (string-normalize-nfkd string) — returns a string that is the Unicode normalized form KD of
string.

• (string-normalize-nfc string) — returns a string that is the Unicode normalized form C of
string.

• (string-normalize-nfkc string) — returns a string that is the Unicode normalized form KC of
string.

For each of the normalization procedures, if the given string is already in the corresponding Unicode normal form, the
string may be returned directly as the result (instead of a newly allocated string).

3.6 Byte Strings

A byte string is like a string, but it a sequence of bytes instead of characters. A byte is an exact integer between 0 and
255 inclusive; (byte? v) produces #t if v is such an exact integer, #f otherwise. Two bytes strings are equal?
if they are bytewise equal, and two byte strings are eqv? only if they are eq?.

MzScheme provides byte-string operations in parallel to the character-string operations:

• (bytes? v)

• (bytes byte · · ·1)

• (make-bytes k [byte])

• (bytes-length bytes)

• (bytes-ref bytes k)

• (bytes-set! bytes k byte)

• (bytes-fill! bytes byte)

• (subbytes bytes start-k [end-k])

• (bytes-append bytes · · ·1)

• (bytes-copy bytes)

• (bytes-copy! dest-bytes dest-start-k src-bytes [src-start-k src-end-k])

• (bytes->list bytes)

• (list->bytes byte-list)

• (bytes->immutable-bytes bytes)

• (bytes=? bytes1 bytes2 · · ·1)

• (bytes<? bytes1 bytes2 · · ·1)

• (bytes>? bytes1 bytes2 · · ·1)

19

3.6. Byte Strings 3. Basic Data Extensions

A byte-string constant is written like a string, but prefixed with # (with no space between # and the opening double-
quote). A byte-string constant can contain escape sequences, as in #"\n", just like strings; an exn:fail:read
exception is raised if a “\u” sequence appears within a byte string and the given hexadecimal value is larger than 255.

Like character strings, byte strings generated by read are immutable, and when an immutable string is provided to a
procedure like bytes-set!, the exn:fail:contract exception is raised.

The following procedures convert between byte strings and character strings:

• (bytes->string/utf-8 bytes [err-char start-k end-k]) — produces a string by decoding
the start-k to end-k substring of bytes as a UTF-8 encoding of Unicode code points. If err-char
is provided and not #f, then it is used for bytes that fall in the range #o200 to #o377 but are not part of a
valid encoding sequence. (This is consistent with reading characters from a port; see §11.1 for more details.)
If err-char is #f or not provided, and if the start-k to end-k substring of bytes is not a valid UTF-
8 encoding overall, then the exn:fail:contract exception is raised. If start-k or end-k are not
provided, they default to 0 and (bytes-length bytes), respectively.

• (bytes->string/locale bytes [err-char start-k end-k]) — produces a string by decod-
ing the start-k to end-k substring of bytes using the current locale’s encoding (see also §1.2.2). If
err-char is provided and not #f, it is used for each byte in bytes that is not part of a valid encoding; if
err-char is #f or not provided, and if the start-k to end-k substring of bytes is not a valid encoding
overall, then the exn:fail:contract exception is raised. If start-k or end-k are not provided, they
default to 0 and (bytes-length bytes), respectively.

• (bytes->string/latin-1 bytes [err-char start-k end-k]) — produces a string by decod-
ing the start-k to end-k substring of bytes as a Latin-1 encoding of Unicode code points; i.e., each byte is
translated directly to a character using integer->char, so the decoding always succeeds.5 The err-char
argument is ignored, but for consistency with the other operations, it must be a character or #f if provided. If
start-k or end-k are not provided, they default to 0 and (bytes-length bytes), respectively.

• (string->bytes/utf-8 string [err-byte start-k end-k])— produces a byte string by end-
ing the start-k to end-k substring of string via UTF-8 (always succeeding). The err-char argument
is ignored, but for consistency with the other operations, it must be a byte or #f if provided. If start-k or
end-k are not provided, they default to 0 and (string-length string), respectively.

• (string->bytes/locale string [err-byte start-k end-k]) — produces a string by encod-
ing the start-k to end-k substring of string using the current locale’s encoding (see also §1.2.2). If
err-byte is provided and not #f, it is used for each character in string that cannot be encoded for the cur-
rent locale; if err-byte is #f or not provided, and if the start-k to end-k substring of string cannot
be encoded, then the exn:fail:contract exception is raised. If start-k or end-k are not provided,
they default to 0 and (string-length string), respectively.

• (string->bytes/latin-1 string [err-byte start-k end-k]) — produces a string by en-
coding the start-k to end-k substring of string using Latin-1; i.e., each character is translated directly to
a byte using char->integer. If err-byte is provided and not #f, it is used for each character in string
whose value is greater than 255;6 if err-byte is #f or not provided, and if the start-k to end-k substring
of string has a character with a value greater than 255, then the exn:fail:contract exception is raised.
If start-k or end-k are not provided, they default to 0 and (string-length string), respectively.

• (string-utf-8-length string [start-k end-k]) returns the length in bytes of the UTF-8 en-
coding of string’s substring from start-k to end-k, but without actually generating the encoded bytes.
If start-k is not provided, it defaults to 0, and end-k defaults to (string-length string).

5See also the Latin-1 footnote of §1.2.3.
6See also the Latin-1 footnote of §1.2.3.

20

3. Basic Data Extensions 3.6. Byte Strings

• (bytes-utf-8-length bytes [err-char start-k end-k]) returns the length in characters of
the UTF-8 decoding of bytes’s substring from start-k to end-k, but without actually generating the
decoded characters. If start-k is not provided, it defaults to 0, and end-k defaults to (bytes-length
bytes). If err-char is #f and the substring is not a UTF-8 encoding overall, the result is #f. Otherwise,
err-char is used to resolve decoding errors as in bytes->string/utf-8.

• (bytes-utf-8-ref bytes [skip-k err-char start-k end-k]) returns the skip-kth char-
acter in the UTF-8 decoding of bytes’s substring from start-k to end-k, but without actually gener-
ating the other decoded characters. If start-k is not provided, it defaults to 0, and end-k defaults to
(bytes-length bytes). If the substring is not a UTF-8 encoding up to the skip-kth character (when
err-char is #f), or if the substring decoding produces fewer than skip-k characters, the result is #f. If
err-char is not #f, it is used to resolve decoding errors as in bytes->string/utf-8.

• (bytes-utf-8-index bytes [skip-k err-char start-k end-k]) returns the offset in bytes
into bytes at which the skip-kth character’s encoding starts in the UTF-8 decoding of bytes’s substring
from start-k to end-k (but without actually generating the other decoded characters). If start-k is not
provided, it defaults to 0, and end-k defaults to (bytes-length bytes). The result is relative to the start
of bytes, not to start-k. If the substring is not a UTF-8 encoding up to the skip-kth character (when
err-char is #f), or if the substring decoding produces fewer than skip-k characters, the result is #f. If
err-char is not #f, it is used to resolve decoding errors as in bytes->string/utf-8.

A string converter can be used to convert directly from one byte-string encoding of characters to another byte-string
encoding.

• (bytes-open-converter from-name-string to-name-string)— produces a string converter
to go from the encoding named by from-name-string to the encoding named by to-name-string. If
the requested conversion pair is not available, #f is returned instead of a converter.

Certain encoding combinations are always available:

– (bytes-open-converter "UTF-8" "UTF-8") — the identity conversion, except that encoding
errors in the input lead to a decoding failure.

– (bytes-open-converter "UTF-8-permissive" "UTF-8") — the identity conversion, ex-
cept that any input byte that is not part of a valid encoding sequence is effectively replaced by
(char->integer #\?). (This handling of invalid sequences is consistent with the interpretation of
port bytes streams into characters; see §11.1.)

– (bytes-open-converter "" "UTF-8") — converts from the current locale’s default encoding
(see §1.2.2) to UTF-8.

– (bytes-open-converter "UTF-8" "") — converts from UTF-8 to the current locale’s default
encoding (see §1.2.2).

– (bytes-open-converter "platform-UTF-8" "platform-UTF-16") — converts UTF-8
to UTF-16 under Unix and Mac OS X, where each UTF-16 code unit is a sequence of two bytes ordered
by the current platform’s endianess. Under Windows, the input can include encodings that are not valid
UTF-8, but which naturally extend the UTF-8 encoding to support unpaired surrogate code units, and
the output is a sequence of UTF-16 code units (as little-endian byte pairs), potentially including unpaired
surrogates.

– (bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-16") —
like (bytes-open-converter "platform-UTF-8" "platform-UTF-16"), but an input
byte that is not part of a valid UTF-8 encoding sequence (or valid for the unpaired-surrogate extension
under Windows) is effectively replaced with (char->integer #\?).

– (bytes-open-converter "platform-UTF-16" "platform-UTF-8") — converts UTF-
16 (bytes orderd by the current platform’s endianness) to UTF-8 under Unix and Mac OS X. Under
Windows, the input can include UTF-16 code units that are unpaired surrogates, and the corresponding
output includes an encoding of each surrogate in a natural extension of UTF-8. Under Unix and Mac OS
X, surrogates are assumed to be paired: a pair of bytes with the bits #xD800 starts a surrogate pair, and

21

3.6. Byte Strings 3. Basic Data Extensions

the #x03FF bits are used from the pair and following pair (independent of the value of the #xDC00 bits).
On all platforms, performance may be poor when decoding from an odd offset within an input byte string.

A newly opened byte converter is registered with the current custodian (see §9.2), so that the converter is closed
when the custodian is shut down. A converter is not registered with a custodian (and does not need to be
closed) if it is one of the guaranteed combinations not involving "" under Unix, or if it is any of the guaranteed
combinations (including "") under Windows and Mac OS X.

The set of available encodings and combinations varies by platform, depending on the iconv library that is
installed. Under Windows, iconv.dll or libiconv.dll must be in the same directory as libmzschVERS.dll (where
VERS is a version number),7 in the user’s path, in the system directory, or in the current executable’s directory
at run time, and the DLL must either supply errno or link to msvcrt.dll for errno; otherwise, only the
guaranteed combinations are available.

• (bytes-close-converter bytes-converter) — closes the given converter, so that it can no longer
be used with bytes-convert or bytes-convert-end.

• (bytes-convert bytes-converter src-bytes [src-start-k src-end-k dest-bytes dest-start-k
dest-end-k]) converts the bytes from src-start-k to src-end-k in src-bytes. If dest-bytes
is supplied and not #f, the converted byte are written into dest-bytes from dest-start-k to
dest-end-k. If dest-bytes is not supplied or is #f, then a newly allocated byte string holds the con-
version results, and the size of the result byte string is no more than (− dest-end-k start-start-k).

If src-start-k or dest-start-k is not provided, it defaults to 0. If src-end-k is not provided,
it defaults to (bytes-length src-bytes. If src-end-k is not provided or is #f, then it defaults
to (bytes-length dest-bytes) when dest-bytes is a byte string or to an arbitrarily large integer
otherwise.

The result of bytes-convert is three values:

– result-bytes or dest-wrote-k — a byte string if dest-bytes is #f or not provided, or the
number of bytes written into dest-bytes otherwise.

– src-read-k — the number of bytes successfully converted from src-bytes.
– ’complete, ’continues, ’aborts, or ’error — indicates how conversion terminated.

∗ ’complete: The entire input was processed, and src-read-k will be equal to (− src-end-k
src-start-k).

∗ ’continues: Conversion stopped due to the limit on the result size or the space in dest-bytes;
in this case, fewer than (− dest-end-k dest-start-k) bytes may be returned if more space
is needed to process the next complete encoding sequence in src-bytes.

∗ ’aborts: The input stopped part-way through an encoding sequence, and more input bytes are
necessary to continue. For example, if the last byte of input is #o303 for a "UTF-8-permissive"
decoding, the result is ’aborts, because another byte is needed to determine how to use the #o303
byte.

∗ ’error: The bytes starting at (+ src-start-k src-read-k) bytes in src-bytes do not
form a legal encoding sequence. This result is never produced for some encodings, where all byte
sequences are valid encodings. For example, since "UTF-8-permissive" handles an invalid
UTF-8 sequence by dropping characters or generating “?”, every byte sequence is effectively valid.

Applying a converter accumulates state in the converter (even when the third result of bytes-convert is
’complete). This state can affect both further processing of input and further generation of output, but only
for conversions that involve “shift sequences” to change modes within a stream. To terminate an input sequence
and reset the converter, use bytes-convert-end.

• (bytes-convert-end bytes-converter [dest-bytes dest-start-k dest-end-k]) —
like bytes-convert, but instead of converting bytes, this procedure generates an ending sequence for the
conversion (sometimes called a “shift sequence”), if any. Few encodings use shift sequences, so this function

7In PLT’s software distributions for Windows, a suitable iconv.dll is included with libmzschVERS.dll.

22

3. Basic Data Extensions 3.7. Symbols

will succeed with no output for most encodings. In any case, successful output of a (possibly empty) shift
sequence resets the converter to its initial state.

The result of bytes-convert-end is two values:

– result-bytes or dest-wrote-k — a byte string if dest-bytes is #f or not provided, or the
number of bytes written into dest-bytes otherwise.

– ’complete or ’continues — indicates whether conversion completed. If ’complete, then an
entire ending sequence was produced. If ’continues, then the conversion could not complete due to
the limit on the result size or the space in dest-bytes, and the first result is either an empty byte string
or 0.

• (bytes-converter? v) returns #t if v is a byte converter produced by bytes-open-converter,
#f otherwise.

• (locale-string-encoding) returns a string for the current locale’s encoding (i.e., the encoding normally
identified by ""). See also system-language+country in §15.5.

3.7 Symbols

For information about symbol parsing and printing, see §11.2.4 and §11.2.5, respectively.

MzScheme provides two ways of generating an uninterned symbol, i.e., a symbol that is not eq?, eqv?, or equal?
to any other symbol, although it may print the same as another symbol:

• (string->uninterned-symbol string) is like (string->symbol string), but the resulting
symbol is a new uninterned symbol. Calling string->uninterned-symbol twice with the same string
returns two distinct symbols.

• (gensym [symbol/string]) creates an uninterned symbol with an automatically-generated name. The
optional symbol/string argument is a prefix symbol or string.

Regular (interned) symbols are only weakly held by the internal symbol table. This weakness can never affect the
result of an eq?, eqv?, or equal? test, but a symbol may disappear when placed into a weak box (see §13.1) used
as the key in a weak hash table (see §3.14), or used as an ephemeron key (see §13.2).

3.8 Keywords

A symbol-like datum that starts with a hash and colon (“#:”) is parsed as a keyword constant. Keywords behave like
symbols — two keywords are eq? if and only if they print the same — but they are a distinct set of values.

• (keyword? v) returns #t if v is a keyword, #f otherwise.

• (keyword->string keyword) returns a string for the displayed form of keyword, not including the
leading #:.

• (string->keyword string) returns a keyword whose displayed form is the same as that of string,
but with a leading #:.

Like symbols, keywords are only weakly held by the internal keyword table; see §3.7 for more information.

23

3.9. Vectors 3. Basic Data Extensions

3.9 Vectors

When a vector is created with make-vector without a fill value, it is initialized with 0 in all positions. A vector
can be immutable, such as a vector returned by syntax-e, but vectors generated by read are mutable. (See also
immutable? in §3.10.)

(vector->immutable-vector vec) returns an immutable vector with the same content as vec, and it returns
vec itself if vec is immutable. (See also immutable? in §3.10.)

(vector-immutable v · · ·1) is like (vector v · · ·1) except that the resulting vector is immutable. (See
also immutable? in §3.10.)

3.10 Lists

A cons cell can be mutable or immutable. When an immutable cons cell is provided to a procedure like set-cdr!,
the exn:fail:contract exception is raised. Cons cells generated by read are always mutable.

The global variable null is bound to the empty list.

(reverse! list) is the same as (reverse list), but list is destructively reversed using set-cdr! (i.e.,
each cons cell in list is mutated).

(append! list · · ·1) is like (append list), but it destructively appends the lists (i.e., except for the last
list, the last cons cell of each list is mutated to append the lists; empty lists are essentially dropped).

(list* v · · ·1) is similar to (list v · · ·1) but the last argument is used directly as the cdr of the last pair
constructed for the list:

(list* 1 2 3 4) ; ⇒ ’(1 2 3 . 4)

(cons-immutable v1 v2) returns an immutable pair whose car is v1 and cdr is v2.

(list-immutable v · · ·1) is like (list v · · ·1), but using immutable pairs.

(list*-immutable v · · ·1) is like (list* v · · ·1), but using immutable pairs.

(immutable? v) returns #t if v is an immutable cons cell, string, vector, box, or hash table, #f otherwise.

The list-ref and list-tail procedures accept an improper list as a first argument. If either procedure
is applied to an improper list and an index that would require taking the car or cdr of a non-cons-cell, the
exn:fail:contract exception is raised.

The member, memv, and memq procedures accept an improper list as a second argument. If the membership search
reaches the improper tail, the exn:fail:contract exception is raised.

The assoc, assv, and assq procedures accept an improperly formed association list as a second argument. If
the association search reaches an improper list tail or a list element that is not a pair, the exn:fail:contract
exception is raised.

3.11 Boxes

MzScheme provides boxes, which are records that have a single field:

• (box v) returns a new mutable box that contains v .

24

3. Basic Data Extensions 3.12. Procedures

• (box-immutable v) returns a new immutable box that contains v .

• (unbox box) returns the content of box. For any v , (unbox (box v)) returns v .

• (set-box! mutable-box v) sets the content of mutable-box to v .

• (box? v) returns #t if v is a box, #f otherwise.

Two boxes are equal? if the contents of the boxes are equal?.

A box returned by syntax-e (see §12.2.2) is immutable; if set-box! is applied to such a box, the
exn:fail:contract exception is raised. A box produced by read (via #&) is mutable. (See also immutable?
in §3.10.)

3.12 Procedures

See §4.6 for information on defining new procedure types.

3.12.1 Arity

MzScheme’s procedure-arity procedure returns the input arity of a procedure:

• (procedure-arity proc) returns information about the number of arguments accepted by the procedure
proc. The result a is either:

– an exact non-negative integer ⇒ the procedure always takes exactly a arguments;
– an arity-at-least8 instance ⇒ the procedure takes (arity-at-least-value a) or more

arguments; or
– a list containing integers and arity-at-least instances ⇒ the procedure takes any number of argu-

ments that can match one of the arities in the list.

• (procedure-arity-includes? proc k) returns #t if the procedure can accept n arguments (where
k is an exact, non-negative integer), #f otherwise.

Examples:

(procedure-arity cons) ; ⇒ 2
(procedure-arity list) ; ⇒ #<struct:arity−at−least>
(arity-at-least? (procedure-arity list)) ; ⇒ #t
(arity-at-least-value (procedure-arity list)) ; ⇒ 0
(arity-at-least-value (procedure-arity (lambda (x . y) x))) ; ⇒ 1
(procedure-arity (case-lambda [(x) 0] [(x y) 1])) ; ⇒ ’(1 2)
(procedure-arity-includes? cons 2) ; ⇒ #t
(procedure-arity-includes? display 3) ; ⇒ #f

When compiling a lambda or case-lambda expression, MzScheme looks for a ’method-arity-error prop-
erty attached to the expression (see §12.6.2). If it is present with a true value, and if no case of the procedure accepts
zero arguments, then the procedure is marked so that an exn:fail:contract:arity exception involving the
procedure will hide the first argument, if one was provided. (Hiding the first argument is useful when the procedure
implements a method, where the first argument is implicit in the original source). The property affects only the format
of exn:fail:contract:arity exceptions, not the result of procedure-arity.

8The arity-at-least structure type is transparent to all inspectors (see §4.5).

25

3.13. Promises 3. Basic Data Extensions

3.12.2 Primitives

A primitive procedure is a built-in procedure that is implemented in low-level language. Not all built-in procedures
are primitives, but almost all R5RS procedures are primitives, as are most of the procedures described in this manual.

• (primitive? v) returns #t if v is a primitive procedure or #f otherwise.

• (primitive-result-arity prim-proc) returns the arity of the result of the primitive procedure
prim-proc (as opposed to the procedure’s input arity as returned by arity; see §3.12.1). For most primi-
tives, this procedure returns 1, since most primitives return a single value when applied. For information about
arity values, see §3.12.1.

• (primitive-closure? v) returns #t if v is internally implemented as a primitive closure rather than a
simple primitive procedure, #f otherwise. This information is intended for use by the mzc compiler.

3.12.3 Procedure Names

See §6.2.3 for information about the names of primitives, and the names inferred for lambda and case-lambda
procedures.

3.12.4 Closure Equality

(procedure-closure-contents-eq? proc1, proc2) return #t if the procedures proc1 and proc2
refer to the same code closed over the same values, where each value is compared with eq?.

Inlining and other compiler optimizations limit the usefulness of this procedure, because code can be duplicated or
merged. Since the amount of duplication from inlining is limited, however, procedure-closure-contents-eq?
is useful for some caching purposes.

Example:

(let ([f #f])
;; Using set! likely prevents inlining:
(set! f (lambda (x) (lambda () x)))
(procedure-closure-contents-eq? (f ’a) (f ’a)) ; ⇒ #t, probably
(procedure-closure-contents-eq? (f ’a) (f ’b))) ; ⇒ #f, definitely

(let ([f (lambda (x) (lambda () x))])
(procedure-closure-contents-eq? (f ’a) (f ’a)))

;; ⇒ #f, probably, because inling likely duplicates f’s body

3.13 Promises

The force procedure can only be applied to values returned by delay, and promises are never implicitly forced.

(promise? v) returns #t if v is a promise created by delay, #f otherwise.

3.14 Hash Tables

(make-hash-table [flag-symbol flag-symbol]) creates and returns a new hash table. If provided, each
flag-symbol must one of the following:

26

3. Basic Data Extensions 3.14. Hash Tables

• ’weak — creates a hash table with weakly-held keys (see §13.1).

• ’equal — creates a hash table that compares keys using equal? instead of eq? (needed, for example, when
using strings as keys).

By default, key comparisons use eq?. If the second flag-symbol is redundant, the exn:fail:contract
exception is raised.

Two hash tables are equal? if they are created with the same flags, and if they map the same keys to equal? values
(where “same key” means either eq? or equal?, depending on the way the hash table compares keys).

(make-immutable-hash-table assoc-list [flag-symbol]) creates an immutable hash table. (See
also immutable? in §3.10.) The assoc-list must be a list of pairs, where the car of each pair is a key, and the
cdr is the corresponding value. The mappings are added to the table in the order that they appear in assoc-list, so
later mappings can hide earlier mappings. If the optional flag-symbol argument is provided, it must be ’equal,
and the created hash table compares keys with equal?; otherwise, the created table compares keys with eq?.

(hash-table? v [flag-symbol flag-symbol]) returns #t if v was created by make-hash-table
or make-immutable-hash-table with the given flag-symbols (or more), #f otherwise. Each provided
flag-symbol must be a distinct flag supported by make-hash-table; if the second flag-symbol is redun-
dant, the exn:fail:contract exception is raised.

(hash-table-put! hash-table key-v v) maps key-v to v in hash-table, overwriting any existing
mapping for key-v . If hash-table is immutable, the exn:fail:contract exception is raised.

(hash-table-get hash-table key-v [failure-thunk-or-value]) returns the value for key-v
in hash-table. If no value is found for key-v , then failure-thunk-or-value determines the re-
sult: if failure-thunk-or-value is not provided, the exn:fail:contract exception is raised; if
failure-thunk-or-value is a procedure, it is called (through a tail call) with no arguments to produce the
result; finally, if failure-thunk-or-value is provided and not a procedure, it is used as the result.

(hash-table-remove! hash-table key-v) removes the value mapping for key-v if it exists in
hash-table. If hash-table is immutable, the exn:fail:contract exception is raised.

(hash-table-map hash-table proc) applies the procedure proc to each element in hash-table, accu-
mulating the results into a list. The procedure proc must take two arguments: a key and its value. See the caveat
below about concurrent modification.

(hash-table-for-each hash-table proc) applies the procedure proc to each element in hash-table
(for the side-effects of proc) and returns void. The procedure proc must take two arguments: a key and its value.
See the caveat below about concurrent modification.

(hash-table-count hash-table) returns the number of keys mapped by hash-table. If hash-table
is not created with ’weak, then the result is computed in constant time and atomically. If hash-table is created
with ’weak, see the caveat below about concurrent modification.

(hash-table-copy hash-table) returns a mutable hash table with the same mappings, same key-comparison
mode, and same key-holding strength as hash-table.

(eq-hash-code v) returns an exact integer; for any two eq? values, the returned integer is the same. Further-
more, for the result integer k and any other exact integer j, (= k j) implies (eq? k j).

(equal-hash-code v) returns an exact integer; for any two equal? values, the returned integer is the same.
Furthermore, for the result integer k and any other exact integer j, (= k j) implies (eq? k j). If v contains a
cycle through pairs, vectors, boxes, and inspectable structure fields, then equal-hash-code applied to v will loop
indefinitely.

27

3.14. Hash Tables 3. Basic Data Extensions

Caveat concerning concurrent modification: A hash table can be manipulated with hash-table-get,
hash-table-put!, and hash-table-remove! concurrently by multiple threads, and the operations are pro-
tected by a table-specific semaphore as needed. A few caveats apply, however:

• If a thread is terminated while applying hash-table-get, hash-table-put!, or hash-table-remove!
to a hash table that uses equal? comparisons, all current and future operations on the hash table block indefi-
nitely.

• The hash-table-map, hash-table-for-each, and hash-table-count procedures do not use the
table’s semaphore. Consequently, if a hash table is extended with new keys by another thread while a map,
for-each, or count is in process, arbitrary key–value pairs can be dropped or duplicated in the map or for-each.
Similarly, if a map or for-each procedure itself extends the table, arbitrary key–value pairs can be dropped or
duplicated. However, key mappings can be deleted or remapped by any thread with no adverse affects (i.e., the
change does not affect a traversal if the key has been seen already, otherwise the traversal skips a deleted key or
uses the remapped key’s new value).

Caveat concerning mutable keys: If a key into an equal?-based hash table is mutated (e.g., a key string is modified
with string-set!), then the hash table’s behavior for put and get operations becomes unpredictable.

28

4. Structures

A structure type is a record datatype composing a number of fields. A structure, an instance of a structure type, is
a first-class value that contains a value for each field of the structure type. A structure instance is created with a
type-specific constructor procedure, and its field values are accessed and changed with type-specific selector and setter
procedures. In addition, each structure type has a predicate procedure that answers #t for instances of the structure
type and #f for any other value.

4.1 Defining Structure Types

A new structure type can be created with one of four define-struct forms:

(define-struct s (field · · ·) [inspector-expr])
(define-struct (s t) (field · · ·) [inspector-expr])

where s, t, and each field are identifiers. The latter form is described in §4.2. The optional inspector-expr,
which should produce an inspector or #f, is explained in §4.5.

A define-struct expression with n fields defines 4+2n names:

• struct:s, a structure type descriptor value that represents the new datatype. This value is rarely used directly.

• make-s, a constructor procedure that takes n arguments and returns a new structure value.

• s?, a predicate procedure that returns #t for a value constructed by make-s (or the constructor for a subtype;
see §4.2) and #f for any other value.

• s-field, for each field, an accessor procedure that takes a structure value and extracts the value for field.

• set-s-field!, for each field, a mutator procedure that takes a structure and a new field value. The field
value in the structure is destructively updated with the new value, and void is returned.

• s, a syntax binding that encapsulates information about the structure type declaration. This binding is used to
define subtypes (see §4.2). It also works with the shared and match forms (see Chapter 44 and Chapter 27
of PLT MzLib: Libraries Manual). For detailed information about the expansion-time information stored in s,
see §12.6.4.

Each time a define-struct expression is evaluated, a new structure type is created with distinct constructor,
predicate, accessor, and mutator procedures. If the same define-struct expression is evaluated twice, instances
created by the constructor returned by the first evaluation will answer #f to the predicate returned by the second
evaluation.

Examples:

(define-struct cons-cell (car cdr))
(define x (make-cons-cell 1 2))

29

4.2. Creating Subtypes 4. Structures

(cons-cell? x) ; ⇒ #t
(cons-cell-car x) ; ⇒ 1
(set-cons-cell-car! x 5)
(cons-cell-car x) ; ⇒ 5

(define orig-cons-cell? cons-cell?)
(define-struct cons-cell (car cdr))
(define y (make-cons-cell 1 2))
(cons-cell? y) ; ⇒ #t
(cons-cell? x) ; ⇒ #f, cons-cell? now checks for a different type
(orig-cons-cell? x) ; ⇒ #t
(orig-cons-cell? y) ; ⇒ #f

The let-struct form binds structure identifiers in a lexical scope; it does not support an inspector-expr.

(let-struct s (field · · ·)
body-expr · · ·1)

(let-struct (s t) (field · · ·)
body-expr · · ·1)

4.2 Creating Subtypes

The latter define-struct form shown in §4.1 creates a new structure type that is a structure subtype of an existing
base structure type. An instance of a structure subtype can always be used as an instance of the base structure type,
but the subtype gets its own predicate procedure and may have its own fields in addition to the fields of the base type.

The t identifier in a subtyping define-struct form must be bound to syntax describing a structure type decla-
ration. Normally, it is the name of a structure type previously declared with define-struct. The information
associated with t is used to access the base structure type for the new subtype.

A structure subtype “inherits” the fields of its base type. If the base type has m fields, and if n fields are specified in the
subtyping define-struct expression, then the resulting structure type has m+n fields. Consequently, m+n field
values must be provided to the subtype’s constructor procedure. Values for the first m fields of a subtype instance are
accessed with selector procedures for the original base type, and the last n are accessed with subtype-specific selectors.
Subtype-specific accessors and mutators for the first m fields are not created.

Examples:

(define-struct cons-cell (car cdr))
(define x (make-cons-cell 1 2))
(define-struct (tagged-cons-cell cons-cell) (tag))
(define z (make-tagged-cons-cell 3 4 ’t))
(cons-cell? z) ; ⇒ #t
(tagged-cons-cell? z) ; ⇒ #t
(tagged-cons-cell? x) ; ⇒ #f
(cons-cell-car z) ; ⇒ 3
(tagged-cons-cell-tag z) ; ⇒ ’t

4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties

The make-struct-type procedure creates a new structure type in the same way as the define-struct form
of §4.1, but provides a more general interface. In particular, the make-struct-type procedure supports structure
type properties.

30

4. Structures 4.3. Structure Types with Automatic Fields, Immutable Fields, and Properties

• (make-struct-type name-symbol super-struct-type init-field-k auto-field-k [auto-v
prop-value-list inspector-or-false proc-spec immutable-k-list guard-proc]) cre-
ates a new structure type. The name-symbol argument is used as the type name. If super-struct-type
is not #f, the new type is a subtype of the corresponding structure type, as described in §4.2.

The new structure type has init-field-k + auto-field-k fields (in addition to any fields from
super-struct-type), but only init-field-k constructor arguments (in addition to any constructor
arguments from super-struct-type). The remaining fields are initialized with auto-v , which defaults
to #f.

The prop-value-list argument is a list of pairs, where the car of each pair is a structure type property
descriptor, and the cdr is an arbitrary value. The default is null. See §4.4 for more information about
properties.

The inspector-or-false argument controls access to debugging information about the structure type and
its instances; see §4.5 for more information.

The proc-spec argument can be #f, an exact non-negative integer, or a procedure. The default is #f. If an
integer or procedure is provided, instances of the structure type act as procedures. See §4.6 for further informa-
tion. Providing a non-#f value for proc-spec is the same as pairing the value with prop:procedure in
prop-value-list, plus including proc-spec in immutable-k-list when proc-spec is an inte-
ger.

The immutable-k-list argument provides a list of exact, non-negative integers that identify immutable
field positions. Each element in the list should be unique, otherwise exn:fail:contract exception is
raised. Each element should also fall in the range 0 (inclusive) and init-field-k (exclusive), otherwise
exn:fail:contract exception is raised.

The guard-proc argument is either a procedure of n+ 1 arguments or #f, where n is the number of ar-
guments for the new structure type’s constructor (i.e., init-field-k plus constructor arguments implied
by super-struct-type, if any). If guard-proc is a procedure, then the procedure is called whenever
an instance of the type is constructed, or whenever an instance of a subtype is created. The arguments to
guard-proc are the values provided for the structure’s first n fields, followed by the name of the instantiated
structure type (which is name-symbol, unless a subtype is instantiated). The guard-proc result should be
n values, which become the actual value for the structure’s fields. The guard-proc can raise an exception
to prevent creation of a structure with the given field values. If a structure subtype has its own guard, the sub-
type guard is applied first, and the first n values produced by the subtype’s guard procedure become the first n
arguments to guard-proc.

The result of make-struct-type is five values, which are similar to the values produced by
define-struct (see §4.1):

– a structure type descriptor,
– a constructor procedure,
– a predicate procedure,
– an accessor procedure, which consumes a structure and a field index between 0 (inclusive) and
init-field-k+auto-field-k (exclusive), and

– a mutator procedure, which consumes a structure, a field index, and a field value.

Unlike define-struct, make-struct-type returns a single accessor procedure and a single mutator proce-
dure for all fields. The make-struct-field-accessor and make-struct-field-mutator procedures
convert a type-specific accessor or mutator returned by make-struct-type into a field-specific accessor or muta-
tor:

• (make-struct-field-accessor accessor-proc field-pos-k field-name-symbol) re-
turns a field accessor that is equivalent to

(lambda (s) (accessor-proc s field-pos-k))

31

4.4. Structure Type Properties 4. Structures

The accessor-procmust be an accessor returned by make-struct-type. The name of the resulting pro-
cedure for debugging purposes is derived from field-name-symbol and the name of accessor-proc’s
structure type.

• (make-struct-field-mutator mutator-proc field-pos-k field-name-symbol) returns
a field mutator that is equivalent to

(lambda (s v) (mutator-proc s field-pos-k v))

The mutator-proc must be a mutator returned by make-struct-type. The name of the resulting pro-
cedure for debugging purposes is derived from field-name-symbol and the name of mutator-proc’s
structure type.

Examples:

(define-values (struct:a make-a a? a-ref a-set!)
(make-struct-type ’a #f 2 1 ’uninitialized))

(define an-a (make-a ’x ’y))
(a-ref an-a 1) ; ⇒ ’y
(a-ref an-a 2) ; ⇒ ’uninitialized
(define a-first (make-struct-field-accessor a-ref 0))
(a-first an-a) ; ⇒ ’x

(define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type ’b struct:a 1 2 ’b-uninitialized))

(define a-b (make-b ’x ’y ’z))
(a-ref a-b 1) ; ⇒ ’y
(a-ref a-b 2) ; ⇒ ’uninitialized
(b-ref a-b 0) ; ⇒ z
(b-ref a-b 1) ; ⇒ ’b-uninitialized
(b-ref a-b 2) ; ⇒ ’b-uninitialized

(define-values (struct:c make-c c? c-ref c-set!)
(make-struct-type ’c struct:b 0 0 #f null (make-inspector) #f null

;; Guard checks for a number, and makes it inexact
(lambda (a1 a2 b1 name)
(unless (number? a2)
(error (string->symbol (format "make-˜a" name))

"second field must be a number"))
(values a1 (exact->inexact a2) b1))))

(make-c ’x ’y ’z) ; ⇒ error: "make-c: second field must be a number"
(define a-c (make-c ’x 2 ’z))
(a-ref a-c 1) ; ⇒ 2.0

4.4 Structure Type Properties

A structure type property allows per-type information to be associated with a structure type (as opposed to per-instance
information associated with a structure value). A property value is associated with a structure type through the
make-struct-type procedure (see §4.3). Subtypes inherit the property values of their parent types, and sub-
types can override an inherited property value with a new value. (See §11.2.10 for a built-in property that controls how
struct values are printed.)

(make-struct-type-property name-symbol [guard-proc]) creates a new structure type property and
returns three values:

32

4. Structures 4.5. Structure Inspectors

• a structure property type descriptor, for use with make-struct-type;

• a predicate procedure, which takes an arbitrary value and returns #t if the value is a descriptor or instance of a
structure type that has a value for the property, #f otherwise;

• an accessor procedure, which returns the value associated with structure type given its descriptor or one of its
instances; if the structure type does not have a value for the property, or if any other kind of value is provided,
the exn:fail:contract exception is raised.

If the optional guard-proc is supplied, it is called by make-struct-type before attaching the property
to a new structure type. The guard-proc must accept two arguments: a value for the property supplied to
make-struct-type, and a list containing information about the new structure type. The list contains the val-
ues that struct-type-info would return for the new structure type if it skipped the immediate current-inspector
control check (but not the check for exposing an ancestor structure type, if any; see §4.5).

The result of calling guard-proc is associated with the property in the target structure type, instead of the
value supplied to make-struct-type. To reject a property association (e.g., because the value supplied to
make-struct-type is inappropriate for the property), the guard can raise an exception. Such an exception pre-
vents make-struct-type from returning a structure type descriptor.

(struct-type-property? v) returns #t if v is a structure type property descriptor value, #f otherwise.

Examples:

(define-values (prop:p p? p-ref) (make-struct-type-property ’p))

(define-values (struct:a make-a a? a-ref a-set!)
(make-struct-type ’a #f 2 1 ’uninitialized (list (cons prop:p 8))))

(p? struct:a) ; ⇒ #t
(p? 13) ; ⇒ #f
(define an-a (make-a ’x ’y))
(p? an-a) ; ⇒ #t
(p-ref an-a) ; ⇒ 8

(define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type ’b #f 0 0 #f))

(p? struct:b) ; ⇒ #f

4.5 Structure Inspectors

An inspector provides access to structure fields and structure type information without the normal field accessors and
mutators. (Inspectors are also used to control access to module bindings; see §9.4.) Inspectors are primarily intended
for use by debuggers.

When a structure type is created, an inspector can be supplied. The given inspector is not the one that will control
the new structure type; instead, the given inspector’s parent will control the type. By using the parent of the given
inspector, the structure type remains opaque to “peer” code that cannot access the parent inspector. Thus, an expression
of the form

(define-struct s (field · · ·))

creates a structure type whose instances are opaque to peer code. In contrast, the following idiom creates a structure
type that is transparent to peer code, because the supplied inspector is a newly created child of the current inspector:

(define-struct s (field · · ·) (make-inspector))

33

4.5. Structure Inspectors 4. Structures

Instead of supplying an inspector, #f can be provided, which makes the structure transparent to all code. Thus,

(define-struct s (field · · ·) #f)

creates a structure type that is transparent to all code.

The current-inspector parameter determines a default inspector argument for new structure types. An alternate
inspector can be provided though the optional inspector-expr expression of the define-struct form (see
§4.1), as shown above, or through an optional inspector argument to make-struct-type (see §4.3).

(make-inspector [inspector]) returns a new inspector that is a subinspector of inspector. If
inspector is not provided, the new inspector is a subinspector of the current inspector. Any structure type con-
trolled by the new inspector is also controlled by its ancestor inspectors, but no other inspectors.

(inspector? v) returns #t if v is an inspector, #f otherwise.

The struct-info and struct-type-info procedures provide inspector-based access to structure and structure
type information:

• (struct-info v) returns two values:

– struct-type: a structure type descriptor or #f; the result is a structure type descriptor of the most
specific type for which v is an instance, and for which the current inspector has control, or the result is #f
if the current inspector does not control any structure type for which the struct is an instance.

– skipped?: #f if the first result corresponds to the most specific structure type of v , #t otherwise.

• (struct-type-info struct-type) returns eight values that provide information about the structure
type descriptor struct-type, assuming that the type is controlled by the current inspector:

– name-symbol: the structure type’s name as a symbol;
– init-field-k: the number of fields defined by the structure type provided to the constructor procedure

(not counting fields created by its ancestor types);
– auto-field-k: the number of fields defined by the structure type without a counterpart in the construc-

tor procedure (not counting fields created by its ancestor types);
– accessor-proc: an accessor procedure for the structure type, like the one returned by
make-struct-type;

– mutator-proc: a mutator procedure for the structure type, like the one returned by
make-struct-type;

– immutable-k-list: an immutable list of exact non-negative integers that correspond to immutable
fields for the structure type;

– super-struct-type: a structure type descriptor for the most specific ancestor of the type that is
controlled by the current inspector, or #f if no ancestor is controlled by the current inspector;

– skipped?: #f if the seventh result is the most specific ancestor type or if the type has no supertype, #t
otherwise.

If the type for struct-type is not controlled by the current inspector, the exn:fail:contract exception
is raised.

• (struct-type-make-constructor struct-type) returns a constructor procedure to create in-
stances of the type for struct-type. If the type for struct-type is not controlled by the current inspector,
the exn:fail:contract exception is raised.

• (struct-type-make-predicate struct-type) returns a predicate procedure to recognize in-
stances of the type for struct-type. If the type for struct-type is not controlled by the current inspector,
the exn:fail:contract exception is raised.

34

4. Structures 4.6. Structures as Procedures

4.6 Structures as Procedures

If the prop:procedure property is specified for a structure type (see §4.3), instances of the new structure type are
procedures. In particular, when procedure? is applied to the instance, the result will be #t. When an instance
is used in the function position of an application expression, a procedure is extracted from the instance and used to
complete the procedure call.

If the prop:procedure property value is an integer, it designates a field within the structure that should con-
tain a procedure. The integer must be between 0 (inclusive) and the third argument to make-struct-type,
init-field-k (exclusive). The designated field must also be specified as immutable, so that after an instance
of the structure is created, its procedure cannot be changed. (Otherwise, the arity and name of the instance could
change, and such mutations are generally not allowed for procedures.) When the instance is used as the procedure
in an application expression, the value of the designated field in the instance is used to complete the procedure call.1

That procedure receives all of the arguments from the application expression. The procedure’s name (see §6.2.3) and
arity (see §3.12.1) are also used for the name and arity of the structure. If the value in the designated field is not a
procedure, then the instance behaves like (case-lambda) (i.e., a procedure which does not accept any number of
arguments).

Providing an integer proc-spec argument to make-struct-type is the same as both supplying the value with
the prop:procedure property and designating the field as immutable (so that a property binding or immutable
designation is redundant and disallowed).

Example:

(define-values (struct:ap make-annotated-proc annotated-proc? ap-ref ap-set!)
(make-struct-type ’annotated-proc #f 2 0 #f null #f 0))

(define (proc-annotation p) (ap-ref p 1))
(define plus1 (make-annotated-proc

(lambda (x) (+ x 1))
"adds 1 to its argument"))

(procedure? plus1) ; ⇒ #t
(annotated-proc? plus1) ; ⇒ #t
(plus1 10) ; ⇒ 11
(proc-annotation plus1) ; ⇒ "adds 1 to its argument"

When the prop:procedure value is a procedure, it should accept at least one argument. When an instance of
the structure is used in an application expression, the property-value procedure is called with the instance as the
first argument. The remaining arguments to the property-value procedure are the arguments from the application
expression. Thus, if the application expression contained five arguments, the property-value procedure is called with
six arguments. The name of the instance (see §6.2.3) is unaffected by the property-value procedure, but the instance’s
arity is determined by subtracting one from every possible argument count of the property-value procedure. If the
property-value procedure cannot accept at least one argument, then the instance behaves like (case-lambda).

Providing a procedure proc-spec argument to make-struct-type is the same as supplying the value with the
prop:procedure property (so that a specific property binding is disallowed).

(define-values (struct:fish make-fish fish? fish-ref fish-set!)
(make-struct-type ’fish #f 2 0 #f null #f

(lambda (f n) (fish-set! f 0 (+ n (fish-ref f 0))))))
(define (fish-weight f) (fish-ref f 0))
(define (fish-color f) (fish-ref f 1))
(define wanda (make-fish 12 ’red))
(fish? wanda) ; ⇒ #t

1This procedure can be another structure that acts as a procedure. The immutability of procedure fields disallows cycles in the procedure graph,
so that the procedure call will eventually continue with a non-structure procedure.

35

4.7. Structures as Synchronizable Events 4. Structures

(procedure? wanda) ; ⇒ #t
(fish-weight wanda) ; ⇒ 12
(for-each wanda ’(1 2 3))
(fish-weight wanda) ; ⇒ 18

If a structure type generates procedure instances, then subtypes of the type also generate procedure instances.
The instances behave the same as instances of the original type. When a prop:procedure property or non-
#f proc-spec is supplied to make-struct-type with a supertype that already behaves as a procedure, the
exn:fail:contract exception is raised.

(procedure-struct-type? struct-type) returns #t if instances of the structure type represented by
struct-type are procedures (according to procedure?), #f otherwise.

4.7 Structures as Synchronizable Events

The built-in prop:evt structure type property identifies structure types whose instances can serve as synchronizable
events; see §7.7 for information on synchronization and events.

The property value can be any of the following:

• An event evt: In this case, using the structure as an event is equivalent to using evt.

• A procedure proc of one argument: In this case, the structure is similar to an event generated by guard-evt,
except that the would-be guard procedure proc receives the structure as an argument, instead of no arguments.

• An exact, non-negative integer between 0 (inclusive) and init-field-k (exclusive): The integer identifies
a field in the structure, and the field must be designated as immutable. If the field contains an object or an
event-generating procedure of one argument, the event or procedure is used as above. Otherwise, the structure
acts as an event that is never ready.

Instances of a structure type with the prop:input-port or prop:output-port property (see §4.8) is also syn-
chronizable by virtue of being a port. If the structure type has more than one of prop:evt, prop:input-port,
and prop:output-port, then the prop:evt value (if any) takes precedence for determing the instance’s behavior
as an event, and the prop:input-port property takes precedence over prop:output-port for synchroniza-
tion.

Examples:

(define-values (struct:wt make-wt wt? wt-ref wt-set!)
(make-struct-type ’wt #f 2 0 #f (list (cons prop:evt 0)) #f #f ’(0)))

(define sema (make-semaphore))
(sync/timeout 0 (make-wt sema #f)) ; ⇒ #f
(semaphore-post sema)
(sync/timeout 0 (make-wt sema #f)) ; ⇒ sema
(semaphore-post sema)
(sync/timeout 0 (make-wt (lambda (self) (wt-ref self 1)) sema)) ; ⇒ sema
(semaphore-post sema)
(define my-wt (make-wt (lambda (self) (wrap-evt

(wt-ref self 1)
(lambda (x) self)))

sema))
(sync/timeout 0 my-wt) ; ⇒ my-wt
(sync/timeout 0 my-wt) ; ⇒ #f

36

4. Structures 4.8. Structures as Ports

4.8 Structures as Ports

The built-in prop:input-port and prop:output-port structure type properties identify structure types
whose instances can serve as input and output ports, respectively.

The property value can be any of the following:

• An input port (for prop:input-port) or output port (for prop:input-port): In this case, using the
structure as port is equivalent to using the given one.

• An exact, non-negative integer between 0 (inclusive) and init-field-k (exclusive): The integer identifies
a field in the structure, and the field must be designated as immutable. If the field contains an input port (for
prop:input-port) or output port (for prop:input-port), the port is used. Otherwise, an empty string
input port is used for prop:input-port, and a port that discards all data is used for prop:output-port.

Some procedures, such as file-position, work on both input and output ports. When given an instance of a
structure type with both the prop:input-port and prop:output-port properties, the instance is used as an
input port.

4.9 Structure Utilities

The following utility procedures work on all structure instances:

• (struct->vector v [opaque-v]) creates a vector representing v . The first slot of the result vector
contains a symbol of the form struct:s. Each remaining slot contains either the value of a field in v if it
is accessible via the current inspector, or opaque-v for a field that is not accessible. A single opaque-v
value is used in the vector for contiguous inaccessible fields. (Consequently, the size of the vector does not
match the size of the struct if more than one field is inaccessible.) The symbol ’... is the default value for
opaque-v .

• (struct? v) returns #t if struct->vector exposes any fields of v with the current inspector, #f
otherwise.

Two structure values are eqv? if and only if they are eq?. Two structure values are equal? if and only if they
are instances of the same structure type, no fields are opaque, and the results of applying struct->vector to the
structs are equal?. (Consequently, equal? testing for structures depends on the current inspector.)

Each kind of value returned by define-struct and make-struct-type has a recognizing predicate:

• (struct-type? v) returns #t if v is a structure type descriptor value, #f otherwise.

• (struct-constructor-procedure? v) returns #t if v is a constructor procedure generated by
define-struct or make-struct-type, #f otherwise.

• (struct-predicate-procedure? v) returns #t if v is a predicate procedure generated by
define-struct or make-struct-type, #f otherwise.

• (struct-accessor-procedure? v) returns #t if v is an accessor procedure generated by
define-struct, make-struct-type, or make-struct-field-accessor, #f otherwise.

• (struct-mutator-procedure? v) returns #t if v is a mutator procedure generated by
define-struct, make-struct-type, or make-struct-field-mutator, #f otherwise.

37

5. Modules

MzScheme provides a module system for managing the scope of variable and syntax definitions, and for directing
compilation. Module declarations can appear only at the top level. The space of module names is separate from the
space of top-level variable and syntax names.

A module declaration consists of the name for the module, the name of a module to supply an initial set of syntax
and variable bindings, and a module body:

(module module-identifier initial-required-module-name body-datum · · ·)

A module encapsulates syntax definitions to be used in expanding the body of the module, as well as expressions and
definitions to be evaluated when the module is executed. When a syntax identifier is exported with provide (as
described in §5.2), its transformer can be used during the expansion of an importing module; when a variable identifier
is exported, its value can be used (but not assigned with set!) during the execution of an importing module.

A module named mzscheme is built in, and it exports the procedures and syntactic forms described in R5RS and this
manual. The mzscheme module supplies the initial syntax and variable bindings for a typical module.

Example:

(module hello-world ; the module name
mzscheme ; initial syntax and variable bindings

; for the module body
; the module body
(display "Hello world!")
(newline))

In general, the initial import serves as a kind of ”language” declaration. By initially importing a module other than
mzscheme, a module can be defined in terms of a commonly-used variant of Scheme that contains more than the
MzScheme built-in syntax and procedures, or a variant of Scheme that contains fewer constructs. The initial import
might even omit syntax for declaring additional imports. For example, §12.5 shows an example module that defines a
lambda-calculus language.

5.1 Module Expansion and Execution

When a module declaration is evaluated, the module’s body is syntax-expanded and compiled, but not executed. The
body is executed only when the module is explicitly invoked, via a require or require-for-syntax expression
at the top level, or a call to dynamic-require.

When a module is invoked, its body definitions and expressions are evaluated. First, however, the definitions and
expressions are evaluated for each module imported (via require) by the invoked module. The import-initialization
rule applies up the chain of modules, so that every module used (directly or indirectly) by the invoked module is
executed before any module that uses its exports. A module can only import from previously declared modules, so the
module-import relationship is acyclic.

38

5. Modules 5.2. Module Bodies

Every module is executed at most once in response to an invocation, regardless of the number of times it is imported
into other modules. Every top-level invocation executes only the modules needed by the invocation that have not been
executed by previous invocations.

Example:

(module never-used ; unused module
mzscheme

(display "This is never printed")
(newline))

(module hello-world-printer ; module used by hello-world2
mzscheme

(define (print-hello-world)
(display "Hello world!")
(newline))

(display "printer ready")
(newline)
(provide print-hello-world)) ; export

(module hello-world2
mzscheme ; initial import

(require hello-world-printer) ; additional import
(print-hello-world))

(require hello-world2) ; ⇒ prints "printer ready", then "Hello world!"

Separating module declarations from module executions benefits compilation in the presence of expressive syntax
transformers, as explained in §12.3.4.

5.2 Module Bodies

In general, the format of a module body depends on the initial import. Since the mzscheme module defines the
procedures and syntactic forms described in R5RS and this manual, the body-datums of a module using mzscheme
as its initial import must conform to the usual MzScheme top-level grammar.

The require form is used both to invoke a module at the top level, and to import syntax and variables into a module.

(require require-spec · · ·)

require-spec is one of
module-name
(only module-name identifier · · ·)
(prefix prefix-identifier module-name)
(all-except module-name identifier · · ·)
(prefix-all-except prefix-identifier module-name identifier · · ·)
(rename module-name local-identifier exported-identifier)

The module-name form imports all exported identifiers from the named module. The (only module-name
identifier · · ·) form imports only the listed identifiers from the named module. The (prefix
prefix-identifier module-name) form imports all identifiers from the named module, but locally pre-
fixes each identifier with prefix-identifier. The (all-except module-name identifier · · ·)
form imports all identifiers from the named module, except for the listed identifiers. The (prefix-all-except

39

5.2. Module Bodies 5. Modules

prefix-identifier module-name identifier · · ·) form combines the prefix and all-except
forms. Finally, the (rename module-name local-identifier exported-identifier) imports
exported-identifier from module-name, binding it locally to identifier.

The provide form (legal only within a module declaration) exports syntax and variable bindings from the current
module for use by other modules. The exported identifiers must be either defined or imported in the module, but the
export of an identifier may precede its definition or import.

(provide provide-spec · · ·)

provide-spec is one of
identifier
(rename local-identifier export-identifier)
(struct struct-identifier (field-identifier · · ·))
(all-from module-name)
(all-from-except module-name identifier · · ·)
(all-defined)
(all-defined-except identifier · · ·)
(prefix-all-defined prefix-identifier)
(prefix-all-defined-except prefix-identifier identifier · · ·)
(protect provide-spec · · ·)

The identifier form exports the (imported or defined) identifier from the module. The (rename
local-identifier export-identifier) form exports local-identifier from the module with the
external name export-identifier; other modules importing from this one will see export-identifier
instead of local-identifier. The (struct struct-identifier (field-identifier · · ·))
form exports the names that (define-struct struct-identifier (field-identifier · · ·)) gen-
erates. The (all-from module-name) form exports all of the identifiers imported from the named mod-
ule, using their local names. The (all-from-except module-name identifier · · ·) form is sim-
ilar, except that the listed imported identifiers are not exported. The (all-defined) form exports all
of the identifiers defined (not imported) in the module. The (all-defined-except identifier · · ·)
form is similar, except that the listed defined identifiers are not exported. The (prefix-all-defined
prefix-identifier) and (prefix-all-defined-except prefix-identifier identifier · ·
·) forms are like all-defined and all-defined-except, but prefix-identifier is prefixed onto each
defined identifier for its external name.

The (protect provide-spec · · ·) form is like the sequence of individual provide-specs, but the provided
identifiers are protected (see §9.4); the provide-specs must not contain another protect form, an all-from
form, or an all-from-except form, and they must not name any identifier that is imported into the providing
module, instead of defined within the module.

The scope of all imported identifiers covers the entire module body, as does the scope of any identifier defined within
the module body. See §12.3.5 for additional information concerning macro-generated definitions, require declara-
tions, and provide declarations. An identifier can be defined by a definition or import at most once, except
than an identifier can be imported multiple times if each import is from the same module. All exports must
be unique. A module body cannot contain free variables. A module is not permitted to mutate an imported variable
with set!. However, mutations to an exported variable performed by its defining module are visible to modules that
import the variable.

At syntax-expansion time, expressions and definitions within a module are partially expanded, just enough to de-
termine whether the expression is a definition, syntax definition, import, export, or a non-definition. If a partially
expanded expression is a syntax definition, the syntax transformer is immediately evaluated and the syntax name is
available for expanding successive expressions. Import expressions are treated similarly, so that imported syntax is
available for expansion following its import. (The ordering of syntax definitions does not affect the scope of the syntax
names; a transformer for A can produce expressions containing B, while the transformer for B produces expressions

40

5. Modules 5.3. Modules and Macros

containing A, regardless of the order of declarations for A and B. However, a syntactic form that produces syntax
definitions must be defined before it is used.) The begin form at the top level for a module body works like begin
at the top level, so that the sub-expressions are flattened out into the module’s body. Expressions determined to be
non-definitions are expanded in an expression context; if further expansion (due to a macro definition processes later
in the module body) produces a definition, a syntax exception is raised.

At run time, expressions and definitions are evaluated in order as they appear within the module. Accessing a (non-
syntax) identifier before it is initialized signals a run-time error, just like accessing an undefined global variable.

Example:

(module a mzscheme
(provide x)
(define x 1))

(module b mzscheme
(provide f (rename x y))
(define x 2)
(define (f) (set! x 7)))

(module c mzscheme
(require (prefix a. a) (prefix b. b))
(b.f)
(display (+ a.x b.y))
(newline))

(require c) ; ⇒ executes c, prints 8

5.3 Modules and Macros

Macros defined with syntax-rules follow the rules specified in R5RS regarding the binding and free references in
the macro template. In particular, the template of an exported macro may refer to an identifier defined in the module
or imported into the module; uses of the macro in other modules expand to references of the identifier defined or
imported at the macro-definition site, as opposed to the use site. Uses of a macro in a module must not expand to a
set! assignment of an identifier from any other module (including the module that defines the macro).

Example:

(module a mzscheme
(provide xm)
(define y 2)
(define-syntax xm ; a macro that expands to y
(syntax-rules ()
[(xm) y])))

(module b mzscheme
(require a)
(printf "˜a˜n" (xm)))

(require b) ; ⇒ prints 2

For further information about syntax definitions, see §12.3.4. See §12.6.5 for information on extracting details about
an expanded or compiled module declaration. See §9.4 for information on how unexported and protected identifiers in
a macro expansion are constrained to their macro-introduced contexts.

41

5.4. Module Paths 5. Modules

5.4 Module Paths

In practice, the modules composing a program are rarely declared together in a single file. Multiple module-declaring
files can be loaded in sequence with load, but modules that are intended as libraries have complex interdependencies;
constructing an appropriate sequence of load expressions — one that loads each module declaration exactly once and
before all of its uses — can be difficult and tedious. Worse, even though module declarations prevent collisions among
syntax and variable names, module names themselves can collide.

To solve these problems, a module-name can describe a path to a module source file, which is resolved by the
current module name resolver. The default module name resolver loads the source for a given module path the first
time that the source is referenced. To avoid module name collisions, the module in the referenced file is assigned a
name that identifies its source file.

A module path resolved by the standard resolver can take any of four forms:

unix-relative-path-string
(file path-string)
(lib filename-string collection-string · · ·)
(planet . datum)
path

• When a module name is a string, unix-relative-path-string, it is interpreted as a path relative
to the source of the containing module (as determined by current-load-relative-directory or
current-directory). Regardless of the platform running MzScheme, the path is always parsed as a Unix-
format path: / is the path delimiter (multiple adjacent / are treated as a single delimiter), .. accesses the parent
directory, and . accesses the current directory. To avoid portability problems, the path elements are further con-
strained to contain only ASCII alpha-numeric characters plus -, , ., and space, and the path may not be empty
or contain a leading or trailing slash.

• When a module name has the form (file path-string), then path-string is interpreted as a file
path using the current platform’s path conventions. If path-string is a relative path, it is resolved rela-
tive to the source of the containing module (as determined by current-load-relative-directory or
current-directory).

• When a module name has the form (lib filename-string collection-string · · ·), it specifies
a collection-based library; see Chapter 16 for more information about libraries and collections.

• When a module name has the form (planet . datum), it is passed to the PLaneT resolver as described
in §5.4.1.

• Since path values (see §11.3.1) cannot be written as literal syntax, a path never appears in require forms.
However, an absolute path value may be passed to dynamic-require, and it is treated in the same way as a
file form.

A source file that is referenced by a module path must contain a single module declaration. The name of the declared
module must match the source’s filename, minus its suffix.

Different module paths can access the same module, but for the purposes of provide declarations using all-from
and all-from-except, source module paths are compared syntactically (instead of comparing resolved module
names).

5.4.1 Module Name Resolver

In general, the module name resolver is invoked by MzScheme when a module-name is not an identifier. The
grammar of non-symbolic module names is determined by the module name resolver. The module name resolver, in

42

5. Modules 5.4. Module Paths

turn, is determined by the current-module-name-resolver parameter (see also §7.9.1.12). The resolver is a
function that takes one, three, and four arguments:

• When given one argument, it is a symbol for a module that is already loaded. Such a call to the module name
resolver is a notification that the corresponding module does not need to be loaded (for the current namespace,
or any other namespace that shared the module registry). The procedure result is ignored.

• When given three arguments, the first is an arbitrary value for the module path, a symbol for the source module’s
name, and a syntax object or #f. The procedure result must be a symbol for the resolved name.

• The four-argument case is the same as the three-argument case, but with a boolean argument that can be #f to
request resolving a name without loading the module (if it is not already loaded).

Except for (planet . datum) paths (which are handled as described below), the standard module name resolver
creates a module identifier as the expanded, simplified, case-normalized, and de-suffixed path of the file designated
by the module path—transformed to a symbol by composing path->bytes, bytes->string/latin-1, and
string->symbol, and then prefixed with a comma. (See §11.3 for details on platform-specific path handling.) To
better support dynamic-require, the standard module name resolver accepts a path object (see §11.3.1) and treats
it like a file module path.

The standard module name resolver keeps a per-registry table of loaded module identifiers (where the registry is
obtained from a namespace; see Chapter 8). If the resolved identifier is not in the table, and #f is not provided as the
module name resolver’s fourth argument, then the identifier is put into the table and the corresponding file is loaded
with a variant of load/use-compiled that passes the expected module name to the load handler.

While loading a file, the standard resolver sets the current-module-name-prefix parameter, so that the name
of any module declared in the loaded file is given a prefix. This mechanism enables the resolver to avoid module name
collisions. The resolver sets the prefix to the resolved module name, minus the de-suffixed file name. It also loads the
file by calling the load handler or load extension handler with the name of the expected module (see §5.8).

Module loading is suppressed (i.e., #f is supplied as a fourth argument to the module name resolver) when resolving
module paths in syntax objects (see §12.2). When a syntax object is manipulated, the current namespace might not
match the original namespace for the syntax object, and the module should not necessarily be loaded in the current
namespace.

The current module name resolver is called with a single argument by namespace-attach-module to notify
the resolver that a module was attached to the current namespace (and should not be loaded in the future for the
namespace’s registry). No other MzScheme operation invokes the module name resolver with a single argument, but
other tools (such as DrScheme) might call this resolver in this mode to avoid redundant module loads.

When the default module name resolver is given a module path of the form (planet . datum) as its first
argument, it provides all of the resolver arguments to the PLaneT resolver. If the PLaneT resolver has not yet
been loaded, it is loaded in the initial namespace by requiring planet-module-name-resolver from (lib
"resolver.ss" "planet"). Thereafter, the PLaneT resolver is called for every one-argument call to the de-
fault module name resolver, in addition to calls for handle (planet . datum) paths.

5.4.2 Module Names and Compilation

When syntax-expanding or compiling a module declaration, MzScheme resolves module names for imports (since
some imported identifier may have syntax bindings), but it also preserves the module path name. Consequently, a
compiled module can be moved to another filesystem, where the module name resolver can resolve inter-module
references among compiled code.

When a module reference is extracted from compiled code (see §12.6.5) or from syntax objects in macro expansion (see

43

5.5. Dynamic Module Access 5. Modules

§12.2.2), the module reference is typically reported in the form of a module path index. An index is a semi-interned,1

opaque value that encodes a relative module path (see §5.4) and another index to which it is relative.

An index that returns #f for its path and base index represents “self” — i.e., the module declaration that was the
source of the index — and such an index is always used as the root for a chain of indices. For example, when
extracting information about an identifier’s binding within a module, if the identifier is bound by a definition within
the same module, the identifier’s source module will be reported using the “self” index. If the identifier is instead
defined in a module that is imported via a module path (as opposed to a literal module name), then the identifier’s
source module will be reported using an index that contains the required module path and the “self” index.

An index has state; when it is resolved to a symbolic module name, then the symbol is stored with the index. In
particular, when a module is loaded, its root index is resolved to match the module’s declaration-time name. This
resolved path is forgotten, however, in identifiers that the module contributes to the compiled and marshaled form of
other modules. This transient nature of resolved names allows the module code to be loaded with a different resolved
name than the name when it was compiled.

Where an index is expected, a symbol can usually take its place, representing a literal module name. A symbol is used
instead of an index when a module is imported using its name directly with require instead of a module path.

• (module-path-index? v) returns #t if v is a module path index, #f otherwise.

• (module-path-index-resolve module-path-index) returns a symbol for the resolved module
name, computing the resolved symbol (and storing it in module-path-index) if it has not been computed
before. Resolving an index uses the current module name resolver (see §5.4.1). Depending on the kind of module
paths encapsulated by module-path-index, the computed resolved symbol can depend on the current load
directory or current directory.

• (module-path-index-split module-path-index) returns two values: a non-symbol S-
expression representing a module path, and a base index (to which the module path is relative), symbol, or
#f. A #f second result means “relative to a top-level environment”. A #f for the first result implies a #f for
the second result, and means that module-path-index represents “self” (see above).

• (module-path-index-join module-path module-path-index) combines module-path
and module-path-index to create a new module path index. The module-path argument can be any-
thing except a symbol, and the module-path-index argument can be a index, symbol, or #f.

5.5 Dynamic Module Access

(dynamic-require module-path-v provided-symbol) dynamically invokes the module specified by
module-path-v in the current namespace’s registry if it is not yet invoked. If module-path-v is not a symbol,
the current module name resolver may load a module declaration to resolve it. For example, the default module-name
resolver accepts a path value as module-path-v . The path is not resolved with respect to any other module, even
if the current namespace corresponds to a module body.

If provided-symbol is #f, then the result is void. Otherwise, when provided-symbol is a symbol, the value
of the module’s export with the given name is returned. If the module exports provide-symbol as syntax, then a
use of the binding is expanded and evaluated (in a fresh namespace to which the module is attached). If the module has
no such exported variable or syntax, or if the variable is protected (see §9.4), the exn:fail:contract exception
is raised. The expansion-time portion of the module is not executed.

If provided-symbol is void, then the module is partially invoked, where its expansion-time expressions are evalu-
ated, but not its normal expressions (though the module may have been invoked previously in the current namespace’s
registry). The result is void.

1Multiple references to the same relative module tend to use the same index value, but not always.

44

5. Modules 5.6. Re-declaring Modules

(dynamic-require-for-syntax module-path-v provided-symbol-or-#f) is similar to dynamic-require,
except that it accesses a value from an expansion-time module instance (the one that could be used by transformers in
expanding top-level expressions in the current namespace). As with dynamic-require, the module name resolver
may load a module declaration to resolve module-path-v if it is not a symbol.

5.6 Re-declaring Modules

When a module is re-declared in a namespace whose registry already contains a declaration of the module (see Chap-
ter 8), the new declaration’s syntax and variable definitions replace and extend the old declarations. If a variable in
the old declaration has no counterpart in the new declaration, it continues to exist, but becomes inaccessible to newly
compiled code. In other words, a module name in a particular registry maps to a namespace containing the module
body’s definitions; see also module->namespace in §8.3.

If a module is invoked before it is re-declared, each re-declaration of the module is immediately invoked. The imme-
diate invocation is necessary to keep the module-specific namespace consistent with the module declaration.

When a module re-declaration implies invocation, the invocation can fail at the definition of a binding that was
constant in the original module (where any definition without a set! within the module counts as a constant def-
inition); preventing re-definition protects potential optimizations (for the original declaration) that rely on constant
bindings. Set the compile-enforce-module-constants parameter (see §7.9) to #f to disable optimizations
that rely on constant bindings and to allow unrestricted re-definition of module bindings. To enable re-definition, the
compile-enforce-module-constants parameter must be set before the original declaration of the module.

In addition to the constraint on constant definitions, a module can be redeclared only when the current code inspector
— as determined by the current-code-inspector parameter (see §7.9.1.8) — controls the invocation of the
module in the current namespace’s registry. If the current code inspector does not control the invocation at the time of
a re-declaration attempt, the exn:fail:contract exception is raised.

5.7 Built-in Modules

The built-in mzscheme module is implemented by several primitive modules whose names start with #%. In general,
module names starting with #% are reserved for use by MzScheme and embedding applications. The built-in modules
are declared in the initial namespace’s registry via namespace-attach-module, so they cannot be re-declared
and their private namespaces are not available via module->namespace.

5.8 Modules and Load Handlers

The second argument to a load handler or load extension handler indicates whether the load is expected (and required)
to produce a module declaration. If the second argument is #f, the file is loaded normally, otherwise the argument
will be a symbol and the file must be checked specially before it is loaded.

When the second argument to the local handler is a symbol, the handler is responsible for ensuring that the file-to-load
actually contains a module declaration (possibly compiled); if not, it must raise an exception without evaluating the
declaration. The handler must also raise an exn:fail exception if the name in the module declaration is not the
same as the symbol argument to the handler (before applying any prefix in current-module-name-prefix).

Furthermore, while reading the file and expanding the module declaration, the load handler must set reader parameter
values (see §7.9.1.3) to the following states:

(read-case-sensitive #t)
(read-square-bracket-as-paren #t)
(read-curly-brace-as-paren #t)

45

5.8. Modules and Load Handlers 5. Modules

(read-accept-box #t)
(read-accept-compiled #t)
(read-accept-bar-quote #t)
(read-accept-graph #t)
(read-decimal-as-inexact #t)
(read-accept-dot #t)
(read-accept-quasiquote #t)
(read-accept-reader #t)

These states are the same as the normal defaults, except that compiled-code reading is enabled. Note that a module
body can be made case insensitive by prefixing the module with #ci (see §11.2.4).

Finally, before compiling or evaluating a module declaration from source, the handler must replace a leading module
identifier with an identifier that is bound to the module export of MzScheme. Evaluating the expression will then
produce a module declaration, regardless of the binding of module in the current namespace.

Separate compilation of module declarations introduces the possibility of import cycles when the module declarations
are executed. The exn:fail exception is raised when such a cycle is detected.

46

6. Exceptions and Control Flow

6.1 Exceptions

MzScheme supports a variant of the exception system proposed by Friedman, Haynes, and Dybvig.1 MzScheme’s
implementation extends that proposal by defining the specific exception values that are raised by each primitive error.

• (raise v) raises an exception, where v represents the exception being raised. The v argument can be
anything; it is passed to the current exception handler. Breaks are disabled from the time the exception is raised
until the exception handler obtains control, and the handler itself is parameterize-breaked to disable
breaks initially; see §6.7 for more information on breaks.

• (call-with-exception-handler f thunk) installs f, which must be a procedure of one argument,
as the exception handler for the current continuation (i.e., for the dynamic extent of a call to thunk). The
thunk is called in tail position with respect to the call to call-with-exception-handler. If an ex-
ception is raised during the evaluation of thunk (in an extension of the current continuation that does not have
its own exception handler), then f is applied to the raised value in the continuation of the raise call (but
extended with a continuation barrier; see §6.3).

Any procedure that takes one argument can be an exception handler. If the exception handler returns a value
when invoked by raise, then raise propagates the value to the “previous” exception handler (still in the
dynamic extent of the call to raise). The previous exception handler is the exception handler associated
with the rest of the continuation after the point where the called exception handler was associated with the
continuation; if no previous handler is available, the uncaught-exception handler is used (see below). In all
cases, a call to an exception handler is parameterize-breaked to disable breaks, and it is wrapped with
call-with-exception-handler to install the an exception handler that reports both the original and
newly raised exceptions.

• (uncaught-exception-handler) returns an exception handler that is used by raise when the
relevant continuation has no exception handler installed with call-with-exception-handler or
with-handlers. The uncaught-exception-handler procedure is a parameter (see §7.9). Unlike
exception handlers installed with call-with-exception-handler, the handler for uncaught exceptions
must not return a value when called by raise; if it returns, an exception is raised (to be handled by an exception
handler that reports both the original and newly raised exception).

The default uncaught-exception handler prints an error message using the current error display handler
(see error-display-handler in §7.9.1.7) and then escapes by calling the current error escape han-
dler (see error-escape-handler in §7.9.1.7). The call to each handler is parameterized to set
error-display-handler to the default error display handler,2 and it is parameterize-breaked to
disable breaks. The call to the error escape handler is further parameterized to set error-escape-handler
to the default error escape handler.

• (with-handlers ((pred handler) · · ·) expr · · ·1) is a syntactic form that evaluates the expr
body, installing a new exception handler during the dynamic extent of the exprs. The pred and handler

1See http://www.cs.indiana.edu/scheme-repository/doc.proposals.exceptions.html
2If the current error display handler is the default handler, then the error-display call is parameterized to install an emergency error display

handler that attempts to print directly to a console and never fails.

47

6.1. Exceptions 6. Exceptions and Control Flow

expressions are evaluated in the order that they are specified, before the first expr and before the exception
handler is changed.

The new exception handler processes an exception only if one of the pred procedures returns a true value
when applied to the exception, otherwise the exception handler is invoked from the continuation of the
with-handlers expression (by raising the exception again). If an exception is handled by one of the
handler procedures, the result of the entire with-handlers expression is the return value of the handler.

When an exception is raised during the evaluation of exprs, each predicate procedure pred is applied to the
exception value; if a predicate returns a true value, the corresponding handler procedure is invoked with the
exception as an argument. The predicates are tried in the order that they are specified.

Before any predicate or handler procedure is invoked, the continuation of the entire with-handlers expres-
sion is restored, but also parameterize-breaked to disable breaks. Thus, breaks are disabled by default
during the predicate and handler procedures (see §6.7), and the exception handler is the one from the continua-
tion of the with-handlers expression.

The exn:fail? procedure is useful as a handler predicate to catch all error exceptions. Avoid using (lambda
(x) #t) as a predicate, because the exn:break exception typically should not be caught (unless it will be
re-raised to cooperatively break). Beware, also, of catching and discarding exceptions, because discarding an
error message can make debugging unnecessarily difficult.

• (with-handlers∗ ((pred handler) · · ·) expr · · ·1) is the same as with-handlers, but if a
handler procedure is called, breaks are not explicitly disabled, and the call is in tail position with respect to
the with-handlers∗ form.

The following example defines a divide procedure that returns +inf.0 when dividing by zero instead of signaling an
exception (other exceptions raised by / are signaled):

(define div-w-inf
(lambda (n d)
(with-handlers ([exn:fail:contract:divide-by-zero?

(lambda (exn) +inf.0)])
(/ n d))))

The following example catches and ignores file exceptions, but lets the exception handler of the enclosing continuation
handle other exceptions, including breaks:

(define (file-date-if-there filename)
(with-handlers ([exn:fail:filesystem? (lambda (exn) #f)])
(file-or-directory-modify-seconds filename)))

6.1.1 Primitive Exceptions

Whenever a primitive error occurs in MzScheme, an exception is raised. The value that is passed to the current
exception handler is always an instance of the exn structure type. Every exn structure value has a message field
that is a string, the primitive error message. The default exception handler recognizes exception values with the exn?
predicate and passes the error message to the current error display handler (see error-display-handler in
§7.9.1.7).

Primitive errors do not create immediate instances of the exn structure type. Instead, an instance from a hierarchy
of subtypes of exn is instantiated. The subtype more precisely identifies the error that occurred and may contain
additional information about the error. The table below defines the type hierarchy that is used by primitive errors and
matches each subtype with the primitive errors that instantiate it. In the table, each bulleted line is a separate structure
type. A type is nested under another when it is a subtype. The full name of the structure type (as used by predicates
and selectors in the global environment) is built by combining the full name of the immediate supertype with “:” and
the subtype name.

48

6. Exceptions and Control Flow 6.1. Exceptions

For example, reading an ill-formed expression raises an exception as an instance of exn:fail:read. An exception
handler can test for this kind of exception using the global exn:fail:read? predicate. Given such an exception,
an error string can be extracted using exn-message, while exn:fail:read-source accesses a list of source
locations for the error.

Fields of the built-in exn structure types are immutable, so field mutators are not provided. Field-type contracts are
enforced through guards; for example, (make-exn "Hello" #f) raises exn:fail:contract because the
second argument is not a continuation mark set. A mutable string, however, is allowed as the first argument to an
exception constructor, in which case it is converted to an immutable string by the guard. All built-in exn structure
types are transparent to all inspectors (see §4.5).

• exn : not instantiated directly by any primitive
fields: message — error message (type: immutable string)

continuation-marks — value returned by current-continuation-marks immediately
before the exception is raised (type: mark set)

• fail : exceptions that represent errors
• contract : inappropriate run-time use of a function or syntactic form

• arity : application with the wrong number of arguments
• divide-by-zero : divide by zero
• continuation : attempt to cross a continuation barrier
• variable : unbound/not-yet-defined global or module variable

fields: id — the variable’s identifier (type: symbol)
• syntax : syntax error, but not a read error

fields: exprs — illegal expression(s) (type: immutable list of syntax objects)
• read : read parsing error

fields: srclocs — source location(s) of error (type: immutable list of srclocs (see §11.2.1.1))
• eof : unexpected end-of-file
• non-char : unexpected non-character

• filesystem : error manipulating a filesystem object
• exists : attempt to create a file that exists already
• version : version mismatch loading an extension

• network : TCP and UDP errors
• out-of-memory : out of memory
• unsupported : unsupported feature
• user : for end users

• break : asynchronous break signal
fields: continuation — resumes from the break (type: escape continuation)

In addition to the built-in structure types for exceptions, MzScheme provides one built-in structure-type property (see
§4.4):

• The prop:exn:srclocs property identifies exceptions that have a list of source locations, which includes
exn:fail:read and exn:fail:syntax. The exn:srclocs? predicate recognizes structures and
structure types that have the prop:exn:srclocs property. The exn:srclocs-accessor procedure
takes a structure or structure type with the exn:srclocs property and returns a procedure; when the proce-
dure is applied to a structure of the same type, it returns a list of srclocs (see §11.2.1.1).

Primitive procedures that accept a procedure argument with a particular required arity (e.g., call-with-input-file,
call/cc) check the argument’s arity immediately, raising exn:fail:contract if the arity is incorrect.

49

6.2. Errors 6. Exceptions and Control Flow

6.2 Errors

The procedure error raises the exception exn:fail (which contains an error string). The error procedure has
three forms:

• (error symbol) creates a message string by concatenating "error: " with the string form of symbol.

• (error msg-string v · · ·) creates a message string by concatenating msg-string with string versions
of the vs (as produced by the current error value conversion handler; see §7.9.1.7). A space is inserted before
each v .

• (error src-symbol format-string v · · ·) creates a message string equivalent to the string created
by:

(format (string-append "˜s: " format-string)
src-symbol v · · ·)

In all cases, the constructed message string is passed to make-exn:fail and the resulting exception is raised.

The raise-user-error procedure is the same as error, except that it constructs an exception with
make-exn:fail:user instead of make-exn:fail. The default error display handler does not show a “stack
trace” for exn:fail:user exceptions (see §6.6), so raise-user-error should be used for errors that are
intended for end users. Like error, raise-user-error has three forms:

• (raise-user-error symbol)

• (raise-user-error msg-string v · · ·)

• (raise-user-error src-symbol format-string v · · ·)

6.2.1 Application Errors

(raise-type-error name-symbol expected-string v) creates an exn:fail:contract value
and raises it as an exception. The name-symbol argument is used as the source procedure’s name in the er-
ror message. The expected-string argument is used as a description of the expected type, and v is the value
received by the procedure that does not have the expected type.

(raise-type-error name-symbol expected-string bad-k v) is similar, except that the bad argu-
ment is indicated by an index (from 0), and all of the original arguments v are provided (in order). The resulting error
message names the bad argument and also lists the other arguments. If bad-k is not less than the number of vs, the
exn:fail:contract exception is raised.

(raise-mismatch-error name-symbol message-string v) creates an exn:fail:contract
value and raises it as an exception. The name-symbol is used as the source procedure’s name in the error
message. The message-string is the error message. The v argument is the improper argument received by the
procedure. The printed form of v is appended to message-string (using the error value conversion handler; see
§7.9.1.7).

(raise-arity-error name-symbol-or-procedure arity-v [arg-v ···]) creates an exn:fail:contract:arity
value and raises it as an exception. The name-symbol-or-procedure is used for the source procedure’s name
in the error message. The arity-v value must be a possible result from procedure-arity (see §3.12.1), and it
is used for the procedure’s arity in the error message; if name-symbol-or-procedure is a procedure, its actual
arity is ignored. The arg-v arguments are the actual supplied arguments, which are shown in the error message
(using the error value conversion handler; see §7.9.1.7); also, the number of supplied arg-vs is explicitly mentioned
in the message.

50

6. Exceptions and Control Flow 6.2. Errors

6.2.2 Syntax Errors

(raise-syntax-error name message-string [expr sub-expr]) creates an exn:fail:syntax
value and raises it as an exception. Macros use this procedure to report syntax errors. The name argument is
usually #f when expr is provided; it is described in more detail below. The message-string is used as the
main body of the error message. The optional expr argument is the erroneous source syntax object or S-expression.
The optional sub-expr argument is a syntax object or S-expression within expr that more precisely locates the
error. If sub-expr is provided, it is used (in syntax form) for the exprs field of the generated exception record,
else the expr is used if provided, otherwise the exprs field is the empty list. Source location information in the
error-message text is similarly extracted from sub-expr or expr, when at least one is a syntax object.

The form name used in the generated error message is determined through a combination of the name, expr, and
sub-expr arguments. The name argument can #f or a symbol:

• #f: When name is #f, and when expr is either an identifier or a syntax pair containing an identifier as its first
element, then the form name from the error message is the identifier’s symbol.

If expr is not provided, or if it is not an identifier or a syntax pair containing and identifier as its first element,
then the form name in the error message is "?".

• symbol: When name is a symbol, then the symbol is used as the form name in the generated error message.

See also §7.9.1.7.

6.2.3 Inferred Value Names

To improve error reporting, names are inferred at compile-time for certain kinds of values, such as procedures. For
example, evaluating the following expression:

(let ([f (lambda () 0)]) (f 1 2 3))

produces an error message because too many arguments are provided to the procedure. The error message is able to
report “f” as the name of the procedure. In this case, MzScheme decides, at compile-time, to name as f all procedures
created by the let-bound lambda.

Names are inferred whenever possible for procedures. Names closer to an expression take precedence. For example,
in

(define my-f
(let ([f (lambda () 0)]) f))

the procedure bound to my-f will have the inferred name “f”.

When an ’inferred-name property is attached to a syntax object for an expression (see §12.6.2), the property
value is used for naming the expression, and it overrides any name that was inferred from the expression’s context.

When an inferred name is not available, but a source location is available, a name is constructed using the
source location information. Inferred and property-assigned names are also available to syntax transformers, via
syntax-local-name; see §12.6 for more information.

(object-name v) returns a value for the name of v if v has a name, #f otherwise. The argument v can be any
value, but only (some) procedures, structs, struct types, struct type properties, regexp values, and ports have names.
The name of a procedure, struct, struct type, or struct type property is always a symbol. The name of a regexp value
is a string, and a byte-regexp value’s name is a byte string. The name of a port is typically a path or a string, but it can
be arbitrary. All primitive procedures have names (see §3.12.2).

51

6.3. Continuations 6. Exceptions and Control Flow

6.3 Continuations

MzScheme supports delimited continuations, and even continuations captured by call-with-current-continuation
(or call/cc) are delimited by a prompt. Prompt instances are tagged, and continuations are cap-
tured with respect to a particular prompt. Thus, MzScheme’s call-with-current-continuation ac-
cepts an optional prompt-tag argument: (call-with-current-continuation proc [prompt-tag]),
where prompt-tag must be a result from either default-continuation-prompt-tag (the default) or
make-continuation-prompt-tag. Prompts, prompt tags, and composable continuations are described fur-
ther in §6.5.

The macro let/cc binds a variable to the continuation in an immediate body of expressions:

(let/cc k expr · · ·1)
=expands=>
(call/cc (lambda (k) expr · · ·1))

Capturing a continuation also captures the current continuation marks (see §6.6) up to the relevant prompt.
The current parameterization (see §7.9) is captured if it was extended via paramaterize or installed via
call-with-parameterization since the prompt.

A continuation can be invoked from the thread (see Chapter 7) other than the one where it was captured. Multiple
return values can be passed to a continuation (see §2.2).

MzScheme installs a continuation barrier around evaluation in the following contexts, preventing full-continuation
jumps across the barrier:

• applying an exception handler, an error escape handler, or an error display handler (see §6.1);

• applying a macro transformer (see §12.6), evaluating a compile-time expression, or applying a module name
resolver (see §5.4.1);

• applying a custom-port procedure (see §11.1.7), an event guard procedure (see §7.7), or a parameter guard
procedure (see §7.9);

• applying a security-guard procedure (see §9.1);

• applying a will procedure (see §13.3); or

• evaluating or loading code from the stand-alone MzScheme command line (see §17).

In addition, extensions of MzScheme may install barriers in additional contexts. In particular, MrEd installs a contin-
uation barrier around most every callback. Finally, (call-with-continuation-barrier thunk) applies
thunk with a barrier between the application and the current continuation.

In addition to regular call/cc, MzScheme provides call-with-escape-continuation (or call/ec) and
let/ec. A continuation obtained from call/ec is actually a kind of prompt: applying an escape continuation
can only escape back to the continuation (possibly past a continuation barrier); that is, an escape continuation is only
valid when the current continuation is an extension of the escape continuation. Further, the application of call/ec’s
argument is not a tail call. Escape continuations are provided mainly for backward compatibility, since they pre-date
general prompts in MzScheme.

The exn:fail:contract:continuation exception is raised when a continuation application would cross a
continuation barrier, or when an escape continuation is applied outside of its dynamic scope.

52

6. Exceptions and Control Flow 6.4. Dynamic Wind

6.4 Dynamic Wind

(dynamic-wind pre-thunk value-thunk post-thunk) applies its three thunk arguments in order. The
value of a dynamic-wind expression is the value returned by value-thunk. The pre-thunk procedure is
invoked before calling value-thunk and post-thunk is invoked after value-thunk returns. The special
properties of dynamic-wind are manifest when control jumps into or out of the value-thunk application (either
due to a prompt abort or a continuation invocation): every time control jumps into the value-thunk application,
pre-thunk is invoked, and every time control jumps out of value-thunk, post-thunk is invoked. (No special
handling is performed for jumps into or out of the pre-thunk and post-thunk applications.)

When dynamic-wind calls pre-thunk for normal evaluation of value-thunk, the continuation of
the pre-thunk application calls value-thunk (with dynamic-wind’s special jump handling) and then
post-thunk. Similarly, the continuation of the post-thunk application returns the value of the preceding
value-thunk application to the continuation of the entire dynamic-wind application.

When pre-thunk is called due to a continuation jump, the continuation of pre-thunk

1. jumps to a more deeply nested pre-thunk, if any, or jumps to the destination continuation; then

2. continues with the context of the pre-thunk’s dynamic-wind call.

Normally, the second part of this continuation is never reached, due to a jump in the first part. However, the second part
is relevant because it enables jumps to escape continuations that are contained in the context of the dynamic-wind
call. Furthermore, it means that the continuation marks (see §6.6) and parameterization (see §7.9) for pre-thunk
correspond to those of the dynamic-wind call that installed pre-thunk. The pre-thunk call, however, is
parameterize-breaked to disable breaks (see also §6.7).

Similarly, when post-thunk is called due to a continuation jump, the continuation of post-thunk jumps to
a less deeply nested post-thunk, if any, or jumps to a pre-thunk protecting the destination, if any, or jumps
to the destination continuation, then continues from the post-thunk’s dynamic-wind application. As for
pre-thunk, the parameterization of the original dynamic-wind call is restored for the call, and the call is
parameterize-breaked to disable breaks.

In both cases, the target for a jump is recomputed after each pre-thunk or post-thunk completes. When a
prompt-delimited continuation (see §6.5) is captured in a post-thunk, it might be delimited and instantiated in such
a way that the target of a jump turns out to be different when the continuation is applied than when the continuation
was captured. There may even be no appropriate target, if a relevant prompt or escape continuation is not in the
continuation after the restore; in that case, the first step in a pre-thunk or post-thunk’s continuation can raise
an exception.

Example:

(let ([v (let/ec out
(dynamic-wind
(lambda () (display "in "))
(lambda ()
(display "pre ")
(display (call/cc out))
#f)

(lambda () (display "out "))))])
(when v (v "post ")))
; ⇒ displays in pre out in post out

(let/ec k0

53

6.5. Prompts and Composable Continuations 6. Exceptions and Control Flow

(let/ec k1
(dynamic-wind
void
(lambda () (k0 ’cancel))
(lambda () (k1 ’cancel-canceled)))))

; ⇒ ’cancel-canceled

(let∗ ([x (make-parameter 0)]
[l null]
[add (lambda (a b)

(set! l (append l (list (cons a b)))))])
(let ([k (parameterize ([x 5])

(dynamic-wind
(lambda () (add 1 (x)))
(lambda () (parameterize ([x 6])

(let ([k+e (let/cc k (cons k void))])
(add 2 (x))
((cdr k+e))
(car k+e))))

(lambda () (add 3 (x)))))])
(parameterize ([x 7])
(let/cc esc
(k (cons void esc)))))

l) ; ⇒ ’((1 . 5) (2 . 6) (3 . 5) (1 . 5) (2 . 6) (3 . 5))

6.5 Prompts and Composable Continuations

For an introduction to composable continuations, see Sitaram and Felleisen, “Control Delimiters and Their Hierar-
chies,” Lisp and Symbolic Computation, 1990.

MzScheme’s support for prompts and composable continuations most closely resembles Dorai Sitaram’s % and
fcontrol operators (see “Handling Control,” Proc. Conference on Programming Language Design and Implemen-
tation, 1993). Since composable continuations capture and invoke dynamic-wind thunks, however, the fcontrol
operator is split into separate capture and abort operations, giving programmers more flexibility with respect to es-
capes. Composable continuations also capture continuation marks (see §6.6) and exception handlers (see §6.1).

See also Chapter 15 of PLT MzLib: Libraries Manual for wrappers of MzScheme’s primitives. The wrapper are
generally simpler to use and have more standard names.

(call-with-continuation-prompt thunk [prompt-tag handler-proc-or-false]) calls thunk
with the current continuation extended by a prompt. The prompt is tagged by prompt-tag, which must be a result
from either default-continuation-prompt-tag (the default) or make-continuation-prompt-tag.
The handler-proc-or-false argument specifies a handler procedure; the handler is called in tail po-
sition with repsect to the call-with-continuation-prompt call when the installed prompt is the
target of a abort-current-continuation call with prompt-tag, and the remaining arguments of
abort-current-continuation are supplied to the handler procedure. If handler-proc-or-false is #f
or not supplied, the default handler accepts a single abort-thunk argument and calls (call-with-continuation-prompt
abort-thunk prompt-tag #f); that is, the default handler re-installs the prompt and continues with a given
thunk.

(abort-current-continuation prompt-tag obj · · ·1) resets the current continuation to that of
the nearest prompt tagged by prompt-tag in the current continuation; if no such prompt exists, the
exn:fail:contract:continuation exception is raised. The objs are delivered as arguments to the target

54

6. Exceptions and Control Flow 6.6. Continuation Marks

prompt’s handler procedure.

The protocol for objs supplied to an abort is specific to the prompt-tag. When abort-current-continuation
is used with (default-continuation-prompt-tag), generally a single thunk should be supplied that is suit-
able for use with the default prompt handler. Similarly, when call-with-continuation-prompt is used
with (default-continuation-prompt-tag), the associated handler should generally accept a single thunk
argument.

(make-continuation-prompt-tag [symbol]) creates a prompt tag that is not equal? to the result of any
other value (including prior or future results from make-continuation-prompt-tag). The optional symbol
argument, if supplied, is used when printing the prompt tag.

(default-continuation-prompt-tag) returns a fixed, constant prompt tag for a which a prompt is installed
at the start of every thread’s continuation; the handler for each thread’s initial prompt accepts any number of values
and returns. The result of default-continuation-prompt-tag is the default tag for more any procedure that
accepts a prompt tag.

A continuation captured by (call-with-current-continuation ... promt-tag) is truncated at
the nearest prompt tagged by prompt-tag in the current continuation; if no such prompt exists, the
exn:fail:contract:continuation exception is raised. The truncated continuation includes only
dynamic-wind thunks (see §6.4) installed since the prompt.

When a continuation procedure is applied, it removes the portion of the current continuation up to
the nearest prompt tagged by prompt-tag (not including the prompt; if no such prompt exists, the
exn:fail:contract:continuation exception is raised), or up to the nearest continuation frame (if any)
shared by the current and captured continuations — whichever is first. While removing continuation frames,
dynamic-wind post-thunks are executed. Finally, the (unshared portion of the) captured continuation is ap-
pended to the remaining continuation, applying dynamic-wind pre-thunks.

(call-with-composable-continuation proc [prompt-tag]) is similar to call-with-current-continuation,
but applying the resulting continuation procedure does not remove any portion of the current continuation. In-
stead, application always extends the current continuation with the captured continuation (without installing any
prompts other than those be captured in the continuation). When call-with-composable-continuation
is called, if a continuation barrier appears in the continuation before the closest prompt tagged by prompt-tag, the
exn:fail:contract:continuation exception is raised.

(continuation-prompt-available? prompt-tag [cont]) returns #t if cont includes a prompt
tagged by prompt-tag, #f otherwise. The cont argument defaults to the current continuation.

6.6 Continuation Marks

To evaluate a sub-expression, MzScheme creates a continuation for the sub-expression that extends the current contin-
uation. For example, to evaluate expr1 in the expression

(begin
expr1
expr2)

MzScheme extends the continuation of the begin expression with one continuation frame to create the continuation
for expr1. In contrast, expr2 is in tail position for the begin expression, so its continuation is the same as the
continuation of the begin expression.

A continuation mark is a keyed mark in a continuation frame. A program can install a mark in the first frame of its
current continuation, and it can extract the marks from all of the frames in any continuation (up to the nearest prompt

55

6.6. Continuation Marks 6. Exceptions and Control Flow

for a specified prompt tag).

Continuation marks support debuggers and other program-tracing facilities; in particular, continuation frames roughly
correspond to stack frames in traditional languages. For example, when a procedure is called, MzScheme automatically
installs a continuation mark with the procedure’s name and source location; when an exception occurs, the marks can
be extracted from the current continuation to produce a “stack trace” for the exception.3 A more sophisticated debugger
can annotate a source program to store continuation marks that relate individual expressions to source locations.

The list of continuation marks for a key k and a continuation C that extends C0 is defined as follows:

• If C is an empty continuation, then the mark list is null.

• If C’s first frame contains a mark m for k, then the mark list for C is (cons m l0), where l0 is the mark list
for k in C0.

• If C’s first frame does not contain a mark keyed by k, then the mark list for C is the mark list for C0.

The with-continuation-mark form installs a mark on the first frame of the current continuation:

(with-continuation-mark key-expr mark-expr
body-expr)

The key-expr, mark-expr, and body-expr expressions are evaluated in order. After key-expr is evaluated to
obtain a key and mark-expr is evaluated to obtain a mark, the key is mapped to the mark in the current continuation’s
initial frame. If the frame already has a mark for the key, it is replaced. Finally, the body-expr is evaluated; the
continuation for evaluating body-expr is the continuation of the with-continuation-mark expression (so
the result of the body-expr is the result of the with-continuation-mark expression, and body-expr is in
tail position for the with-continuation-mark expression).

The continuation-marks procedure extracts the complete set of continuation marks from a continuation (up to
a prompt), and the continuation-mark-set->list procedure extracts mark values for a particular key from
a continuation mark set. The complete set of continuation-mark procedures follows:

• (continuation-marks cont [prompt-tag]) returns an opaque value containing the set of continu-
ation marks for all keys in the continuation cont up to the prompt tagged by prompt-tag. If cont is an
escape continuation (see §6.3), then the current continuation must extend cont, or the exn:fail:contract
exception is raised. If cont was not captured with respect to prompt-tag and does not include a prompt
for prompt-tag, the exn:fail:contract exception is raised. The prompt-tag argument defaults to
(default-continuation-prompt-tag)

• (current-continuation-marks [prompt-tag]) returns an opaque value containing the set
of continuation marks for all keys in the current continuation up to prompt-tag. In other
words, it produces the same value as (call-with-current-continuation (lambda (k)
(continuation-marks k prompt-tag)) prompt-tag). As usual, prompt-tag defaults to
(default-continuation-prompt-tag).

• (continuation-mark-set->list mark-set key-v [prompt-tag]) returns a newly-created
list containing the marks for key-v in mark-set, which is a set of marks returned by
current-continuation-marks. The result list is truncated at the first point, if any, where continuation
frames were originally separated by a prompt tagged with prompt-tag. As usual, prompt-tag defaults to
(default-continuation-prompt-tag).

3Since stack-trace marks are applied dynamically, they do not necessarily correspond to uses of with-continuation-mark on the source,
and stack-trace marks can be affected by optimization or just-in-time compilation of the code. A stack traces is therefore useful as a debugging hint
only.

56

6. Exceptions and Control Flow 6.6. Continuation Marks

• (continuation-mark-set->list* mark-set key-list [none-v prompt-tag]) returns a
newly-created list containing vectors of marks in mark-set for the keys in key-list, up to prompt-tag.
The length of each vector in the result list is the same as the length of key-list, and a value in a particular
vector position is the value for the corresponding key in key-list. Values for multiple keys appear in a single
vector only when the marks are for the same continuation frame in mark-set. If none-v is supplied, it is
used for vector elements to indicate the lack of a value; the default is #f.

• (continuation-mark-set-first optional-mark-set key-v [prompt-tag]) returns the
first element of the list that would be returned by (continuation-mark-set->list (or
optional-mark-set (current-continuation-marks prompt-tag)) key-v prompt-tag),
or #f if the result would be the empty list. Typically, this result can be computed more quickly using
continuation-mark-set-first.

• (continuation-mark-set? v) returns #t if v is a mark set created by continuation-marks or
current-continuation-marks, #f otherwise.

• (continuation-mark-set->context mark-set) returns a list representing a “stack trace” for
mark-set’s continuation. The list contains pairs, where the car of each pair contains either #f or a symbol
for a procedure name, and the cdr of each pair contains either #f or a srcloc value for the procedure’s source
location (see §11.2.1.1); the car and cdr are never both #f.

The stack-trace list is the result of continuation-mark-set->list with mark-set and MzScheme’s
private key for procedure-call marks. A stack trace is extracted from an exception and displayed by the default
error display handler (see §6) for exceptions other than exn:fail:user (see raise-user-error in §6.2).

Examples:

(define (extract-current-continuation-marks key)
(continuation-mark-set->list
(current-continuation-marks)
key))

(with-continuation-mark ’key ’mark
(extract-current-continuation-marks ’key)) ; ⇒ ’(mark)

(with-continuation-mark ’key1 ’mark1
(with-continuation-mark ’key2 ’mark2
(list
(extract-current-continuation-marks ’key1)
(extract-current-continuation-marks ’key2)))) ; ⇒ ’((mark1) (mark2))

(with-continuation-mark ’key ’mark1
(with-continuation-mark ’key ’mark2 ; replaces the previous mark
(extract-current-continuation-marks ’key)))) ; ⇒ ’(mark2)

(with-continuation-mark ’key ’mark1
(list ; continuation extended to evaluate the argument
(with-continuation-mark ’key ’mark2

(extract-current-continuation-marks ’key)))) ; ⇒ ’((mark1 mark2))

(let loop ([n 1000])
(if (zero? n)

(extract-current-continuation-marks ’key)
(with-continuation-mark ’key n
(loop (sub1 n))))) ; ⇒ ’(1)

57

6.7. Breaks 6. Exceptions and Control Flow

In the final example, the continuation mark is set 1000 times, but extract-current-continuation-marks
returns only one mark value. Because loop is called tail-recursively, the continuation of each call to loop is always
the continuation of the entire expression. Therefore, the with-continuation-mark expression replaces the
existing mark each time rather than adding a new one.

Whenever MzScheme creates an exception record, it fills the continuation-marks field with the value of
(current-continuation-marks), thus providing a snapshot of the continuation marks at the time of the
exception.

When a continuation procedure returned by call-with-current-continuation or call-with-composable-continuation
is invoked, it restores the captured continuation, and also restores the marks in the continuation’s frames to the marks
that were present when call-with-current-continuation or call-with-composable-continuation
was invoked.

6.7 Breaks

A break is an asynchronous exception, usually triggered through an external source controlled by the user, or through
the break-thread procedure (see §7.3). A break exception can only occur in a thread while breaks are enabled.
When a break is detected and enabled, the exn:break exception is raised in the thread sometime afterward; if
breaking is disabled when break-thread is called, the break is suspended until breaking is again enabled for the
thread. While a thread has a suspended break, additional breaks are ignored.

Breaks are enabled through the break-enabled parameter-like procedure, and through the parameterize-break
form, which is analogous to parameterize (see §7.9). The break-enabled procedure does not represent a pa-
rameter to be used with parameterize, because changing the break-enabled state of a thread requires an explicit
check for breaks, and this check is incompatible with the tail evaluation of a parameterize expression’s body.

• (break-enabled [on?])— gets or sets the break enabled state of the current thread. If on? is not supplied,
the result is #t if break are currently enabled, #f otherwise. If on? is supplied as #f, breaks are disabled, and
if on? is a true value, breaks are enabled.

• (parameterize-break boolean-expr expr · · ·1) evaluates boolean-expr to determine
whether breaks are initially enabled in while evaluating exprs in sequence. The result of the
parameter-break expression is the result of the last expr.

Like parameterize (see §7.9), a fresh thread cell (see §7.8) is allocated to hold the break-enabled state of
the continuation, and calls to break-enabled within the continuation access or modify the new cell.

• (current-break-parameterization) is analogous to (current-parameterization) (see
§7.9); it returns a break-parameterization (effectively a thread cell) that holds the current continuation’s break-
enable state.

• (call-with-break-parameterization break-param thunk) is analogous to (call-with-parameterization
parameterization thunk) (see §7.9); it calls thunk in a continuation whose break-enabled
state is in break-param. The thunk is not called in tail position with respect to the
call-with-break-parameterization call.

Certain procedures, such as semaphore-wait/enable-break, enable breaks temporarily while performing a
blocking action. If breaks are enabled for a thread, and if a break is triggered for the thread but not yet delivered as an
exn:break exception, then the break is guaranteed to be delivered before breaks can be disabled in the thread. The
timing of exn:break exceptions is not guaranteed in any other way.

Before calling a with-handlers predicate or handler, an exception handler, an error display handler, an error
escape handler, an error value conversion handler, or a pre-thunk or post-thunk for a dynamic-wind (see

58

6. Exceptions and Control Flow 6.8. Error Escape Handler

§6.4), the call is parameterize-breaked to disable breaks. Furthermore, breaks are disabled during the tran-
sitions among handlers related to exceptions, during the transitions between pre-thunks and post-thunks for
dynamic-wind, and during other transitions for a continuation jump. For example, if breaks are disabled when a
continuation is invoked, and if breaks are also disabled in the target continuation, then breaks will remain disabled until
from the time of the invocation until the target continuation executes unless a relevant dynamic-wind pre-thunk
or post-thunk explicitly enables breaks.

If a break is triggered for a thread that is blocked on a nested thread (see call-in-nested-thread), and if breaks
are enabled in the blocked thread, the break is implicitly handled by transferring it to the nested thread.

When breaks are enabled, they can occur at any point within execution, which makes certain implementation tasks
subtle. For example, assuming breaks are enabled when the following code is executed,

(with-handlers ([exn:break? (lambda (x) (void))])
(semaphore-wait s))

then it is not the case that a void result means the semaphore was decremented or a break was received, exclusively.
It is possible that both occur: the break may occur after the semaphore is successfully decremented but before a void
result is returned by semaphore-wait. A break exception will never damage a semaphore, or any other built-in
construct, but many built-in procedures (including semaphore-wait) contain internal sub-expressions that can be
interrupted by a break.

In general, it is impossible using only semaphore-wait to implement the guarantee that either the
semaphore is decremented or an exception is raised, but not both. MzScheme therefore supplies
semaphore-wait/enable-break (see §7.4), which does permit the implementation of such an exclusive guar-
antee:

(parameterize ([break-enabled #f])
(with-handlers ([exn:break? (lambda (x) (void))])
(semaphore-wait/enable-break s)))

In the above expression, a break can occur at any point until breaks are disabled, in which case a break
exception is propagated to the enclosing exception handler. Otherwise, the break can only occur within
semaphore-wait/enable-break, which guarantees that if a break exception is raised, the semaphore will
not have been decremented.

To allow similar implementation patterns over blocking port operations, MzScheme provides read-bytes-avail!/enable-break
(see §11.2.1), write-bytes-avail/enable-break (see §11.2.2), and other procedures.

6.8 Error Escape Handler

Special control flow for exceptions is performed by an error escape handler that is called by the default exception
handler. An error escape handler takes no arguments and must escape from the expression that raised the exception.
The error escape handler is obtained or set using the error-escape-handler parameter (see §7.9.1.7).

An error escape handler cannot invoke a full continuation that was created prior to the exception, but it can abort to a
prompt (see §6.5) or invoke an escape continuation (see §6.3).

The error escape handler is normally called directly by an exception handler, in a parameterization that sets the error
display and escape handlers to the default handlers, and parameterize-breaked to disable breaks. To escape
from a run-time error, use raise (see §6.1) or error (see §6.2).

The default error escape handler escapes using (abort-current-continuation (default-continuation-prompt-tag)
void). Thus, error escapes are best handled by installing a prompt, rather than by changing the error escape handler.

59

6.8. Error Escape Handler 6. Exceptions and Control Flow

In the following example, a prompt is installed that so errors do not escape from a custom read-eval-print loop:

(let retry-loop ()
(call-with-continuation-prompt
(lambda ()
(let loop ()
(let ([e (my-read)])
(unless (eof-object? e)
(let ([v (my-eval e)])
(my-print v))

(loop)))))
(default-continuation-prompt-tag)
(lambda args (retry-loop))))

See also read-eval-print-loop in §14.1 for a simpler and more complete implementation of a custom read-
eval-print loop.

60

7. Threads

MzScheme supports multiple threads of control within a program. Threads are implemented for all operating systems,
even when the operating system does not provide primitive thread support.

(thread thunk) invokes the procedure thunk with no arguments in a new thread of control. The thread
procedure returns immediately with a thread descriptor value. When the invocation of thunk returns, the thread
created to invoke thunk terminates.

Example:

(thread (lambda () (sleep 2) (display 7) (newline))) ; ⇒ a thread descriptor

displays 7 after two seconds pass

Each thread has its own parameter settings (see §7.9), such as the current directory or current exception handler. A
newly-created thread inherits the parameter settings of the creating thread.

When a thread is created, it is placed into the management of the current custodian (see §9.2) and added to the current
thread group (see §9.3). A thread can have any number of custodian managers added through thread-resume.

A thread that has not terminated can be “garbage collected” if it is unreachable and suspended, or if it is unreachable
and blocked on a set of unreachable events through semaphore-wait or semaphore-wait/enable-break
(see §7.4), channel-put or channel-get (see §7.5), sync or sync/enable-break (see §7.7), or
thread-wait.1

All constant-time procedures and operations provided by MzScheme are thread-safe because they are atomic. For
example, set! assigns to a variable as an atomic action with respect to all threads, so that no thread can see a “half-
assigned” variable. Similarly, vector-set! assigns to a vector atomically. The hash-table-put! procedure
is not atomic, but the table is protected by a lock; see §3.14 for more information. Port operations are generally not
atomic, but they are thread-safe in the sense that a byte consumed by one thread from an input port will not be returned
also to another thread, and procedures like port-commit-peeked (see §11.2.1) and write-bytes-avail (see
§11.2.2) offer specific concurrency guarantees.

7.1 Suspending, Resuming, and Killing Threads

(thread-suspend thread) immediately suspends the execution of thread if it is running. If the thread has
terminated or is already suspended, thread-suspend has no effect. The thread remains suspended (i.e., it does
not execute) until it is resumed with thread-resume. If the current custodian (see §9.2) does not manage thread
(and none of its subordinates manages thread), the exn:fail:contract exception is raised, and the thread is
not suspended.

(thread-resume thread [thread-or-custodian]) resumes the execution of thread if it is suspended
and has at least one custodian (possibly added through thread-or-custodian, as described below). If the thread

1In MrEd, a handler thread for an eventspace is blocked on an internal semaphore when its event queue is empty. Thus, the handler thread is
collectible when the eventspace is unreachable and contains no visible windows or running timers.

61

7.2. Synchronizing Thread State 7. Threads

has terminated, or if the thread is already running and thread-or-custodian is not supplied, or if the thread has
no custodian and thread-or-custodian is not supplied, then thread-resume has no effect. Otherwise, if
thread-or-custodian is supplied, it triggers up to three additional actions:

• If thread-or-custodian is a thread, whenever it is resumed from a suspended state in the future, then
thread is also resumed. (Resuming thread may trigger the resumption of other threads that were previously
attached to thread through thread-resume.)

• New custodians may be added to thread’s set of managers. If thread-or-custodian is a thread, then
all of the thread’s custodians are added to thread. Otherwise, thread-or-custodian is a custodian,
and it is added to thread (unless the custodian is already shut down). If thread becomes managed by both
a custodian and one or more of its subordinates, the redundant subordinates are removed from thread. If
thread is suspended and a custodian is added, then thread is resumed only after the addition.

• If thread-or-custodian is a thread, whenever it receives a new managing custodian in the future, then
thread also receives the custodian. (Adding custodians to thread may trigger adding the custodians to other
threads that were previously attached to thread through thread-resume.)

(kill-thread thread) terminates the specified thread immediately, or suspends the thread if thread was
created with thread/suspend-to-kill. Terminating the main thread exits the application. If thread has
already terminated, kill-thread does nothing. If the current custodian (see §9.2) does not manage thread (and
none of its subordinates manages thread), the exn:fail:contract exception is raised, and the thread is not
killed or suspended.

Unless otherwise noted, procedures provided by MzScheme (and MrEd) are kill-safe and suspend-safe; that is, killing
or suspending a thread never interferes with the application of procedures in other threads. For example, if a thread is
killed while extracting a character from an input port, the character is either completely consumed or not consumed,
and other threads can safely use the port.

(thread/suspend-to-kill thunk) is like (thread thunk), except that “killing” the current thread
through kill-thread or custodian-shutdown-all (see §9.2) merely suspends the thread instead of ter-
minating it.

7.2 Synchronizing Thread State

(thread-wait thread) blocks execution of the current thread until thread has terminated. Note that
(thread-wait (current-thread)) deadlocks the current thread, but a break can end the deadlock (if break-
ing is enabled; see §6.7).

(thread-dead-evt thread) returns a synchronizable event (see §7.7) that is ready if and only if thread has
terminated. Unlike using thread directly, however, a reference to the event does not prevent thread from being
“garbage collected.”

(thread-resume-evt thread) returns a synchronizable event (see §7.7) that becomes ready when thread
is running. (If thread has terminated, the event never becomes ready.) If thread runs and is then suspended after
a call to thread-resume-evt, the result event remains ready; after each suspend of thread a fresh event is
generated to be returned by thread-resume-evt. The result of the event is thread, but if thread is never
resumed, then reference to the event does not prevent thread from being “garbage collected.”

(thread-suspend-evt thread) returns a synchronizable event (see §7.7) that becomes ready when thread
is suspended. (If thread has terminated, the event will never unblock.) If thread is suspended and then resumes
after a call to thread-suspend-evt, the result event remains ready; after each resume of thread created a fresh
event to be returned by thread-suspend-evt.

62

7. Threads 7.3. Additional Thread Utilities

7.3 Additional Thread Utilities

(current-thread) returns the thread descriptor for the currently executing thread.

(thread? v) returns #t if v is a thread descriptor, #f otherwise.

(sleep [x]) causes the current thread to sleep until at least x seconds have passed after it starts sleeping, where
x is a non-negative real number. The x argument defaults to 0, which simply acts as a hint to allow other threads to
execute. The value of x can be non-integral to request a sleep duration to any precision; the precision of the actual
sleep time is unspecified.

(thread-running? thread) returns #t if thread has not terminated and is not suspended, #f otherwise.

(thread-dead? thread) returns #t if thread has terminated, #f otherwise.

(break-thread thread) registers a break with the specified thread. If breaking is disabled in thread, the
break will be ignored until breaks are re-enabled (see §6.7).

(call-in-nested-thread thunk [custodian]) creates a nested thread managed by custodian to ex-
ecute thunk.2 The current thread blocks until thunk returns, and the result of the call-in-nested-thread
call is the result returned by thunk. The default value of custodian is the current custodian (see §9.2).

The nested thread’s exception handler is initialized to a procedure that jumps to the beginning of the thread and
transfers the exception to the original thread. The handler thus terminates the nested thread and re-raises the exception
in the original thread.

If the thread created by call-in-nested-thread dies before thunk returns, the exn:fail exception is raised
in the original thread. If the original thread is killed before thunk returns, a break is queued for the nested thread.

If a break is queued for the original thread (with break-thread) while the nested thread is running, the break is
redirected to the nested thread. If a break is already queued on the original thread when the nested thread is created,
the break is moved to the nested thread. If a break remains queued on the nested thread when it completes, the break
is moved to the original thread.

7.4 Semaphores

A semaphore is a value that is used to synchronize MzScheme threads. Each semaphore has an internal counter;
when this counter is zero, the semaphore can block a thread’s execution (through semaphore-wait) until another
thread increments the counter (using semaphore-post). The maximum value for a semaphore’s internal counter is
platform-specific, but always at least 10000.

A semaphore’s counter is updated in a single-threaded manner, so that semaphores can be used for reliable synchro-
nization. Semaphore waiting is fair: if a thread is blocked on a semaphore and the semaphore’s internal value is
non-zero infinitely often, then the thread is eventually unblocked.

• (make-semaphore [init-k]) creates and returns a new semaphore with the counter initially set to
init-k, which defaults to 0. If init-k is larger than a semaphore’s maximum internal counter value, the
exn:fail:contract exception is raised.

• (semaphore? v) returns #t if v is a semaphore created by make-semaphore, #f otherwise.

• (semaphore-post sema) increments the semaphore’s internal counter and returns void. If the
semaphore’s internal counter has already reached its maximum value, the exn:fail exception is raised.

2The nested thread’s current custodian is inherited from the creating thread, independent of the custodian argument.

63

7.5. Channels 7. Threads

• (semaphore-wait sema) blocks until the internal counter for semaphore sema is non-zero. When the
counter is non-zero, it is decremented and semaphore-wait returns void.

• (semaphore-try-wait? sema) is like semaphore-wait, but semaphore-try-wait? never
blocks execution. If sema’s internal counter is zero, semaphore-try-wait? returns #f immediately with-
out decrementing the counter. If sema’s counter is positive, it is decremented and #t is returned.

• (semaphore-wait/enable-break sema) is like semaphore-wait, but breaking is enabled (see
§6.7) while waiting on sema. If breaking is disabled when semaphore-wait/enable-break is called,
then either the semaphore’s counter is decremented or the exn:break exception is raised, but not both.

• (semaphore-peek-evt sema) creates and returns a new synchronizable event (for use with sync, for
example) that is ready when sema is ready, but synchronizing the event does not decrement sema’s internal
count.

• (call-with-semaphore sema proc [try-fail-thunk arg ···])waits on sema using semaphore-wait,
calls proc with all args, and then posts to sema. A continuation barrier blocks full continuation jumps into
or out of proc (see §6.3), but escape jumps are allowed, and sema is posted on escape. If try-fail-thunk
is provided and is not #f, then semaphore-try-wait? is called on sema instead of semaphore-wait,
and try-fail-thunk is called if the wait fails.

• (call-with-semaphore/enable-break sema proc [try-fail-thunk arg · · ·]) is like
call-with-semaphore, except that semaphore-wait/enable-break is used with sema in non-
try mode. When try-fail-thunk is provided and not #f, then breaks are enabled around the use of
semaphore-try-wait? on sema.

See also sync in §7.7.

7.5 Channels

A synchronous channel is a value that is used to synchronize MzScheme threads: one thread sends a value to another
thread, and both the sender and the receiver block until the (atomic) transaction is complete. Multiple senders and
receivers can access a channel at once, but a single sender and receiver is selected for each transaction.

Channel synchronization is fair: if a thread is blocked on a channel and transaction opportunities for the channel occur
infinitely often, then the thread eventually participates in a transaction.

For buffered asynchronous channels, see Chapter 4 of PLT MzLib: Libraries Manual.

• (make-channel) creates and returns a new channel. The channel can be used with channel-get, with
channel-try-get, or as a synchronizable event (see §7.7) to receive a value through the channel. The
channel can be used with channel-put or through the result of channel-put-evt to send a value through
the channel.

• (channel? v) returns #t if v is a channel created by make-channel, #f otherwise.

• (channel-get channel) blocks until a sender is ready to provide a value through channel. The result
is the sent value.

• (channel-try-get channel) receives and returns a value from channel if a sender is immediately
ready, otherwise returns #f.

• (channel-put channel v) blocks until a receiver is ready to accept the value v through channel. The
result is void.

64

7. Threads 7.6. Alarms

• (channel-put-evt channel v) returns a fresh synchronizable event for use with sync (see §7.7). The
event is ready when (channel-put channel v) would not block, and the event’s synchronization result
is the event itself.

7.6 Alarms

An alarm is a synchronizable event (see §7.7) that is ready only after particular date and time. The time is specified as
a real number that is consistent with current-inexact-milliseconds (see §15.1.2).

(alarm-evt msecs-n) returns a synchronizable event for use with sync. The event is not ready when
(current-inexact-milliseconds) would return a value that is less than msecs-n, and it is ready when
(current-inexact-milliseconds) would return a value that is more than msecs-n.

The sync function accepts a timeout argument in addition to alarm events. Unlike the timeout, however, the result of
alarm-evt can be combined with wrap-evt and other event operations.

7.7 Synchronizing Events

(sync evt · · ·1) blocks as long as none of the synchronizable events evts are ready, as defined below. Certain
kinds of objects double as events, including ports and threads, and other kinds of objects exist only for their use as
events.

(sync/timeout timeout evt · · ·1) is like sync, but with a timeout. If no evt is ready before timeout
seconds have passed, the result is #f. The timeout argument can be a real number or #f; if timeout is #f, then
sync/timeout behaves like sync. If timeout is 0, each evt is checked at least once, so a timeout value of
0 can be used for polling. (See alarm-evt in §7.6 for an alternative timeout mechanism.)

For either sync or sync/timeout, when at least one evt is ready, its result (often evt itself) is re-
turned. If multiple evts are ready, one of the evts is chosen pseudo-randomly for the result. (The
current-evt-pseudo-random-generator parameter sets the random-number generator that controls this
choice; see §7.9.1.10.)

Choosing a ready evt may affect the state of evt. For example, if the chosen ready evt is a semaphore, then the
semaphore’s internal count is decremented, just as with semaphore-wait. For most kinds of events, however (such
as a port), evt’s state is not modified.

Only certain kinds of built-in values, listed below, act as events in stand-alone MzScheme. If any other kind of value
is provided to sync, the exn:fail:contract exception is raised. An extension or embedding application can
extend the set of primitive events — in particular, an eventspace in MrEd is an event — and new structure types can
generate events (see §4.7).

• semaphore — a semaphore is ready only when semaphore-wait (see §7.4) would not block. The syn-
chronization result of semaphore is semaphore itself.

• semaphore-peek — a semaphore returned by semaphore-peek-evt applied to semaphore (see
§7.4) is ready exactly when semaphore is ready. The synchronization result of semaphore-peek is
semaphore-peek itself.

• channel — a channel returned by make-channel is ready when channel-get would not block (see
§7.5). The channel’s result as an event is the same as the channel-get result.

• channel-put — an event returned by channel-put-evt applied to channel is ready when
channel-put would not block on channel (see §7.5). The synchronization result of channel-put is
channel-put itself.

65

7.7. Synchronizing Events 7. Threads

• input-port — an input port is ready as an event when read-byte would not block. The synchronization
result of input-port is input-port itself.

• output-port — an output port is ready when write-bytes-avail would not block (see §11.2.2) or
when the port contains buffered characters and write-bytes-avail∗ can flush part of the buffer (although
write-bytes-availmight block). The synchronization result of output-port is output-port itself.

• progress — an event produced by port-progress-evt applied to input-port is ready after any
subsequent read from input-port. The synchronization result of progress is progress itself.

• tcp-listener — a TCP listener is ready when tcp-accept (see §11.4.1) would not block. The synchro-
nization result of listener is listener itself.

• thread — a thread is ready when thread-wait (see §7.2) would not block. The synchronization result of
thread is thread itself.

• thread-dead — an event returned by thread-dead-evt (see §7.2) applied to thread is ready when
thread has terminated. The synchronization result of thread-dead is thread-dead itself.

• thread-resume — an event returned by thread-resume-evt (see §7.2) applied to thread is ready
when thread subsequently resumes execution (if it was not already running). The event’s result is thread.

• thread-suspend — an event returned by thread-suspend-evt (see §7.2) applied to thread is
ready when thread subsequently suspends execution (if it was not already suspended). The event’s result
is thread.

• alarm — an event returned by alarm-evt (see §7.6) is ready after a particular date and time. The synchro-
nization result of alarm is alarm itself.

• subprocess — a subprocess is ready when subprocess-wait (see §15.2) would not block. The synchro-
nization result of subprocess is subprocess itself.

• will-executor — a will executor is ready when will-execute (see §13.3) would not block. The syn-
chronization result of will-executor is will-executor itself.

• udp — an event returned by udp-send-evt or udp-receive!-evt (see §11.4.2) is ready when a send
or receive on the original socket would block, respectively. The synchronization result of udp is udp itself.

• choice — an event returned by choice-evt (see below) is ready when one or more of the evts supplied to
chocie-evt are ready. If the choice event is chosen, one of its ready evts is chosen pseudo-randomly, and
the result is the chosen evt’s result.

• wrap — an event returned by wrap-evt applied to evt and proc is ready when evt is ready. The event’s
result is obtained by a call to proc (with breaks disabled) on the result of evt.

• handle — an event returned by handle-evt applied to evt and proc is ready when evt is ready. The
event’s result is obtained by a tail call to proc on the result of evt.

• guard — an event returned by guard-evt applied to thunk generates a new event every time that guard
is used with sync (or whenever it is part of a choice event used with sync, etc.); the generated event is the
result of calling thunk when the synchronization begins; if thunk returns a non-event, then thunk’s result
is replaced with an event that is ready and whose result is guard.

• nack-guard — an event returned by nack-guard-evt applied to proc generates a new event every
time that nack-guard is used with sync (or whenever it is part of a choice event used with sync, etc.);
the generated event is the result of calling proc with a NACK (“negative acknowledgment”) event when the
synchronization begins; if proc returns a non-event, then proc’s result is replaced with an event that is ready
and whose result is nack-guard-evt.

66

7. Threads 7.7. Synchronizing Events

If the event from proc is not ultimately chosen as the unblocked event, then the NACK event supplied to proc
becomes ready with a void value. This NACK event becomes ready when the event is abandoned because some
other event is chosen, because the synchronizing thread is dead, or because control escaped from the call to
sync (even if nack-guard’s proc has not yet returned a value). If the event returned by proc is chosen,
then the NACK event never becomes ready.

• poll-guard — an event returned by poll-guard-evt applied to proc generates a new event every time
that poll-guard is used with sync (or whenever it is part of a choice event used with sync, etc.); the
generated event is the result of calling proc with a boolean: #t if the event will be used for a poll, #f for a
blocking synchronization.

If #t is supplied to proc, if breaks are disabled, if the polling thread is not terminated, and if polling the
resulting event produces a result, the event will certainly be chosen for its result.

• struct — a structure whose type has the prop:evt property identifies/generates an event through the prop-
erty; see §4.7 for further information.

• always-evt — a constant event that is always ready. The synchronization result of always-evt is
always-evt itself.

• never-evt — a constant event that is never ready.

• idle-evt — an event produced by system-idle-evt is ready when, if this event were replaced by
never-evt, no thread in the system would be available to run. In other words, all threads must be suspended
or blocked on events with timeouts that have not yet expired. The event’s result is void.

(sync/enable-break evt · · ·1) is like sync, but breaking is enabled (see §6.7) while waiting on the evts.
If breaking is disabled when sync/enable-break is called, then either all evts remain unchosen or the
exn:break exception is raised, but not both.

(sync/timeout/enable-break timeout evt · · ·1) is like sync/enable-break, but with a timeout
in seconds (or #f, as for sync/timeout).

(choice-evt evt · · ·) creates and returns a single event that combines the evts. Supplying the result to sync
is the same as supplying each evt to the same call.

(wrap-evt evt wrap-proc) creates an event that is in a ready when evt is ready, but whose result is deter-
mined by applying wrap-proc to the result of evt. The call to wrap-proc is parameterize-breaked to
disable breaks initially. The evt cannot be an event created by handle-evt or any combination of choice-evt
involving an event from handle-evt.

(handle-evt evt handle-proc) is like wrap-evt, except that handle-proc is called in tail position
with respect to the synchronization request, and without breaks explicitly disabled.

(guard-evt generator-thunk) creates a value that behaves as an event, but that is actually an event generator.
For details, see sync, above.

(nack-guard-evt generator-proc) creates a value that behaves as an event, but that is actually an event
generator; the generator procedure receives an event that becomes ready with a void value if the generated event was
not ultimately chosen. For details, see sync, above.

(poll-guard-evt generator-proc) creates a value that behaves as an event, but that is actually an event
generator; the generator procedure receives a boolean indicating whether the event is used for polling. For details, see
sync, above.

always-evt is a global constant event that is always ready, with itself as its result.

67

7.8. Thread-Local Storage Cells 7. Threads

never-evt is a global constant event that is never ready.

(system-idle-evt) returns an event that is ready when the system is otherwise idle; see sync above for more
information. The result of the system-idle-evt procedure is always the same event.

(evt? v) returns #t if v is a synchronizable event, #f otherwise. See sync, above, for the list of built-in types
that act as synchronizable events.

(handle-evt? evt) returns #t if evt was created by handle-evt or by choice-evt applied to an-
other event for which handle-evt? produces #t. Such events are illegal as an argument to handle-evt or
wrap-evt, because they cannot be wrapped further. For any other event, handle-evt? produces #f, and the
event is a legal argument to handle-evt or wrap-evt for further wrapping.

7.8 Thread-Local Storage Cells

A thread cell contains a thread-specific value; that is, it contains a specific value for each thread, but it may contain
different values for different threads. A thread cell is created with a default value that is used for all existing threads.
When the cell’s content is changed with thread-cell-set!, the cell’s value changes only for the current thread.
Similarly, thread-cell-ref obtains the value of the cell that is specific to the current thread.

A thread cell’s value can be preserved, which means that when a new thread is created, the cell’s initial value for the
new thread is the same as the creating thread’s current value. If a thread cell is non-preserved, then the cell’s initial
value for a newly created thread is the default value (which was supplied when the cell was created).

Within the current thread, the current values of all preserved threads cells can be captured through
current-preserved-thread-cell-values. The captured set of values can be imperatively installed into
the current thread through another call to current-preserved-thread-cell-values. The capturing and
restoring threads can be different.

• (make-thread-cell v [preserved?]) creates and returns a new thread cell. Initially, v is the cell’s
value for all threads. If preserved? is true, then the cell’s initial value for a newly created threads is the
creating thread’s value for the cell, otherwise the cell’s value is initially v in all future threads. The default value
of preserved? is #f.

• (thread-cell? v) returns #t if v is a thread cell created by make-thread-cell, #f otherwise.

• (thread-cell-ref cell) returns the current value of cell for the current thread.

• (thread-cell-set! cell v) sets the value in cell to v for the current thread.

• (current-preserved-thread-cell-values [thread-cell-vals]) when called with no ar-
guments produces a thread-cell-vals that represents the current values (in the current thread) for
all preserved thread cells. When called with a thread-cell-vals generated by a previous call to
current-preserved-thread-cell-values, the values of all preserved thread cells (in the current
thread) are set to the values captured in thread-cell-vals; if a preserved thread cell was created after
thread-cell-vals was generated, then the thread cell’s value for the current thread reverts to its initial
value.

Examples:

(define cnp (make-thread-cell ’(nerve) #f))
(define cp (make-thread-cell ’(cancer) #t))

(thread-cell-ref cnp) ; ⇒ ’(nerve)
(thread-cell-ref cp) ; ⇒ ’(cancer)

68

7. Threads 7.9. Parameters

(thread-cell-set! cnp ’(nerve nerve))
(thread-cell-set! cp ’(cancer cancer))

(thread-cell-ref cnp) ; ⇒ ’(nerve nerve)
(thread-cell-ref cp) ; ⇒ ’(cancer cancer)

(define ch (make-channel))
(thread (lambda ()

(channel-put ch (thread-cell-ref cnp))
(channel-put ch (thread-cell-ref cp))
(channel-get ch) ; to wait
(channel-put ch (thread-cell-ref cp))))

(channel-get ch) ; ⇒ ’(nerve)
(channel-get ch) ; ⇒ ’(cancer cancer)

(thread-cell-set! cp ’(cancer cancer cancer))

(thread-cell-ref cp) ; ⇒ ’(cancer cancer cancer)
(channel-put ch ’ok)
(channel-get ch) ; ⇒ ’(cancer cancer)

7.9 Parameters

A parameter is a setting that is both thread-specific and continuation-specific, such as the current output port or the
current directory for resolving relative file paths. A parameter procedure retrieves and sets the value of a specific
parameter. For example, the current-output-port parameter procedure sets and retrieves a port value that is
used by display when a specific output port is not provided. Applying a parameter procedure without an argument
obtains the current value of a parameter in the current thread and continuation, and applying a parameter procedure
to a single argument sets the parameter’s value in the current thread and continuation (returning void). For example,
(current-output-port) returns the current default output port, while (current-output-port p) sets
the default output port to p.

In the empty continuation, each parameter corresponds to a preserved thread cell (see §7.8); the parameter procedure
accesses and sets the thread cell’s value (for the current thread). To parameterize code in a continuation-friendly
manner, use parameterize. The parameterize form introduces a fresh thread cell for the dynamic extent of
its body expressions. The syntax of parameterize is:

(parameterize ((parameter-expr value-expr) · · ·) body-expr · · ·1)

The result of a parameterize expression is the result of the last body-expr. The parameter-exprs de-
termine the parameters to set, and the value-exprs determine the corresponding values to install while evaluat-
ing the body-exprs. All of the parameter-exprs are evaluated first (and checked with parameter?), then
all value-exprs are evaluated, and then the parameters are bound in the continuation to preserved thread cells
that contain the values of the value-exprs. The last body-expr is in tail position with respect to the entire
parameterize form.

Outside the dynamic extent of a parameterize expression, parameters remain bound to other thread cells. Effec-
tively, therefore, old parameters settings are restored as control exits the parameterize expression.

If a continuation is captured during the evaluation of parameterize, invoking the continuation effectively re-
introduces the parameterization. More generally, a continuation’s parameter-to-thread-cell mapping is called a pa-
rameterization, and a parameterization is associated to a continuation via a continuation mark (see §6.6) using a

69

7.9. Parameters 7. Threads

private key. The current-parameterization procedure returns the current continuation’s parameterization.
The call-with-parameterization procedure takes a parameterization and a thunk; it sets the current contin-
uation’s parameterization to the given one, and calls the thunk through a tail call.

When a new thread is created, the parameterization for the new thread’s initial continuation is the parameterization of
the creator thread. Since each parameter’s thread cell is preserved, the new thread “inherits” the parameter values of its
creating thread. When a continuation is moved from one thread to another, settings introduced with parameterize
effectively move with the continuation. In contrast, direct assignment to a parameter (by calling the parameter pro-
cedure with a value) changes the value in a thread cell, and therefore changes the setting only for the current thread.
(Consequently, as far as the memory manager is concerned, the value originally associated with a parameter through
parameterize remains reachable as long the continuaton is reachable, even if the parameter is mutated.)

The parameterize∗ form has the same syntax as parameterize:

(parameterize∗ ((parameter-expr value-expr) · · ·) body-expr · · ·1)

Analogous to let∗ compared to let, parameterize∗ is the same as a nested series of single-parameter
parameterize forms.

Examples:

(parameterize ([exit-handler (lambda (x) ’no-exit)])
(exit)) ; ⇒ void

(define p1 (make-parameter 1))
(define p2 (make-parameter 2))
(parameterize ([p1 3]

[p2 (p1)])
(cons (p1) (p2))) ; ⇒ ’(3 . 1)

(let ([k (let/cc out
(parameterize ([p1 2])
(p1 3)
(cons (let/cc k

(out k))
(p1))))])

(if (procedure? k)
(k (p1))
k)) ; ⇒ ’(1 . 3)

(define ch (make-channel))
(parameterize ([p1 0])
(thread (lambda ()

(channel-put ch (cons (p1) (p2))))))
(channel-get ch) ; ⇒ ’(0 . 2)

(define k-ch (make-channel))
(define (send-k)
(parameterize ([p1 0])
(thread (lambda ()

(let/ec esc
(channel-put ch

((let/cc k
(channel-put k-ch k)
(esc)))))))))

70

7. Threads 7.9. Parameters

(send-k)
(thread (lambda () ((channel-get k-ch) (let ([v (p1)]) (lambda () v)))))
(channel-get ch) ; ⇒ 1
(send-k)
(thread (lambda () ((channel-get k-ch) p1)))
(channel-get ch) ; ⇒ 0

MzScheme parameters correspond to preserved thread fluids in Scsh. See also “Processes vs. User-Level Threads in
Scsh” by Gasbichler and Sperber (proceedings of the 2002 Scheme Workshop).

7.9.1 Built-in Parameters

MzScheme’s built-in parameter procedures are listed in the following sections. The make-parameter procedure,
described in §7.9.2, creates a new parameter and returns a corresponding parameter procedure.

7.9.1.1 CURRENT DIRECTORY

• (current-directory [path]) gets or sets a path that determines the current directory. When the pa-
rameter procedure is called to set the current directory, the path argument is expanded, simplified using
simplify-path (see §11.3.1), and then converted to a directory path with path->directory-path;
expansion and simplification raise an exception if the path is ill-formed. The path is not checked for existence
when the parameter is set.

7.9.1.2 PORTS

• (current-input-port [input-port]) gets or sets an input port used by read, read-byte,
read-char, etc. when a specific input port is not provided.

• (current-output-port [output-port]) gets or sets an output port used by display, write,
print, write-char, etc. when a specific output port is not provided.

• (current-error-port [output-port]) gets or sets an output port used by the default error display
handler.

• (global-port-print-handler [proc]) gets or sets a procedure that takes an arbitrary value and an
output port. This global port print handler is called by the default port print handler (see §11.2.7) to print
values into a port.

• (port-count-lines-enabled [on?]) gets or sets a boolean value that determines whether line counting
is enabled automatically for newly created ports; see also §11.2.1.1. The default value is #f.

7.9.1.3 PARSING

• (read-case-sensitive [on?]) gets or sets a boolean value that controls parsing input symbols. When
this parameter’s value is #f, the reader case-folds symbols (e.g., hi when the input is any one of hi, Hi, HI,
or hI). The parameter also affects the way that write prints symbols containing uppercase characters; if the
parameter’s value is #f, then symbols are printed with uppercase characters quoted by a backslash (\) or vertical
bar (|). The parameter’s value is overridden by backslash and vertical-bar quotes and the #cs and #ci prefixes;
see §11.2.4 for more information. While a module is loaded, the parameter is set to #t (see §5.8).

• (read-square-bracket-as-paren [on?]) gets or sets a boolean value that controls whether square
brackets (“[” and “]”) are treated as parentheses. See §11.2.4 for more information.

71

7.9. Parameters 7. Threads

• (read-curly-brace-as-paren [on?]) gets or sets a boolean value that controls whether curly braces
(“{” and “}”) are treated as parentheses. See §11.2.4 for more information.

• (read-accept-box [on?]) gets or sets a boolean value that controls parsing #\& input. See §11.2.4 for
more information.

• (read-accept-compiled [on?]) gets or sets a boolean value that controls parsing pre-compiled input.
See §11.2.4 for more information.

• (read-accept-bar-quote [on?]) gets or sets a boolean value that controls parsing and printing a verti-
cal bar (|) in symbols. See §11.2.4 and §11.2.5 for more information.

• (read-accept-graph [on?]) gets or sets a boolean value that controls parsing input with sharing. See
§11.2.5.1 for more information.

• (read-decimal-as-inexact [on?]) gets or sets a boolean value that controls parsing input numbers
with a decimal point or exponent (but no explicit exactness tag). See §11.2.5.1 for more information.

• (read-accept-dot [on?]) gets or sets a boolean value that controls parsing input with a dot, which is
normally used for literal cons cells. See §11.2.4 for more information.

• (read-accept-quasiquote [on?]) gets or sets a boolean value that controls parsing input with a back-
quote or comma, which is normally used for quasiquote, unquote, and unquote-splicing abbrevia-
tions. See §11.2.4 for more information.

• (read-accept-reader [on?]) gets or sets a boolean value that controls whether #reader is allowed
for selecting a parser. See §11.2.4 for more information.

• (current-reader-guard [proc]) gets or sets a procedure of one argument that converts or rejects (by
raising an exception) a module-path datum following #reader. See §11.2.4 for more information.

• (current-readtable [readtable-or-false]) gets or sets a readtable that adjust the parsing of S-
expression input, or #f for the default behavior. See §11.2.8 for more information.

7.9.1.4 PRINTING

• (print-unreadable [on?]) gets or sets a boolean value that controls printing values that have no
readable form (using the default reader), including structures that have a custom-write procedure (see
§11.2.10); defaults to #t. See §11.2.5 for more information.

• (print-graph [on?]) gets or sets a boolean value that controls printing data with sharing; defaults to #f.
See §11.2.5.1 for more information.

• (print-struct [on?]) gets or sets a boolean value that controls printing structure values in vector form;
defaults to #t. See §11.2.5 for more information. This parameter has no effect on the printing of structures that
have a custom-write procedure (see §11.2.10).

• (print-box [on?]) gets or sets a boolean value that controls printing box values; defaults to #t. See §11.2.5
for more information.

• (print-vector-length [on?]) gets or sets a boolean value that controls printing vectors; defaults to #t.
See §11.2.5 for more information.

• (print-hash-table [on?]) gets or sets a boolean value that controls printing hash tables; defaults to #f.
See §11.2.5 for more information.

• (print-honu [on?]) gets or sets a boolean value that controls printing values in an alternate syntax. See
§19 for more information.

72

7. Threads 7.9. Parameters

7.9.1.5 READ-EVAL-PRINT

• (current-prompt-read [proc]) gets or sets a procedure that takes no arguments, displays a prompt
string, and returns an expression to evaluate. This prompt read handler is called by the read phase of
read-eval-print-loop (see §14.1). The default prompt read handler prints “> ” and returns the result of

(parameterize ((read-accept-reader #t))
(read-syntax name-string))

where name-string corresponds to the current input source.

• (current-eval [proc]) gets or sets a procedure that takes an expression—in the form of syntax object,
S-expression, compiled expression, or compiled expression wrapped in a syntax object—and returns the expres-
sion’s value (or values; see §2.2). This evaluation handler is called by eval, eval-syntax, the default load
handler, and read-eval-print-loop to evaluate an expression (see §14.1). The handler should evaluate
its argument in tail position, like eval. The default evaluation handler compiles and executes the expression
in the current namespace (determined by the current-namespace parameter); if the argument is a syntax
object, it is treated like an argument to eval-syntax and not given additional context. The default evaluation
handler also partly expands expressions to splice the body of top-level begin forms into the top level (the
compiler is called only on the individual spliced forms, and not the top-level begin form), and each spliced
top-level form is evaluated before the next one is compiled.

• (current-compile [proc]) gets or sets a procedure that takes two arguments—a syntax object and
a boolean—and returns the compiled form of its first argument. This compilation handler is called
by compile (see §14.3), and indirectly by eval, eval-syntax, the default load handler, and
read-eval-print-loop (see §14.1). The compilation handler’s first argument has the lexical content
needed for expansion and compilation. The compilation handler’s second argument is #t if the compiled ex-
pression will be used only for immediate evaluation, or #f if the compiled form may be saved for later use; the
default compilation handler is optimized for the special case of immediate evaluation. The result of a compila-
tion handler must be a compiled expression (see §14.3).

• (current-namespace [namespace]) gets or sets a namespace value (see §8) that determines the name-
space used to resolve module and identifier references. The current namespace is used by the default evaluation
handler, the compile procedure, and other built-in procedures that operate on “global” bindings.

• (current-print [proc]) gets or sets a procedure that takes a value to print. This print handler is called by
read-eval-print-loop (see §14.1) to print the result of an evaluation (and the result is ignored). The de-
fault print handler prints the value to the current output port (determined by the current-output-port
parameter) and then outputs a newline, except that it does nothing when the value is void.

• (compile-allow-set!-undefined [on?]) gets or sets a boolean value indicating how to compile a
set! expression that mutates a global variable. If the value of this parameter is a true value, set! expressions
for global variables are compiled so that the global variable is set even if it was not previously defined. Oth-
erwise, set! expressions for global variables are compiled to raise the exn:fail:contract:variable
exception if the global variable is not defined at the time the set! is performed. Note that this parameter is
used when an expression is compiled, not when it is evaluated.

• (compile-enforce-module-constants [on?]) gets or sets a boolean value indicating how a
module form should be compiled. When constants are enforced, and when the macro-expanded body of a
module contains no set! assignment to a particular variable defined within the module, then the variable is
marked as constant when the definition is evaluated. Afterward, the variable’s value cannot be assigned or
undefined through module->namespace, and it cannot be defined by redeclaring the module. Enforcing
constants allows the compiler to inline some variable values, and it allows the native-code just-in-time compiler
to generate code that skips certain run-time checks.

• (eval-jit-enabled [on?]) gets or sets a boolean value that determines whether the native-code just-
in-time compiler (JIT) is enabled for code (compiled or not) that is passed to the default evaluation handler.

73

7.9. Parameters 7. Threads

The default is #t, unless the JIT is disabled through the --no-jit or -j command-line flag to stand-alone
MzScheme (or MrEd), or through the PLTNOMZJIT environment variable (set to any value).

7.9.1.6 LOADING

• (current-load [proc]) gets or sets a procedure that loads a file and returns the value (or values; see
§2.2) of the last expression read from the file. This load handler is called by load, load-relative,
load/use-compiled, and load/cd.

A load handler procedure takes two arguments: a path (see §11.3.1) and an expected module name. The expected
module name is either a symbol or #f; see §5.8 for further information.

The default load handler reads expressions from the file (with compiled expressions enabled, #reader enabled,
and line-counting enabled) and passes each expression to the current evaluation handler. The default load handler
also treats a hash mark on the first line of the file as a comment (see §11.2.4). The current load directory for
loading the file is set before the load handler is called (see §14.1).

• (current-load-extension [proc]) gets or sets a procedure that loads a dynamic extension (see
§14.4) and returns the extension’s value(s). This load extension handler is called by load-extension,
load-relative, and load/use-compiled.

A load extension handler procedure takes two arguments: a path (see §11.3.1) and an expected module name.
The expected module name is either a symbol or #f; see §5.8 for further information.

The default load extension handler loads an extension using operating system primitives.

• (current-load/use-compiled [proc]) gets or sets a procedure that loads a file or a compiled version
of the file; see §14.1 for more information. A load/use-compiled handler procedure takes the same arguments
as a load handler. The handler is expected to call the load handler or the load-extension handler. Unlike a load
handler or load-extension handler, a load/use-compiled handler is expected to set the current load-relative
directory.

• (current-load-relative-directory [path]) gets or sets a complete directory path (see
§11.3.1) or #f. This current load-relative directory is set by load, load-relative,
load/use-compiled, load/cd, load-extension, and load-relative-extension to the di-
rectory of the file being loaded. This parameter is used by load-relative, load/use-compiled and
load-relative-extension (see §14.1). When a new path or string is provided to the parameter proce-
dure current-load-relative-directory, it is immediately expanded (see §11.3.1) and converted to
a path. (The directory need not exist.)

• (current-write-relative-directory [path]) gets or sets a complete directory path (see §11.3.1)
or #f. This path is used when writing compiled code that contains source-location pathnames for procedures;
paths within this directory (syntactically) are converted to relative paths. When compiled code is read, relative
paths are converted back to complete paths using the current load-relative directory (if it is not #f).

• (use-compiled-file-paths [path-list]) gets or sets a list of paths, which defaults to (list
(string->path "compiled")). It is used by load/used-compiled (and thus require) as a
search path for compiled versions of files. See §14.1 for more information. When a new list of paths and
strings is provided to the parameter procedure, it is converted to an immutable list of paths.

• (current-library-collection-paths [path-list]) gets or sets a list of complete directory
paths (see §11.3.1) for library collections used by require. See Chapter 16 for more information. When
a new list of paths and strings is provided to the parameter procedure, it is converted to an immutable list of
paths.

• (use-user-specific-search-paths [on?]) gets or sets a boolean value that determines whether
user-specific paths, which are in the directory produced by (find-system-path ’addon-dir), are in-
cluded in search paths for collections, C libraries, etc. For example, find-library-collection-paths
(see §16) omits the user-specific collection directory when this parameter’s value is #f.

74

7. Threads 7.9. Parameters

• (current-command-line-arguments [string-vector]) gets or sets a vector of strings represent-
ing command-line arguments. When a new vector of strings is provided to the parameter procedure, it is con-
verted to an immutable vector of immutable strings. The stand-alone version of MzScheme (and MrEd) initial-
izes the parameter to contain command-line arguments that are not processed directly by MzScheme and MrEd.
(The same vector is also installed as the value of the argv global.) If command-line arguments are provided to
MzScheme/MrEd as a byte strings, they are converted to strings using the current locale’s encoding (see §1.2.2).

7.9.1.7 EXCEPTIONS

• (uncaught-exception-handler [proc]) gets or sets a procedure that is invoked to handle an excep-
tion when no handler is associated with the current continuation. See §6.1 for more information about excep-
tions.

• (error-escape-handler [proc]) gets or sets a procedure that takes no arguments and escapes
from the dynamic context of an exception. See §6.8 for further information about the error es-
cape handler. The default error escape handler escapes using (abort-current-continuation
(default-continuation-prompt-tag) void); see §6.5 for more information about abort-current-continuation.

• (error-display-handler [proc]) gets or sets a procedure that takes two arguments: a string to print
as an error message, and a value representing a raised exception. This error display handler is called by the
default exception handler with an error message and the exception value (see §6.1). The default error display
handler displays its first argument to the current error port (determined by the current-error-port
parameter) and extracts a stack trace (see §6.6) to display from the second argument if it is an exn value but not
an exn:fail:user value.3 To report a run-time error, use raise (see §6.1) or procedures like error (see
§6.2) instead of calling the error display procedure directly.

• (error-print-width [k]) gets or sets an exact integer greater than 3. This value is used as the maximum
number of characters used to print a Scheme value that is embedded in a primitive error message.

• (error-print-context-length [k]) gets or sets a non-negative, exact integer. This value is used by
the default error display handler as the maximum number of lines of context (or “stack trace”) to print; a single
“...” line is printed if more lines are available after the first k lines. A 0 value for k disables context printing
entirely.

• (error-value->string-handler [proc]) gets or sets a procedure that takes an arbitrary Scheme
value and an integer and returns a string. This error value conversion handler is used to print a Scheme value that
is embedded in a primitive error message. The integer argument to the handler specifies the maximum number
of characters that should be used to represent the value in the resulting string. The default error value conversion
handler prints the value into a string;4 if the printed form is too long, the printed form is truncated and the
last three characters of the return string are set to “...”.

If the string returned by an error value conversion handler is longer than requested, the string is destructively
“truncated” by setting the first extra position in the string to the null character. If a non-string is returned, then
the string "..." is used. If a primitive error string needs to be generated before the handler has returned, the
default error value conversion handler is used.

Call to an error value conversion handler are parameterized to re-install the default error value conversion
handler, and to enable printing of unreadable values (see §7.9.1.4).

• (error-print-source-location [include?]) gets or sets a boolean that controls whether read and
syntax error messages include source information, such as the source line and column or the expression. This
parameter also controls the error message when a module-defined variable is accessed before its definition is
executed; the parameter determines whether the message includes a module name. Only the message field of an
exn:fail:read, exn:fail:syntax, or exn:fail:contract:variable structure is affected by
the parameter. The default is #t.

3The default error display handler in DrScheme also uses the second argument to highlight source locations.
4Using the current global port print handler; see §7.9.1.2.

75

7.9. Parameters 7. Threads

7.9.1.8 SECURITY

• (current-security-guard [security-guard]) gets or sets a security guard (see §9.1) that controls
access to the filesystem and network.

• (current-custodian [custodian]) gets or sets a custodian (see §9.2) that assumes responsibility for
newly created threads, ports, TCP listeners, UDP sockets, and byte converters.

• (current-thread-group [thread-group]) gets or sets a thread group (see §9.3) that determines CPU
allocation for newly created threads.

• (current-inspector [inspector]) gets or sets an inspector (see §4.5) that controls debugging access
to newly created structure types.

• (current-code-inspector [inspector]) gets or sets an inspector (see §9.4) that controls debugging
access to module bindings and redefinitions.

7.9.1.9 EXITING

• (exit-handler [proc]) gets or sets a procedure that takes a single argument. This exit handler is called
by exit. The default exit handler takes any argument and shuts down MzScheme; see §14.2 for information
about exit codes.

7.9.1.10 RANDOM NUMBERS

• (current-pseudo-random-generator [generator]) gets or sets a pseudo-random number gener-
ator (see §3.3) used by random and random-seed.

• (current-evt-pseudo-random-generator [generator]) gets or sets a pseudo-random number
generator (see §3.3) used by sync and sync/enable-break (see §7.7).

7.9.1.11 LOCALE

• (current-locale [string-or-#f]) gets or sets a string/boolean value that controls the interpretation
of characters for functions such as string-locale<?, and string-locale-upcase (see §1.2.2 and
§3.5). When locale sensitivity is disabled by setting the parameter to #f, strings are compared in a fully portable
manner, which is the same as the standard procedures; otherwise, they are interpreted according to a locale
setting (in the sense of the C library’s setlocale). The "" locale is always a synonym for the current
machine’s default locale; other locale names are platform-specific.5 String or character printing with write is
not affected by the parameter, and neither are symbol case or regular expressions (see §10). The parameter’s
default value is "".

7.9.1.12 MODULES

• (current-module-name-resolver [proc]) gets or sets a procedure used to resolve module paths.
See §5.4 for more information.

• (current-module-name-prefix [symbol-or-false]) gets or sets a symbol to be prefixed onto a
module declaration when it is evaluated, where #f means no prefix. This parameter is intended for use by a
module name resolver; see §5.4 for more information.

5The "C" locale is also always available; setting the locale to "C" is the same as disabling locale sensitivity with #f only when string operations
are restricted to the first 128 characters.

76

7. Threads 7.9. Parameters

7.9.1.13 PERFORMANCE TUNING

• (current-thread-initial-stack-size [k]) gets or sets a positive exact integer; the integer pro-
vides a hint about how much space to reserve for a thread’s local variables. The actual space used by a compu-
tation is affected by just-in-time (JIT) compilation, but it is otherwise platform-independent.

7.9.2 Parameter Utilities

(make-parameter v [guard-proc]) returns a new parameter procedure. The value of the parameter is initial-
ized to v in all threads. If guard-proc is supplied, it is used as the parameter’s guard procedure. A guard procedure
takes one argument. Whenever the parameter procedure is applied to an argument, the argument is passed on to the
guard procedure. The result returned by the guard procedure is used as the new parameter value. A guard procedure
can raise an exception to reject a change to the parameter’s value. The guard-proc is not applied to the initial v .

(parameter? v) returns #t if v is a parameter procedure, #f otherwise.

(parameter-procedure=? a b) returns #t if the parameter procedures a and b always modify the same
parameter, #f otherwise.

(current-parameterization) returns the current continuation’s parameterization.

(call-with-parameterization parameterization thunk) calls thunk (via a tail call) with
parameterization as the current parameterization.

(parameterization? v) returns #t if v is a parameterization returned by current-parameterization,
#f otherwise.

77

8. Namespaces

MzScheme supports multiple namespaces for top-level variable bindings, syntax bindings, module imports, and mod-
ule declarations.

A new namespace is created with the make-namespace procedure, which returns a first-class namespace value.
A namespace is used by setting the current-namespace parameter value (see §7.9.1.5), by providing the
namespace to procedures such as eval and eval-syntax. The MzScheme versions of the R5RS procedures
scheme-report-environment and null-environment produce namespaces.1

The current namespace is used by many procedures, including eval, load, compile, and expand.2 After an
expression is evaled, the global variable references in the expression are permanently attached to a particular name-
space, so the current namespace at the time that the code is executed is not used as the namespace for referencing
global variables in the expression.

Example:

(define x ’orig) ; define in the original namespace
;; The following let expression is compiled in the original
;; namespace, so direct references to x see ’orig.
(let ([n (make-namespace)]) ; make new namespace
(parameterize ([current-namespace n])
(eval ’(define x ’new)) ; evals in the new namespace
(display x) ; displays ’orig
(display (eval ’x)))) ; displays ’new

A namespace actually encapsulates three top-level environments: one for normal expressions, one for macro trans-
former expressions, and one for macro templates; see §12 for more information about the transformer environment,
and see §12.3.4 for more information about the template environment. Module declarations are shared by the envi-
ronments, but module instances, variable bindings, syntax bindings, and module imports are distinct. More precisely,
the transformer environment never contains any syntax bindings, and its variables, module instances, and module im-
ports are distinct from the variables, module instances, and module imports of the normal top-level environment. The
template environment contains module imports, only.

Each namespace has a module registry that maps module names to module declarations (see Chapter 5). The
module->namespace procedure returns a namespace with the same module registry as the current namespace,
but whose environment and bindings correspond to the body of an instantiated module. (This facility is primarily
useful for debugging, and its use is limited by the current code inspector; see also §9.4.)

1The resulting namespace contains syntax imports for #%app, #%datum, and #%top, because syntax expansion requires them (see §12.5), but
those names are not legal R5RS identifiers.

2More precisely, the current namespace is used by the evaluation and load handlers, rather than directly by eval and load.

78

8. Namespaces 8.1. Identifier Resolution in Namespaces

8.1 Identifier Resolution in Namespaces

Identifier resolution in a namespace’s top-level environment, for compilation or expansion, proceeds in two steps.
First, the environment determines whether the identifier is mapped to a top-level variable, to syntax, or to a module
import (which can be either syntax or a variable). Second, if the identifier is mapped to a top-level variable, then the
variable’s location is found; if the identifier is mapped to syntax, then the expansion-time binding is found; and if the
identifier is mapped to an import, then the source module is consulted.

Importing a variable from a module with require is not the same as defining the variable; the import does not create
a new top-level variable in the environment, but instead maps an identifier to the module’s variable, in the same way
that a syntax definition maps an identifier to a transformer.

Redefining a previously-defined variable is the same as mutating the variable with set!. Rebinding a syntax-bound
or import-bound identifier (to syntax or an import) replaces the old binding with the new one for future uses of the
environment.

If an identifier is bound to syntax or to an import, then defining the identifier as a variable shadows the syntax or import
in future uses of the environment. Similarly, if an identifier is bound to a top-level variable, then binding the identifier
to syntax or an import shadows the variable; the variable’s value remains unchanged, however, and may be accessible
through previously evaluated expressions.

Example:

(define x 5)
(define (f) x)
x ; ⇒ 5
(f) ; ⇒ 5
(define-syntax x (syntax-rules ()))
x ; ⇒ bad syntax
(f) ; ⇒ 5
(define x 7)
x ; ⇒ 7
(f) ; ⇒ 7
(module m mzscheme (define x 8) (provide x))
(require m)
x ; ⇒ 8
(f) ; ⇒ 7

8.2 Initial Namespace

In the stand-alone MzScheme application, the initial namespace’s module registry contains declarations for
mzscheme and the primitive #%-named modules (see §5.7). The normal top-level environment of the initial name-
space contains imports for all MzScheme syntax, and it contains variable bindings (as opposed to imports) for every
built-in procedure and constant. The transformer top-level environment of the initial namespace imports all MzScheme
syntax, procedures, and constants.

Applications embedding MzScheme may extend or modify the set of initial bindings, but they will usually only add
primitive modules with #%-prefixed names. (MrEd adds #%mred-kernel for its graphical toolbox.)

8.3 Namespace Utilities

(make-namespace [flag-symbol]) creates a new namespace with a new module registry; the flag-symbol
is an option that determines the initial bindings in the namespace. The allowed values for flag-symbol are:

79

8.3. Namespace Utilities 8. Namespaces

• ’initial (the default) — the new namespace contains the module declarations of the initial namespace (see
§8.2), and the new namespace’s normal top-level environment contains bindings and imports as in the initial
namespace. However, the namespace’s transformer top-level environment is empty.

• ’empty — creates a namespace with no initial bindings or module declarations.

(namespace? v) returns #t if v is a namespace value, #f otherwise.

(namespace-symbol->identifier symbol) is similar to datum->syntax-object (see §12.2.2) re-
stricted to symbols. The lexical context of the resulting identifier corresponds to the top-level environment of the
current namespace; the identifier has no source location or properties.

(namespace-variable-value symbol [use-mapping? failure-thunk namespace]) returns a
value for symbol in namespace, where namespace defaults to the current namespace. The returned value de-
pends on use-mapping?:

• If use-mapping? is true (the default), and if symbolmaps to a top-level variable or an imported variable (see
§8.1), then the result is the same as evaluating symbol as an expression. If symbolmaps to syntax or imported
syntax, the exn:fail:syntax exception is raised (or failure-thunk is called; see below). If symbol is
mapped to an undefined variable or an uninitialized module variable, the exn:fail:contract:variable
exception is raised (or failure-thunk is called).

• If use-mapping? is false, the namespace’s syntax and import mappings are ignored. Instead, the
value of the top-level variable named symbol in namespace is returned. If the variable is undefined, the
exn:fail:contract:variable exception is raised (or failure-thunk is called).

If failure-thunk is provided, namespace-variable-value calls failure-thunk to produce the return
value in place of raising an exn:fail:contract:variable or exn:fail:syntax exception.

(namespace-set-variable-value! symbol v [map? namespace]) sets the value of symbol in the
top-level environment of namespace (where namespace defaults to the current namespace) defining symbol if it
is not already defined. If map? is supplied as true, then the namespace’s identifier mapping is also adjusted (see §8.1)
so that symbol maps to the variable. The default value for map? is #f.

(namespace-undefine-variable! symbol namespace) removes the symbol variable, if any, in the
top-level environment of the namespace, where namespace defaults to the current namespace. The namespace’s
identifier mapping is unaffected.

(namespace-mapped-symbols [namespace]) returns a list of all symbols that are mapped to variables, syn-
tax, and imports in namespace, where namespace defaults to the current namespace.

(namespace-require quoted-require-spec) performs the import corresponding to quoted-require-spec
in the top-level environment of the current namespace (like a top-level require expression). See also Chapter 5.
Module paths in quoted-require-spec are not resolved with respect to any other module, even if the current
namespace corresponds to a module body.

(namespace-transformer-require quoted-require-spec) performs the import corresponding to
quoted-require-spec in the top-level transformer environment (like a top-level require-for-syntax ex-
pression). See also Chapter 5. Module paths in quoted-require-spec are not resolved with respect to any other
module, even if the current namespace corresponds to a module body.

(namespace-require/copy quoted-require-spec) is like namespace-require for syntax ex-
ported from the module, but exported variables are treated differently: the export’s current value is copied to a top-level
variable in the current namespace.

80

8. Namespaces 8.3. Namespace Utilities

(namespace-require/expansion-time quoted-require-spec) is like namespace-require,
but only the transformer part of the module is executed. If the required module has not been invoked before, the
module’s variables remain undefined.

(namespace-attach-module src-namespace module-path-v [dest-namespace]) attaches the
instantiated module named by module-path-v in src-namespace to the registry of dest-namespace
(which is the current namespace if dest-namespace is not supplied). If module-path-v is not a sym-
bol, the current module name resolver is called to resolve the path, but no module is loaded; the resolved form
of module-path-v is used as the module name in dest-namespace. In addition to module-path-v ,
every module that it imports (directly or indirectly) is also recorded in the current namespace’s registry. If
module-path-v does not refer to an instantiated module in src-namespace, or if the name of any module to
be attached already has a different declaration or instance in dest-namespace, then the exn:fail:contract
exception is raised. The inspector of the module invocation in dest-namespace is the same as inspector of the
invocation in src-namespace.

(namespace-unprotect-module inspector module-path-v)namespace changes the inspector for
the instance of the module referenced by module-path-v in namespace’s registry so that it is controlled by
the current code inspector. If namespace is not supplied, it is the current namespace. The given inspector must
currently control the invocation of the module in namespace’s registry, otherwise the exn:fail:contract ex-
ception is raised. See also §9.4.

(namespace-module-registry namespace) returns the registry of the given namespace. This value is
useful only for identification via eq?.

(module->namespace module-path-v) returns a namespace that corresponds to the body of an instantiated
module in the current namespace’s registry. The returned namespace has the same module registry as the current
namespace. Modifying a binding in the namespace changes the binding seen in modules that require the namespace’s
module. Module paths in a top-level require expression are resolved with respect to the namespace’s module. New
provide declarations are not allowed. If the current code inspector does not control the invocation of the module
in the current namespace’s registry, the exn:fail:contract exception is raised; see also §9.4. Bindings in the
namespace cannot be modified if the compile-enforce-module-constants parameter was true when the
module was declared, unless the module declaration itself included assignments to the binding via set!.

(namespace-syntax-introduce stx) returns a syntax object like stx, except that the current namespace’s
bindings are included in the syntax object’s context (see §12.3). The additional context is overridden by any existing
top-level context in the syntax object, or by any existing or future module context. See §12.2 for more information
about syntax objects.

(module-provide-protected? module-path-index symbol) returns #f if the module declaration for
module-path-index defines symbol and exports it unprotected, #t otherwise (which may mean that the sym-
bol corresponds to an unexported definition, a protected export, or an identifier that is not defined at all within the
module). The module-path-index argument can be a symbol; see §5.4.2 for more information on module path
indices. Typically, the arguments to module-provide-protected? correspond to the first two elements of a list
produced by identifier-binding (see §12.3).

81

9. Security

MzScheme offers several mechanisms for managing security:

• Custodians (§9.2) manage resource allocation.

• Security guards (§9.1) control access to the filesystem and network.

• Inspectors (§4.5) control access to the content of otherwise opaque structures and modules (see §9.4).

• Namespaces (§8) control access to Scheme bindings.

• Thread groups (§9.3) control CPU allocation.

All security mechanisms rely on thread-specific parameters (see §7.9).

9.1 Security Guards

A security guard provides a set of access-checking procedures to be called when a thread initiates access of a file, direc-
tory, or network connection through a primitive procedure. For example, when a thread calls open-input-file,
the thread’s current security guard is consulted to check whether the thread is allowed read access to the file. If access
is granted, the thread receives a port that it may use indefinitely, regardless of changes to the security guard (although
the port’s custodian could shut down the port; see §9.2).

A thread’s current security guard is determined by the current-security-guard parameter (see §7.9.1.8). Ev-
ery security guard has a parent, and a parent’s access procedures are called whenever a child’s access procedures are
called. Thus, a thread cannot increase its own access arbitrarily by installing a new guard. The initial security guard
enforces no access restrictions other than those enforced by the host platform.

(make-security-guard parent-security-guard file-proc network-proc [link-proc]) cre-
ates a new security guard whose parent is parent-security-guard.

The file-proc procedure must accept three arguments:

• a symbol for the primitive procedure that triggered the access check, which is useful for raising an exception to
deny access.

• a path (see §11.3.1) or #f for pathless queries, such as (current-directory), (filesystem-root-list),
and (find-system-path symbol). A path provided to file-proc is not expanded or otherwise nor-
malized before checking access; it may be a relative path, for example.

• an immutable list containing one or more of the following symbols:

– ’read — read a file or directory
– ’write — modify or create a file or directory
– ’execute — execute a file

82

9. Security 9.2. Custodians

– ’delete — delete a file or directory
– ’exists — determine whether a file or directory exists, or that a path string is well-formed

The ’exists symbol is never combined with other symbols in the last argument to file-proc, but any other
combination is possible. When the second argument to file-proc is #f, the last argument always contains
only ’exists.

The network-proc procedure must accept four arguments:

• a symbol for the primitive operation that triggered the access check, which is useful for raising an exception to
deny access.

• an immutable string representing the target hostname for a client connection or the accepting hostname for a
listening server; #f for a listening server or UDP socket that accepts connections at all of the host’s address; or
#f an unbound UDP socket.

• an exact integer between 1 and 65535 (inclusive) representing the port number, or #f for an unbound UDP
socket. In the case of a client connection, the port number is the target port on the server. For a listening server,
the port number is the local port number.

• a symbol, either ’client or ’server, indicating whether the check is for the creation of a client connection
or a listening server. The opening of an unbound UDP socket is identified as a ’client connection; explicitly
binding the socket is identified as a ’server action.

The link-proc argument can be #f (the default) or a procedure of three arguments:

• a symbol for the primitive procedure that triggered the access check, which is useful for raising an exception to
deny access.

• a complete path (see §11.3.1) representing the file to create as link.

• a path representing the content of the link, which may be relative the second-argument path; this path is not
expanded or otherwise normalized before checking access.

If link-proc is #f or unprovided, then a default procedure is used that always raises exn:fail.

The return value of file-proc, network-proc, or link-proc is ignored. To deny access, the procedure must
raise an exception or otherwise escape from the context of the primitive call. If the procedure returns, the parent’s
corresponding procedure is called on the same inputs, and so on up the chain of security guards.

The file-proc, network-proc, and link-proc procedures are invoked in the thread that called the access-
checked primitive. Breaks may or may not be enabled (see §6.7). Full continuation jumps are blocked going into or
out of the file-proc or network-proc call (see §6.3).

(security-guard? v) returns #t if v is a security guard value, #f otherwise.

9.2 Custodians

A custodian manages a collection of threads, file-stream ports, TCP ports, TCP listeners, UDP sockets, and byte
converters.1 Whenever a thread, file-stream port, TCP port, TCP listener, or UDP socket is created, it is placed under
the management of the current custodian (as determined by the current-custodian parameter; see §7.9.1.8).

1In MrEd, custodians also manage eventspaces.

83

9.2. Custodians 9. Security

The main operation on a custodian is to shut down its managed values via custodian-shutdown-all. In other
words, custodian-shutdown-all generalizes kill-thread to forcibly and immediately close a set of ports,
TCP connections, etc., as well as terminate (or suspend) a set of threads. For example, a web server might use a
custodian to manage all of the resources of a particular session so that the session can be cleanly terminated if it
exceeds its allowed lifetime.

A custodian that has been shut down cannot manage new objects. If the current custodian is shut down before a
procedure is called to create a managed resource (e.g., open-input-port, thread), the exn:fail:contract
exception is raised.

A thread can have multiple managing custodians, and a suspended thread created with thread/suspend-to-kill
can have zero custodians. Extra custodians become associated with a thread through thread-resume (see §7.1).
When a thread has multiple custodians, it is not necessarily killed by a custodian-shutdown-all, but shut-
down custodians are removed from the thread’s managing set, and the thread is killed when its managing set becomes
empty.

The values managed by a custodian are only weakly held by the custodian. As a result, a will (see §13.3) can be
executed for a value that is managed by a custodian. In addition, a custodian only weakly references its subordi-
nate custodians; if a subordinate custodian is unreferenced but has its own subordinates, then the custodian may be
collected, at which point its subordinates become immediately subordinate to the collected custodian’s superordinate
custodian.

In addition to the other entities managed by a custodian, a custodian box created with make-custodian-box
strongly holds onto a value placed in the box until the box’s custodian is shut down. The custodian only weakly retains
the box itself, however (so the box and its content can be collected if there are no other references to them).

When MzScheme is compiled with support for per-custodian memory accounting (see custodian-memory-accounting-available?
below), the current-memory-use procedure (see §13.4) can report a custodian-specific result. This result deter-
mines how much memory is occupied by objects that are reachable from the custodian’s managed values, especially
its threads, and including its sub-custodians’ managed values. If an object is reachable from two custodians where
neither is an ancestor of the other, an object is arbitrarily charged to one of the other, and the choice can change
after each collection; objects reachable from both a custodian and its descendant, however, are reliably charged to
the descendant. Reachability for per-custodian accounting does not include weak references, references to threads
managed by non-descendant custodians, references to non-descendant custodians, or references to custodian boxes for
non-descendant custodians.

(make-custodian [custodian]) creates a new custodian that is subordinate to custodian. When
custodian is directed (via custodian-shutdown-all) to shut down all of its managed values, the new subor-
dinate custodian is automatically directed to shut down its managed values as well. The default value for custodian
is the current custodian.

(custodian-shutdown-all custodian) closes all open ports and closes all active TCP listeners and UDP
sockets that are managed by custodian. It also removes custodian (and its subordinates) as managers of all
threads; when a thread has no managers, it is killed.2 If the current thread is to be killed, all other shut-down actions
take place before killing the thread.

(custodian? v) returns #t if v is a custodian value, #f otherwise.

(custodian-managed-list custodian super-custodian) returns a list of immediately man-
aged objects and subordinate custodians for custodian, where custodian is itself subordinate to
super-custodian (directly or indirectly). If custodian is not strictly subordinate to super-custodian,
the exn:fail:contract exception is raised.

(custodian-memory-accounting-available?) returns #t if MzScheme is compiled with support for
2“Killing” a thread created with thread/suspend-to-kill merely suspends the thread.

84

9. Security 9.3. Thread Groups

per-custodian memory accounting,3 #f otherwise.

(custodian-require-memory limit-custodian need-k stop-custodian) registers a require
check if MzScheme is compiled with support for per-custodian memory accounting, otherwise the exn:fail:unsupported
exception is raised. If a check is registered, and if MzScheme later reaches a state after garbage collection (see
§13.4) where allocating need-k bytes charged to limit-custodian would fail or tigger some shutdown, then
stop-custodian is shut down.

(custodian-limit-memory limit-custodian limit-k [stop-custodian]) registers a limit check
if MzScheme is compiled with support for per-custodian memory accounting, otherwise the exn:fail:unsupported
exception is raised. If a check is registered, and if MzScheme later reaches a state after garbage collection (see
§13.4) where limit-custodian owns more than limit-k bytes, then stop-custodian is shut down. The
stop-custodian argument defaults to limit-custodian.

For reliable shutdown, limit-k for custodian-limit-memory must be much lower than the total amount
of memory available (minus the size of memory that is potentially used and not charged to limit-custodian).
Moreover, if indvidual allocations that are initially charged to limit-custodian can be arbitraily large, then
stop-custodian must be the same as limit-custodian, so that excessively large immediate allocations can
be rejected with an exn:fail:out-of-memory exception.

(make-custodian-box custodian v) returns a custodian box that contains v as long as custodian has
not been shut down.

(custodian-box-value custodian-box) returns the value in the given custodian box, or #f if the value
has been removed.

(custodian-box? v) returns #t if v is a custodian box produced by make-custodian-box, #f otherwise.

9.3 Thread Groups

A thread group is a collection of threads and other thread groups that have equal claim to the CPU. By nesting thread
groups and by creating certain threads within certain groups, a programmer can control the amount of CPU allocated
to a set of threads. Every thread belongs to a thread group, which is determined by the current-thread-group
parameter (see §7.9.1.8) when the thread is created. Thread groups and custodians (see §9.2) are independent.

The root thread group receives all of the CPU that the operating system gives MzScheme. Every thread or nested
group in a particular thread group receives equal allocation of the CPU (a portion of the group’s access), although a
thread may relinquish part of its allocation by sleeping or synchronizing with other processes.

(make-thread-group [thread-group]) creates a new thread group that belongs to thread-group. The
default value for thread-group is the current thread group, as determined by the current-thread-group
parameter.

(thread-group? v) returns #t if v is a thread group value, #f otherwise.

9.4 Inspectors and Modules

In the same way that inspectors control access to structure fields (see §4.5), inspectors also control access to module
bindings (see §5). The default inspector for module bindings is determined by the current-code-inspector
parameter, instead of the current-inspector parameter.

3Memory accounting is normally available in MzScheme3m, which is the main variant of MzScheme, and not normally available in
MzSchemeCGC.

85

9.4. Inspectors and Modules 9. Security

When a module declaration is evaluated, the value of the current-code-inspector parameter is associated
with the module declaration. When the module is invoked via require or dynamic-require, a sub-inspector
of the module’s declaration-time inspector is created, and this sub-inspector is associated with the module invocation.
Any inspector that controls the sub-inspector (i.e., the declaration-time inspector and its superior) controls the module
invocation.

Control over a module invocation enables

• the use of module->namespace on the module;

• access to the module’s protected identifiers, i.e. those identifiers exported from the module with protect; and

• access to the module’s protected and unexported variables within compiled code from read (see §14.3).

If the value of current-code-inspector never changes, then no control is lost for any module invocation, since
the module’s invocation is associated with a sub-inspector of current-code-inspector.

The inspector for a module invocation is specific to a particular module registry, in case a module is attached to a new
registry via namespace-attach-module. The invocation inspector in a particular registry can be changed via
namespace-unprotect-module (but changing the inspector requires control over the old one).

Control over a module declaration (as opposed to a mere invocation) enables the reconstruction of syntax objects that
contain references to the module’s unexported identifiers. Otherwise, the compiler and macro expander prevent any
reference to an unexported identifier, unless the reference appears within an expression that was generated by the
module’s macros (or, more precisely, a macro from a module whose declaration inspector controls the invocation of
the identifier’s module). See §12.6.3 for further information.

86

10. Regular Expressions

MzScheme provides built-in support for regular expression pattern matching on strings, byte strings, and input ports.1

Regular expressions are specified as strings or byte strings, using the same pattern language as the Unix utility egrep
or Perl. A string-specified pattern produces a character regexp matcher, and a byte-string pattern produces a byte
regexp matcher. If a character regexp is used with a byte string or input port, it matches UTF-8 encodings (see §1.2.3)
of matching character streams; if a byte regexp is used with a character string, it matches bytes in the UTF-8 encoding
of the string.

Regular expressions can be compiled into a regexp value for repeated matches. The regexp and byte-regexp
procedures convert a string or byte string (respectively) into a regexp value using one syntax of regular expressions
that is most compatible to egrep. The pregexp and byte-pregexp procedures produce a regexp value using
a slightly different syntax of regular expressions that is more compatible with Perl. In addition, Scheme constants
written with #rx or #px (see §11.2.4) produce compiled regexp values.2

For a gentle introduction to regular expression using the pregexp syntax, see Chapter 36 of PLT MzLib: Libraries
Manual.

The two supported regular expression syntaxes share a common core that is shown in Figures 10.1 and 10.2. Fig-
ure 10.3 completes the grammar for regexp, which treats curly braces (“{” and “}”) as literals, backslash (“\”) as a
literal within ranges, and backslash (“\”) as a literal producer outside of ranges. Figures 10.4 and 10.5 complete the
grammar for pregexp, which uses curly braces (“{” and “}”) for bounded repetition and uses backslash (“\”) for
meta-characters both inside and outside of ranges.

In addition to matching a grammars, regular expressions must meet two syntactic restrictions:

• In a Repeat other than Atom?, then Atom must not match an empty sequence.

• In a (?<=Regexp) or (?<!Regexp), the Regexp must match a bounded sequence, only.

These contraints are checked syntactically by the type system in Figure 10.6 at the end of this chapter. A type 〈n,m〉
corresponds to an expression that matches between n and m characters. In the rule for (Regexp), N means the
number such that the opening parenthesis is the N th opening parenthesis for collecting match reports. Non-emptiness
is inferred for a backreference pattern, \N , so that a backreference can be used for repetition patterns; in the case
of mutual dependencies among backreferences, the inference chooses the fixpoint that maximizes non-emptiness.
Finiteness is not inferred for backreferences (i.e., a backreference is assumed to match an arbitrarily large sequence).

If a byte string is used to express a grammar, its bytes are interpreted as Latin-1 encodings of characters (see §1.2.3),
and the resulting regexp “matches a character” by matching a byte whose Latin-1 decoding is the character. The
exception is that \p{Property} and \P{Property} match UTF-8 encoded characters with the corresponding
Property .

By default, a regular expression matches characters case-sensitively, and newlines are not treated specially. The Mode
1The implementation is based on Henry Spencer’s package.
2The internal size of a regexp value is limited to 32 kilobytes; this limit roughly corresponds to a source string with 32,000 literal characters or

5,000 operators.

87

10. Regular Expressions

Regexp ::= Pieces Match Pieces
| Regexp|Regexp Match either Regexp, try left first

Pieces ::= Piece Match Piece
| PiecePieces Match first Piece followed by second Pieces

Piece ::= Repeat Match Repeat, longest possible
| Repeat? Match Repeat, shortest possible
| Atom Match Atom exactly once

Repeat ::= Atom* Match Atom 0 or more times
| Atom+ Match Atom 1 or more times
| Atom? Match Atom 0 or 1 times

Atom ::= (Regexp) Match sub-expression Regexp and report match
| [Range] Match any character in Range
| [ˆRange] Match any character not in Range
| . Match any character (except newline in multi mode)
| ˆ Match start of input (or after newline in multi mode)
| $ Match end of input (or before newline in multi mode)
| Literal Match a single literal character
| (?Mode:Regexp) Match sub-expression Regexp using Mode
| (?>Regexp) Match sub-expression Regexp, only first possible
| Look Match empty if Look matches
| (?PredPieces|Pieces) Match first Pieces if Pred, second Pieces if not Pred
| (?PredPieces) Match Pieces if Pred, empty if not Pred

Range ::=] Range contains] only
| - Range contains - only
| Mrange Range contains everything in Mrange
| Mrange- Range contains - and everything in Mrange

Mrange ::=]Lrange Mrange contains] and everything in Lrange
| -Lrange Mrange contains - and everything in Lrange
| Lrange Mrange contains everything in Lrange

Lrange ::= Rliteral Lrange contains a literal character
| Rliteral-Rliteral Lrange contains Unicode range inclusive
| LrangeLrange Lrange contains everything in both

Figure 10.1: Common grammar for regular expressions

portion of an (?Mode:Regexp) form changes the matching mode for Regexp:

• If the new mode is case-insensitive, then Regexp is generalized so that where it matches a particular character,
then it also matches lowercase, uppercase, titlecase, and case-folded variants of the same character. For byte-
string regular expressions, matching is case-insensitive on ASCII characters, only.

• If the new mode is multi, then a dot (“.”) in Regexp never matches a newline character, but a caret (“ˆ”) matches
after a newline (in addition to the beginning of the input), and a dollar sign (“$”) matches before a newline (in
addition to the end of the input).

A few subtle points about the regexp language are worth noting:

• When an opening square bracket (“[”) that starts a range is immediately followed by a closing square bracket
(“]”), then the closing square bracket is part of the range, instead of ending an empty range. For example,
"[]a]" matches any string that contains a lowercase “a” or a closing square bracket. A dash (“-”) at the start
or end of a range is treated specially in the same way.

• When a caret (“ˆ”) or dollar sign (“$”) appears in the middle of a regular expression (not in a range) and outside
of “multi” mode, the resulting regexp is legal even though it is usually not matchable. For example, "a$b"

88

10. Regular Expressions

Look ::= (?=Regexp) Match if Regexp matches
| (?!Regexp) Match if Regexp doesn’t match
| (?<=Regexp) Match if Regexp matches immediately preceeding
| (?<!Regexp) Match if Regexp doesn’t match immediately preceeding

Pred ::= (N) True if N th (has a match
| Look True if Look matches

Mode ::= Like the enclosing mode
| Modei Like Mode, but case-insensitive
| Mode-i Like Mode, but sensitive
| Modes Like Mode, but not in multi mode
| Mode-s Like Mode, but in multi mode
| Modem Like Mode, but in multi mode
| Mode-m Like Mode, but not in multi mode

Figure 10.2: Common predicate, lookahead/lookbehind, and mode grammar

Literal ::= Any character except (,), *, +, ?, [, ., ˆ, \, or |
| \Aliteral Match Aliteral

Aliteral ::= Any character
Rliteral ::= Any character except] or -

Figure 10.3: Specific grammar for regexp, byte-regexp, and #rx

is unmatchable, because no string can contain the letter “b” after the end of the string. In contrast, "a$b∗"
matches any string that ends with a lowercase “a”, since zero “b”s will match the part of the regexp after “$”.

• A backslash (“\”) in a regexp pattern specified with a Scheme string literal must be protected with an additional
backslash. For example, the string "\\." describes a pattern that matches any string containing a period. In this
case, the first backslash protects the second to generate a Scheme string containing two characters; the second
backslash (which is the first slash in the actual string value) protects the period in the regexp pattern.

The regular expression procedures are as follows:

• (regexp string) takes a string representation of a regular expression (using the syntax of Figure 10.3) and
compiles it into a regexp value. Other regular expression procedures accept either a string or a regexp value as
the matching pattern. If a regular expression string is used multiple times, it is faster to compile the string once
to a regexp value and use it for repeated matches instead of using the string each time.

The object-name procedure (see §6.2.3) returns the source string for a regexp value.

• (pregexp string) is like regexp, except that it uses the syntax of Figure 10.4. The result can be used
with regexp-match, etc., just like the result from regexp.

• (regexp? v) returns #t if v is a regexp value created by regexp or pregexp, #f otherwise.

• (pregexp? v) returns #t if v is a regexp value created by pregexp (not regexp), #f otherwise.

• (byte-regexp bytes) takes a byte-string representation of a regular expression (using the syntax of Fig-
ure 10.3) and compiles it into a byte-regexp value. The object-name procedure (see §6.2.3) returns the
source byte string for a regexp value.

• (byte-pregexp string) is like byte-regexp, except that it uses the syntax of Figure 10.4. The result
can be used with regexp-match, etc., just like the result from byte-regexp.

89

10. Regular Expressions

Repeat ::= ... see Figure 10.1
| Atom{N} Match Atom exactly N times
| Atom{N ,} Match Atom N or more times
| Atom{,M} Match Atom between 0 and M times
| Atom{N ,M} Match Atom between N and M times

Atom ::= ... see Figure 10.1
| \N Match latest reported match for N th (
| Class Match any character in Class
| \b Match between \w and \W, start, or end
| \B Match between \w and \w or \W and \W, start, or end
| \p{Property} Match a (UTF-8 encoded) character in Property
| \P{Property} Match a (UTF-8 encoded) character not in Property

Literal ::= Any character except (,), *, +, ?, [,], {, }, ., ˆ, \, or |
| \Aliteral Match Aliteral

Aliteral ::= Any character except a-z, A-Z, 0-9
Lrange ::= ... see Figure 10.1

| Class Lrange contains all characters in Class
| Posix Lrange contains all characters in Posix

Rliteral ::= Any character except], \, or -

Figure 10.4: Specific grammar for pregexp, byte-pregexp, and #px

• (byte-regexp? v) returns #t if v is a regexp value created by byte-regexp or byte-pregexp, #f
otherwise.

• (byte-pregexp? v) returns #t if v is a regexp value created by byte-pregexp (not byte-regexp),
#f otherwise.

• (regexp-match pattern string [start-k end-k output-port]) attempts to match pattern
(a string, byte string, regexp value, or byte-regexp value) once to a portion of string; see below for informa-
tion on using a byte string or input port in place of string.

The optional start-k and end-k arguments select a substring of string for matching, and the default is
the entire string. The end-k argument can be #f, which is the same as not supplying end-k. The matcher
finds a portion of string that matches pattern and is closest to the start of the selected substring.

If the match fails, #f is returned. If the match succeeds, a list containing strings, and possibly #f, is returned.
The list contains byte strings (substrings of the UTF-8 encoding of string) if pattern is a byte string or a
byte regexp value.

The first [byte] string in a result list is the portion of string that matched pattern. If two portions of
string can match pattern, then the match that starts earliest is found.

Additional [byte] strings are returned in the list if pattern contains parenthesized sub-expressions (but not
when the open parenthesis is followed by “?:”). Matches for the sub-expressions are provided in the order of
the opening parentheses in pattern. When sub-expressions occur in branches of an “or” (“|”), in a “zero or
more” pattern (“*”), or in a “zero or one” pattern (“?”), a #f is returned for the expression if it did not contribute
to the final match. When a single sub-expression occurs in a “zero or more” pattern (“*”) or a “one or more”
pattern (“+”) and is used multiple times in a match, then the rightmost match associated with the sub-expression
is returned in the list.

If the optional output-port is provided, the part of string that precedes the match is written to the port.
All of string up to end-k is written to the port if no match is found. This functionality is not especially
useful, but it is provided for consistency with regexp-match on input ports. The output-port argument
can be #f, which is the same as not supplying it.

• (regexp-match pattern bytes [start-k end-k output-port]) is analogous to regexp-match
with a string (see above). The result is always a list of byte strings and #f, even if pattern is a character
string or a character regexp value.

90

10. Regular Expressions

Class ::= \d Class contains 0-9
| \D Class contains ASCII other than those in \d
| \w Class contains a-z, A-Z, 0-9,
| \W Class contains ASCII other than those in \w
| \s Class contains space, tab, newline, formfeed, return
| \S Class contains ASCII other than those in \s

Posix ::= [:alpha:] Posix contains a-z, A-Z
| [:alnum:] Posix contains a-z, A-Z, 0-9
| [:ascii:] Posix contains all ASCII characters
| [:blank:] Posix contains space and tab
| [:cntrl:] Posix contains all characters with scalar value ¡ 32
| [:digit:] Posix contains 0-9
| [:graph:] Posix contains all ASCII characters that use ink
| [:lower:] Posix contains space, tab, and ASCII ink users
| [:print:] Posix contains A-Z
| [:space:] Posix contains space, tab, newline, formfeed, return
| [:upper:] Posix contains A-Z
| [:word:] Posix contains a-z, A-Z, 0-9,
| [:xdigit:] Posix contains 0-9, a-f, A-F

Property ::= Category Property includes all characters in Category
| ˆCategory Property includes all characters not in Category

Category ::= Ll | Lu | Lt | Lm Unicode general category
| L& Union of Ll, Lu, Lt, and Lm
| Lo Unicode general category
| L Union of L& and Lo
| Nd | Nl | No Unicode general category
| N Union of Nd, Nl, and No
| Ps | Pe | Pi | Pf Unicode general category
| Pc | Pd | Po Unicode general category
| P Union of Ps, Pe, Pi, Pf, Pc, Pd, and Po
| Mn | Mc | Me Unicode general category
| M Union of Mn, Mc, and Me
| Sc | Sk | Sm | So Unicode general category
| S Union of Sc, Sk, Sm, and So
| Zl | Zp | Zs Unicode general category
| Z Union of Zl, Zp, and Zs
| . Union of all general categories

Figure 10.5: Properties and classes for pregexp (Figure 10.4)

• (regexp-match pattern input-port [start-k end-k output-port]) is similar to regexp-match
with a byte string (see above), except that the match is found in the stream of bytes produced by input-port.
The optional start-k argument indicates the number of bytes to skip before matching pattern, and end-k
indicates the maximum number of bytes to consider (including skipped bytes). The end-k argument can be
#f, which is the same as not supplying end-k. The default is to skip no bytes and read until the end-of-file if
necessary. If the end-of-file is reached before start-k bytes are skipped, the match fails.

In pattern, a start-of-string caret (“ˆ”) refers to the first read position after skipping, and the end-of-string
dollar sign (“$”) refers to the end-kth read byte or the end of file, whichever comes first.

The optional output-port receives all bytes that precede a match in the input port, or up to end-k bytes
(by default the entire stream) if no match is found. The output-port argument can be #f, which is the same
as not supplying it.

When matching an input port stream, a match failure reads up to end-k bytes (or end-of-file), even if pattern
begins with a start-of-string caret (“ˆ”); see also regexp-match/fail-without-reading in Chapter 45
of PLT MzLib: Libraries Manual. On success, all bytes up to and including the match are eventually read

91

10. Regular Expressions

from the port, but matching proceeds by first peeking bytes from the port (using peek-bytes-avail!;
see §11.2.1), and then (re-)reading matching bytes to discard them after the match result is determined. Non-
matching bytes may be read and discarded before the match is determined. The matcher peeks in blocking
mode only as far as necessary to determine a match, but it may peek extra bytes to fill an internal buffer if
immediately available (i.e., without blocking). Greedy repeat operators in pattern, such as “*” or “+”, tend
to force reading the entire content of the port (up to end-k) to determine a match.

If the port is read simultaneously by another thread, or if the port is a custom port with inconsistent reading
and peeking procedures (see §11.1.7), then the bytes that are peeked and used for matching may be differ-
ent than the bytes read and discarded after the match completes; the matcher inspects only the peeked bytes.
To avoid such interleaving, use regexp-match-peek (with a progress-evt argument) followed by
port-commit-peeked.

• (regexp-match-positions pattern string/bytes/input-port [start-k end-k output-port])
is like regexp-match, but returns a list of number pairs (and #f) instead of a list of strings. Each pair of
numbers refers to a range of characters or bytes in string/bytes/input-port. If the result for the same
arguments with regexp-match would be a list of byte strings, the resulting ranges correspond to byte ranges;
in that case, if string/bytes/input-port is a character string, the byte ranges correspond to bytes in the
UTF-8 encoding of the string.

Range results are returned in a substring- and subbytpe-compatible manner, independent of start-k.
In the case of an input port, the returned positions indicate the number of bytes that were read, including
start-k, before the first matching byte.

• (regexp-match? pattern string/bytes/input-port [start-k end-k output-port]) is
like regexp-match, but returns merely #t when the match succeeds, #f otherwise.

• (regexp-match-peek pattern input-port [start-k end-k progress-evt]) is like regexp-match
on input ports, but only peeks bytes from input-port instead of reading them. Furthermore, instead of an
output port, the last optional argument is a progress event for input-port (see §11.2.1). If progress-evt
becomes ready, then the match stops peeking from input-port and returns #f. The progress-evt
argument can be #f, in which case the peek may continue with inconsistent information if another process
meanwhile reads from input-port.

• (regexp-match-peek-positions pattern input-port [start-k end-k progress-evt])
is like regexp-match-positions on input ports, but only peeks bytes from input-port instead of
reading them.

• (regexp-match-peek-immediate pattern input-port [start-k end-k progress-evt])
is like regexp-match-peek, but it attempts to match only bytes that are available from input-port with-
out blocking. The match fails if not-yet-available characters might be used to match pattern.

• (regexp-match-peek-positions-immediate pattern input-port [start-k end-k progress-evt])
is like regexp-match-peek-positions, but it attempts to match only bytes that are available from
input-port without blocking. The match fails if not-yet-available characters might be used to match
pattern.

• (regexp-replace char-pattern string insert-string) performs a match using char-pattern
on string and then returns a string in which the matching portion of string is replaced with
insert-string. If char-pattern matches no part of string, then string is returned unmodified.

The char-pattern must be a string or a character regexp value (not a byte string or a byte regexp value).

If insert-string contains “&”, then “&” is replaced with the matching portion of string before it is
substituted into string. If insert-string contains “\n” (for some integer n), then it is replaced with the
nth matching sub-expression from string.3 “&” and “\0” are synonymous. If the nth sub-expression was not

3The backslash is a character in the string, so an extra backslash is required to specify the string as a Scheme constant. For example, the Scheme
constant "\\1" is “\1”.

92

10. Regular Expressions

used in the match or if n is greater than the number of sub-expressions in pattern, then “\n” is replaced with
the empty string.

A literal “&” or “\” is specified as “\&” or “\\”, respectively. If insert-string contains “\$”, then “\$”
is replaced with the empty string. (This can be used to terminate a number n following a backslash.) If a “\” is
followed by anything other than a digit, “&”, “\”, or “$”, then it is treated as “\0”.

• (regexp-replace byte-pattern string-or-bytes insert-string-or-bytes) is analo-
gous to regexp-replace on strings, where byte-pattern is a byte string or a byte regexp value. The
result is always a byte string.

• (regexp-replace char-pattern string proc) is like regexp-replace, but instead of an
insert-string third argument, the third argument is a procedure that accepts match strings and produces
a string to replace the match. The proc must accept the same number of arguments as regexp-match
produces list elements for a successful match with char-pattern.

• (regexp-replace byte-pattern string-or-bytes proc) is analogous to regexp-replace
on strings and a procedure argument, but the procedure accepts byte strings to produce a byte string, instead of
character strings.

• (regexp-replace* pattern string insert-string) is the same as regexp-replace, ex-
cept that every instance of pattern in string is replaced with insert-string. Only non-overlapping
instances of pattern in the original string are replaced, so instances of pattern within inserted strings
are not replaced recursively. If, in the process of repeating matches, pattern matches an empty string, the
exn:fail exception is raised.

• (regexp-replace* byte-pattern bytes insert-bytes) is analogous to regexp-replace*
on strings.

• (regexp-replace* char-pattern string proc) is like regexp-replacewith a procedure ar-
gument, but with multiple instances replaced. The given proc is called once for each match.

• (regexp-replace* byte-pattern bytes proc) is like regexp-replace* with a string and
procedure argument, but the procedure accepts and produces byte strings.

Examples:

(define r (regexp "(-[0-9]∗)+"))
(regexp-match r "a-12--345b") ; ⇒ ’("-12--345" "-345")
(regexp-match-positions r "a-12--345b") ; ⇒ ’((1 . 10) (5 . 10))
(regexp-match "x+" "12345") ; ⇒ #f
(regexp-replace "mi" "mi casa" "su") ; ⇒ "su casa"
(regexp-replace "mi" "mi casa" string-upcase) ; ⇒ "MI casa"

(define r2 (regexp "([Mm])i ([a-zA-Z]∗)"))
(define insert "\\1y \\2")
(regexp-replace r2 "Mi Casa" insert) ; ⇒ "My Casa"
(regexp-replace r2 "mi cerveza Mi Mi Mi" insert) ; ⇒ "my cerveza Mi Mi Mi"
(regexp-replace* r2 "mi cerveza Mi Mi Mi" insert) ; ⇒ "my cerveza My Mi Mi"
(regexp-replace* r2 "mi cerveza Mi Mi Mi"

(lambda (all one two)
(string-append (string-downcase one) "y"

(string-upcase two)))) ; ⇒ "myCERVEZA myMI Mi"

(define p (open-input-string "a abcd"))
(regexp-match-peek ".∗bc" p) ; ⇒ ’("a abc")
(regexp-match-peek ".∗bc" p 2) ; ⇒ ’("abc")

93

10. Regular Expressions

(regexp-match ".∗bc" p 2) ; ⇒ ’("abc")
(peek-char p) ; ⇒ #\d
(regexp-match ".∗bc" p) ; ⇒ #f
(peek-char p) ; ⇒ #<eof>

(define p (open-input-string "aaaaaaaaaaa abcd"))
(define o (open-output-string))
(regexp-match "abc" p 0 #f o) ; ⇒ ’("abc")
(get-output-string o) ; ⇒ "aaaaaaaaaaa "

(define r (byte-regexp #"(-[0-9]∗)+"))
(regexp-match r #"a-12--345b") ; ⇒ ’(#"-12--345" "-345")
(regexp-match #".." #"\uC8x") ; ⇒ ’(#"\310x")
;; The UTF-8 encoding of #\uC8 is two bytes: 195 followed by 136
(regexp-match #".." "\uC8x") ; ⇒ ’(#"\303\210")

Regexp1 : 〈n1,m1〉 Regexp2 : 〈n2,m2〉
Regexp1|Regexp2 : < (n1,n2),(m1,m2) >

Piece : 〈n1,m1〉 Pieces : 〈n2,m2〉
PiecePieces : 〈n1 +n2,m1 +m2〉

Repeat : 〈n,m〉
Repeat? : 〈n,m〉

Atom : 〈n,m〉 n > 0
Atom* : 〈0,∞〉

Atom : 〈n,m〉 n > 0
Atom+ : 〈1,∞〉

Atom : 〈n,m〉
Atom? : 〈0,m〉

Atom : 〈n,m〉 n > 0
Atom{N} : 〈n ·N ,m ·N〉

Atom : 〈n,m〉 n > 0
Atom{N ,} : 〈n ·N ,∞〉

Atom : 〈n,m〉 n > 0
Atom{,M} : 〈0,m ·M〉

Atom : 〈n,m〉 n > 0
Atom{N ,M} : 〈n ·N ,m ·M〉

Regexp : 〈n,m〉
(Regexp) : 〈n,m〉 αN = n

Regexp : 〈n,m〉
(?Mode:Regexp) : 〈n,m〉

Regexp : 〈n,m〉
(?=Regexp) : 〈0,0〉

Regexp : 〈n,m〉
(?!Regexp) : 〈0,0〉

Regexp : 〈n,m〉 m < ∞

(?<=Regexp) : 〈0,0〉
Regexp : 〈n,m〉 m < ∞

(?<!Regexp) : 〈0,0〉

Regexp : 〈n,m〉
(?>Regexp) : 〈n,m〉

Pred : 〈n0,m0〉 Pieces1 : 〈n1,m1〉 Pieces2 : 〈n2,m2〉
(?PredPieces1|Pieces2) : < (n1,n2),(m1,m2) >

Pred : 〈n0,m0〉 Pieces : 〈n1,m1〉
(?PredPieces) : 〈0,m1〉 (N) : 〈αN ,∞〉

[Range] : 〈1,1〉 [ˆRange] : 〈1,1〉 . : 〈1,1〉 ˆ : 〈0,0〉

$: 〈0,0〉 Literal : 〈1,1〉 \N : 〈αN ,∞〉 Class : 〈1,1〉

\b : 〈0,0〉 \B : 〈0,0〉 \p{Property} : 〈1,6〉 \P{Property} : 〈1,6〉

Figure 10.6: Type rules for regular expressions

94

11. Input and Output

11.1 Ports

By definition, ports in MzScheme produce and consume bytes. When a port is provided to a character-based operation,
such as read, the port’s bytes are read and interpreted as a UTF-8 encoding of characters (see also §1.2.3). Thus,
reading a single character may require reading multiple bytes, and a procedure like char-ready? may need to peek
several bytes into the stream to determine whether a character is available. In the case of a byte stream that does not
correspond to a valid UTF-8 encoding, functions such as read-char may need to peek one byte ahead in the stream
to discover that the stream is not a valid encoding.

When an input port produces a sequence of bytes that is not a valid UTF-8 encoding in a character-reading context,
then bytes that constitute an invalid sequence are converted to the character “?”. Specifically, bytes 255 and 254 are
always converted to “?”, bytes in the range 192 to 253 produce “?” when they are not followed by bytes that form
a valid UTF-8 encoding, and bytes in the range 128 to 191 are converted to “?” when they are not part of a valid
encoding that was started by a preceding byte in the range 192 to 253. To put it another way, when reading a sequence
of bytes as characters, a minimal set of bytes are changed to 631 so that the entire sequence of bytes is a valid UTF-8
encoding.

See §3.6 for procedures that facilitate conversions using UTF-8 or other encodings. See also reencode-input-port
and reencode-output-port in Chapter 35 of PLT MzLib: Libraries Manual for obtaining a UTF-8-based port
from one that uses a different encoding of characters.

(port? v) returns #t if either (input-port? v) or (output-port? v) is #t, #f otherwise.

(port-closed? port) returns #t if the input or output port port is closed, #f otherwise.

(file-stream-port? port) returns #t if the given port is a file-stream port (see §11.1.6, #f otherwise.

(terminal-port? port) returns #t if the given port is attached to an interactive terminal, #f otherwise.

11.1.1 End-of-File Constant

The global variable eof is bound to the end-of-file value. The standard Scheme predicate eof-object? returns #t
only when applied to this value.

Reading from a port produces an end-of-file result when the port has no more data, but some ports may also return
end-of-file mid-stream. For example, a port connected to a Unix terminal returns an end-of-file when the user types
control-d; if the user provides more input, the port returns additional bytes after the end-of-file.

11.1.2 Current Ports

The standard Scheme procedures current-input-port and current-output-port are implemented as
parameters in MzScheme. See §7.9.1.2 for more information.

163 is the same as (char->integer #\?).

95

11.1. Ports 11. Input and Output

11.1.3 Opening File Ports

The open-input-file and open-output-file procedures accept an optional flag argument after the filename
that specifies a mode for the file:

• ’binary — bytes are returned from the port exactly as they are read from the file. Binary mode is the default
mode.

• ’text — return and linefeed bytes (10 and 13) are written to and read from the file are filtered by the port in a
platform specific manner:

– Unix and Mac OS X: no filtering occurs.
– Windows reading: a return-linefeed combination from a file is returned by the port as a single linefeed;

no filtering occurs for return bytes that are not followed by a linefeed, or for a linefeed that is not preceded
by a return.

– Windows writing: a linefeed written to the port is translated into a return-linefeed combination in the file;
no filtering occurs for returns.

In Windows, ’text mode works only with regular files; attempting to use ’text with other kinds of files
triggers an exn:fail:filesystem exception.

The open-output-file procedure can also take a flag argument that specifies how to proceed when a file with
the specified name already exists:

• ’error — raise exn:fail:filesystem (this is the default)
• ’replace — remove the old file and write a new one
• ’truncate — overwrite the old data
• ’truncate/replace — try ’truncate; if it fails, try ’replace
• ’append — append to the end of the file under Unix and Mac OS X; under Windows, ’append is equivalent

to ’update, except that the file position is immediately set to the end of the file after opening it
• ’update— open an existing file without truncating it; if the file does not exist, the exn:fail:filesystem

exception is raised

The open-input-output-file procedure takes the same arguments as open-output-file, but it produces
two values: an input port and an output port. The two ports are connected in that they share the underlying file
device. This procedure is intended for use with special devices that can be opened by only one process, such as
COM1 in Windows. For regular files, sharing the device can be confusing. For example, using one port does not
automatically flush the other port’s buffer (see §11.1.6 for more information about buffers), and reading or writing in
one port moves the file position (if any) for the other port. For regular files, use separate open-input-file and
open-output-file calls to avoid confusion.

Extra flag arguments are passed to open-output-file in any order. Appropriate flag arguments
can also be passed as the last argument(s) to call-with-input-file, with-input-from-file,
call-with-output-file, and with-output-to-file. When conflicting flag arguments (e.g.,
both ’error and ’replace) are provided to open-output-file, with-output-to-file, or
call-with-output-file, the exn:fail:contract exception is raised.

Both with-input-from-file and with-output-to-file close the port they create if control jumps out of
the supplied thunk (either through a continuation or an exception), and the port remains closed if control jumps back
into the thunk. The current input or output port is installed and restored with parameterize (see §7.9.2).

See §11.1.6 for more information on file ports. When an input or output file-stream port is created, it is placed into the
management of the current custodian (see §9.2).

96

11. Input and Output 11.1. Ports

11.1.4 Pipes

(make-pipe [limit-k input-name-v output-name-v]) returns two port values (see §2.2): the first port
is an input port and the second is an output port. Data written to the output port is read from the input port. The ports
do not need to be explicitly closed.

The optional limit-k argument can be #f or a positive exact integer. If limit-k is omitted or #f, the new pipe
holds an unlimited number of unread bytes (i.e., limited only by the available memory). If limit-k is a positive
number, then the pipe will hold at most limit-k unread/unpeeked bytes; writing to the pipe’s output port thereafter
will block until a read or peek from the input port makes more space available. (Peeks effectively extend the port’s
capacity until the peeked bytes are read.)

The optional input-name-v and output-name-v are used as the names for the returned input and out ports,
respectively, if they are supplied. Otherwise, the name of each port is ’pipe.

(pipe-content-length pipe-port) returns the number of bytes contained in a pipe, where pipe-port is
either of the pipe’s ports produced by make-pipe. The pipe’s content length counts all bytes that have been written
to the pipe and not yet read (though possibly peeked).

11.1.5 String Ports

Scheme input and output can be read from or collected into a string or byte string:

• (open-input-bytes bytes [name-v]) creates an input port that reads characters from bytes (see
§3.6). Modifying bytes afterward does not affect the byte stream produced by the port. The optional name-v
argument is used as the name for the returned port; the default is ’string.

• (open-input-string string [name-v]) creates an input port that reads bytes from the UTF-8 en-
coding (see §1.2.3) of string. The optional name-v argument is used as the name for the returned port; the
default is ’string.

• (open-output-bytes [name-v]) creates an output port that accumulates the output into a byte string.
The optional name-v argument is used as the name for the returned port; the default is ’string.

• (open-output-string [name-v]) creates an output port that accumulates the output into a byte string.
This procedure is the same as open-output-bytes.

• (get-output-bytes string-output-port [reset? start-k end-k]) returns the bytes ac-
cumulated in string-output-port so far in a freshly-allocated byte string (including any bytes written
after the port’s current position, if any). If reset? is true, then all bytes are removed from the port, and the
port’s position is reset to 0; if reset? is #f (the default), then all bytes remain in the port for further accumu-
lation (so they are returned for later calls to get-output-bytes or get-output-string), and the port’s
position is unchanged. The start-k and end-k arguments specify the range of bytes in the port to return;
supplying start-k and end-k is the same as using subbytes on the result of get-output-bytes, but
supplying them to get-output-bytes can avoid an allocation. The end-k argument can be #f, which
corresponds to not passing a second argument to subbytes.

• (get-output-string string-output-port) returns (bytes->string/utf-8 (get-output-bytes
string-output-port) #\?); see also §3.6.

String input and output ports do not need to be explicitly closed. The file-position procedure, described in
§11.1.6, works for string ports in position-setting mode.

Example:

97

11.1. Ports 11. Input and Output

(define i (open-input-string "hello world"))
(define o (open-output-string))
(write (read i) o)
(get-output-string o) ; ⇒ "hello"

11.1.6 File-Stream Ports

A port created by open-input-file, open-output-file, subprocess, and related functions is a file-
stream port. The initial input, output, and error ports in stand-alone MzScheme are also file-stream ports. The
file-stream-port? predicate recognizes file-stream ports.

An input port is block buffered by default, which means that on any read, the buffer is filled with immediately-available
bytes to speed up future reads. Thus, if a file is modified between a pair of reads to the file, the second read can produce
stale data. Calling file-position to set an input port’s file position flushes its buffer.

Most output ports are block buffered by default, but a terminal output port is line buffered, and the error output port
is unbuffered. An output buffer is filled with a sequence of written bytes to be committed as a group, either when the
buffer is full (in block mode) or when a newline is written (in line mode).

A port’s buffering can be changed via file-stream-buffer-mode (described below). The two ports produced
by open-input-output-file have independent buffers.

The following procedures work primarily on file-stream ports:

• (flush-output [output-port]) forces all buffered data in the given output port to be physically written.
If output-port is omitted, then the current output port is flushed. Only file-stream ports and custom ports
(see §11.1.7) use buffers; when called on a port without a buffer, flush-output has no effect.

By default, a file-stream port is block-buffered, but this behavior can be modified with file-stream-buffer-mode.
In addition, the initial current output and error ports are automatically flushed when read2, read-line,
read-bytes, read-string, etc. are performed on the initial standard input port.

• (file-stream-buffer-mode port [mode-symbol]) gets or sets the buffer mode for port, if pos-
sible. All file-stream ports support setting the buffer mode, TCP ports (see §11.4) support setting and getting the
buffer mode, and custom ports (see §11.1.7) may support getting and setting buffer modes.

If mode-symbol is provided, it must be one of ’none, ’line (output only), or ’block, and the port’s
buffering is set accordingly. If the port does not support setting the mode, the exn:fail exception is raised.

If mode-symbol is not provided, the current mode is returned, or #f is returned if the mode cannot be deter-
mined. If file-stream-port is an input port and mode-symbol is ’line, the exn:fail:contract
exception is raised.

For an input port, peeking always places peeked bytes into the port’s buffer, even when the port’s
buffer mode is ’none; furthermore, on some platforms, testing the port for input (via char-ready?
or sync) may be implemented with a peek. If an input port’s buffer mode is ’none, then at most
one byte is read for read-bytes-avail!*, read-bytes-avail!, peek-bytes-avail!*, or
peek-bytes-avail!; if any bytes are buffered in the port (e.g., to satisfy a previous peek), the procedures
may access multiple buffered bytes, but no further bytes are read.

• (file-position port) returns the current read/write position of port. For file-stream and string ports,
(file-position port k-or-eof) sets the read/write position to k-or-eof relative to the beginning
of the file/string if k-or-eof is a number, or to the current end of the file/string if k-or-eof is eof. In
position-setting mode, file-position raises the exn:fail:contract exception for port kinds other
than file-stream and string ports. Calling file-position without a position on a non-file/non-string input

2Flushing is performed by the default port read handler (see §11.2.6) rather than by read itself.

98

11. Input and Output 11.1. Ports

port returns the number of bytes that have been read from that port if the position is known (see §11.2.1.1),
otherwise the exn:fail:filesystem exception is raised.

When (file-position port k) sets the position k beyond the current size of an output file or string,
the file/string is enlarged to size k and the new region is filled with #\nul. If k is beyond the end of an input
file or string, then reading thereafter returns eof without changing the port’s position.

Not all file-stream ports support setting the position. If file-position is called with a position argument
on such a file-stream port, the exn:fail:filesystem exception is raised.

When changing the file position for an output port, the port is first flushed if its buffer is not empty. Similarly,
setting the position for an input port clears the port’s buffer (even if the new position is the same as the old
position). However, although input and output ports produced by open-input-output-file share the file
position, setting the position via one port does not flush the other port’s buffer.

• (port-file-identity file-stream-port) returns an exact positive integer that represents the iden-
tity of the device and file read or written by file-stream-port. For two ports whose open times overlap,
the result of port-file-identity is the same for both ports if and only if the ports access the same de-
vice and file. For ports whose open times do not overlap, no guarantee is provided for the port identities (even
if the ports actually access the same file) — except as can be inferred through relationships with other ports.
If file-stream-port is closed, the exn:fail exception is raised. Under Windows 95, 98, and Me, if
file-stream-port is connected to a pipe instead of a file, the exn:fail:filesystem exception is
raised.

11.1.7 Custom Ports

The make-input-port and make-output-port procedures create custom ports with arbitrary control pro-
cedures. Correctly implementing a custom port can be tricky, because it amounts to implementing a device driver.
Custom ports are mainly useful to obtain fine control over the action of committing bytes as read or written.

Many simple port variations can be implemented using threads and pipes. For example, if get-next-char is a
function that produces either a character or eof, it can be turned into an input port as follows

(let-values ([(r w) (make-pipe 4096)])
;; Create a thread to move chars from get-next-char to the pipe
(thread (lambda () (let loop ()

(let ([v (get-next-char)])
(if (eof-object? v)

(close-output-port w)
(begin
(write-char v w)
(loop)))))))

;; Return the read end of the pipe
r)

The port.ss in MzLib provides several other port constructors; see Chapter 35 of PLT MzLib: Libraries Manual.

11.1.7.1 CUSTOM INPUT

(make-input-port name-v read-proc optional-peek-proc close-proc [optional-progress-evt-proc
optional-commit-proc optional-location-proc count-lines!-proc init-position optional-buffer-mode-proc])
creates an input port. The port is immediately open for reading. If close-proc procedure has no side effects, then
the port need not be explicitly closed.

• name-v — the name for the input port, which is reported by object-name (see §6.2.3).

99

11.1. Ports 11. Input and Output

• read-proc — a procedure that takes a single argument: a mutable byte string to receive read bytes. The
procedure’s result is one of the following:

– the number of bytes read, as an exact, non-negative integer;
– eof;
– a procedure of arity four (representing a “special” result, as discussed further below) and optionally of

arity zero, but a procedure result is allowed only when optional-peek-proc is not #f; or
– a synchronizable event (see §7.7) that becomes ready when the read is complete (roughly): the event’s

value can one of the above three results or another event like itself; in the last case, a reading process loops
with sync until it gets a non-event result.

The read-proc procedure must not block indefinitely. If no bytes are immediately available for reading, the
read-proc must return 0 or an event, and preferably an event (to avoid busy waits). The read-proc should
not return 0 (or an event whose value is 0) when data is available in the port, otherwise polling the port will
behave incorrectly. An event result from an event can also break polling.

If the result of a read-proc call is not one of the above values, the exn:fail:contract exception
is raised. If a returned integer is larger than the supplied byte string’s length, the exn:fail:contract
exception is raised. If optional-peek-proc is #f and a procedure for a special result is returned, the
exn:fail:contract exception is raised.

The read-proc procedure can report an error by raising an exception, but only if no bytes are read. Similarly,
no bytes should be read if eof, an event, or a procedure is returned. In other words, no bytes should be lost due
to spurious exceptions or non-byte data.

A port’s reading procedure may be called in multiple threads simultaneously (if the port is accessible in multiple
threads), and the port is responsible for its own internal synchronization. Note that improper implementation of
such synchronization mechanisms might cause a non-blocking read procedure to block indefinitely.

If optional-peek-proc, optional-progress-evt-proc, and optional-commit-proc are all
provided and non-#f, then the following is an acceptable implementation of read-proc:

(lambda (bstr)
(let∗ ([progress-evt (progress-evt-proc)]

[v (peek-proc bstr 0 progress-evt)])
(cond
[(sync/timeout 0 progress-evt) 0] ; try again
[(evt? v) (wrap-evt v (lambda (x) 0))] ; sync, then try again
[(and (number? v) (zero? v)) 0] ; try again
[else
(if (optional-commit-proc (if (number? v) v 1)

progress-evt
always-evt)

v ; got a result
0)]))) ; try again

An implementor may choose not to implement the optional- procedures, however, and even an implementor
who does supply optional- procedures may provide a different read-proc that uses a fast path for non-
blocking reads.

• optional-peek-proc — either #f or a procedure that takes three arguments:

– a mutable byte string to receive peeked bytes;
– a non-negative number of bytes (or specials) to skip before peeking; and
– either #f or a progress event produced by optional-progress-evt-proc.

The results and conventions for optional-peek-proc are mostly the same as for read-proc. The
main difference is in the handling of the progress event, if it is not #f. If the given progress event becomes
ready, the optional-peek-proc must abort any skip attempts and not peek any values. In particular,
optional-peek-proc must not peek any values if the progress event is initially ready.

100

11. Input and Output 11.1. Ports

Unlike read-proc, optional-peek-proc should produce #f (or an event whose value is #f) if no bytes
were peeked because the progress event became ready. Like read-proc, a 0 result indicates that another
attempt is likely to succeed, so 0 is inappropriate when the progress event is ready. Also like read-proc,
optional-peek-proc must not block indefinitely.

The skip count provided to optional-peek-proc is a number of bytes (or specials) that must remain
present in the port—in addition to the peek results—when the peek results are reported. If a progress event is
supplied, then the peek is effectively canceled when another process reads data before the given number can
be skipped. If a progress event is not supplied and data is read, then the peek must effectively restart with the
original skip count.

The system does not check that multiple peeks return consistent results, or that peeking and reading produce
consistent results.

If optional-peek-proc is #f, then peeking for the port is implemented automatically in terms of reads,
but with several limitations. First, the automatic implementation is not thread-safe. Second, the automatic
implementation cannot handle special results (non-byte and non-eof), so read-proc cannot return a pro-
cedure for a special when optional-peek-proc is #f. Finally, the automatic peek implementation is
incompatible with progress events, so if optional-peek-proc is #f, then progress-evt-proc and
optional-commit-proc must be #f. See also make-input-port/peek-to-read in Chapter 35 of
PLT MzLib: Libraries Manual.

• close-proc — a procedure of zero arguments that is called to close the port. The port is not considered
closed until the closing procedure returns. The port’s procedures will never be used again via the port after it is
closed. However, the closing procedure can be called simultaneously in multiple threads (if the port is accessible
in multiple threads), and it may be called during a call to the other procedures in another thread; in the latter
case, any outstanding reads and peeks should be terminated with an error.

• optional-progress-evt-proc — either #f (the default), or a procedure that takes no arguments and
returns an event. The event must become ready only after data is next read from the port or the port is closed.
After the event becomes ready, it must remain so. (See also semaphore-peek-evt in §7.4.)

If optional-progress-evt-proc is #f, then port-provides-progress-evts? applied to the
port will produce #f, and the port will not be a valid argument to port-progress-evt.

• optional-commit-proc — either #f (the default), or a procedure that takes three arguments:

– an exact, positive integer kr;
– a progress event produced by optional-progress-evt-proc;
– an event, done-evt, that is either a channel-put event, channel, semaphore, semaphore-peek event, al-

ways event, or never event.

A commit corresponds to removing data from the stream that was previously peeked, but only if no other process
removed data first. (The removed data does not need to be reported, because it has been peeked already.) More
precisely, assuming that kp bytes, specials, and mid-stream eofs have been previously peeked or skipped at the
start of the port’s stream, optional-commit-proc must satisfy the following constraints:

– It must return only when the commit is complete or when the given progress event becomes ready.
– It must commit only if kp is positive.
– If it commits, then it must do so with either kr items or kp items, whichever is smaller, and only if kp is

positive.
– It must never choose done-evt in a synchronization after the given progress event is ready, or after
done-evt has been synchronized once.

– It must not treat any data as read from the port unless done-evt is chosen in a synchronization.
– It must not block indefinitely if done-evt is ready; it must return soon after the read completes or soon

after the given progress event is ready, whichever is first.
– It can report an error by raising an exception, but only if no data is committed. In other words, no data

should be lost due to an exception, including a break exception.
– It must return a true value if data is committed, #f otherwise. When it returns a value, the given progress

event must be ready (perhaps because data was just committed).

101

11.1. Ports 11. Input and Output

– It must raise an exception if no data (including eof) has been peeked from the beginning of the port’s
stream, or if it would have to block indefinitely to wait for the given progress event to become ready.

A call to optional-commit-proc is parameterize-breaked to disable breaks.

• optional-location-proc — either #f (the default), or a procedure that takes no arguments and returns
three values: the line number for the next item in the port’s stream (a positive number or #f), the column number
for the next item in the port’s stream (a non-negative number or #f), and the position for the next item in the
port’s stream (a positive number or #f). See also §11.2.1.1.

This procedure is only called if line counting is enabled for the port via port-count-lines! (in which case
count-lines!-proc is called). The read, read-syntax, read-honu, and read-honu-syntax
procedures assume that reading a non-whitespace character increments the column and position by one.

• count-lines!-proc — a procedure of no arguments that is called if and when line counting is enabled for
the port. The default procedure is void.

• init-position — an exact, positive integer that determines the position of the port’s first item, used when
line counting is not enabled for the port. The default is 1.

• optional-buffer-mode-proc — either #f (the default) or a procedure that accepts zero or one argu-
ments. If optional-buffer-mode-proc is #f, then the resulting port does not support a buffer-mode
setting. Otherwise, the procedure is called with one symbol argument (’block or ’none) to set the buffer
mode, and it is called with zero arguments to get the current buffer mode. In the latter case, the result must be
’block, ’none, or #f (unknown). See §11.1.6 for more information on buffer modes.

When read-proc or optional-peek-proc (or an event produced by one of these) returns a procedure, and
the procedure is used to obtain a non-byte result.3 The procedure is called by read,4 read-syntax, read-honu,
read-honu-syntax, read-byte-or-special, read-char-or-special, peek-byte-or-special,
or peek-char-or-special. The special-value procedure can return an arbitrary value, and it will be called zero
or one times (not necessarily before further reads or peeks from the port). See §11.2.9 for more details on the proce-
dure’s arguments and result.

If read-proc or optional-peek-proc returns a special procedure when called by any reading proce-
dure other than read, read-syntax, read-honu, read-honu-syntax, read-char-or-special,
peek-char-or-special, read-byte-or-special, or peek-byte-or-special, then the exn:fail:contract
exception is raised.

Examples:

;; A port with no input...
;; Easy: (open-input-bytes #"")
;; Hard:
(define /dev/null-in
(make-input-port ’null

(lambda (s) eof)
(lambda (skip s progress-evt) eof)
void
(lambda () never-evt)
(lambda (k progress-evt done-evt)
(error "no successful peeks!"))))

(read-char /dev/null-in) ; ⇒ eof
(peek-char /dev/null-in) ; ⇒ eof
(read-byte-or-special /dev/null-in) ; ⇒ eof

3This non-byte result is not intended to return a character or eof; in particular, read-char raises an exception if it encounters a non-byte
from a port.

4More precisely, the procedure is used by the default port read handler; see also §11.2.6.

102

11. Input and Output 11.1. Ports

(peek-byte-or-special /dev/null-in 100) ; ⇒ eof

;; A port that produces a stream of 1s:
(define infinite-ones
(make-input-port
’ones
(lambda (s)
(bytes-set! s 0 (char->integer #\1)) 1)

#f
void))

(read-string 5 infinite-ones) ; ⇒ "11111"

;; But we can’t peek ahead arbitrarily far, because the
;; automatic peek must record the skipped bytes:
(peek-string 5 (expt 2 5000) infinite-ones) ; ⇒ error: out of memory

;; An infinite stream of 1s with a specific peek procedure:
(define infinite-ones
(let ([one! (lambda (s)

(bytes-set! s 0 (char->integer #\1)) 1)])
(make-input-port
’ones
one!
(lambda (s skip progress-evt) (one! s))
void)))

(read-string 5 infinite-ones) ; ⇒ "11111"

;; Now we can peek ahead arbitrarily far:
(peek-string 5 (expt 2 5000) infinite-ones) ; ⇒ "11111"

;; The port doesn’t supply procedures to implement progress events:
(port-provides-progress-evts? infinite-ones) ; ⇒ #f
(port-progress-evt infinite-ones) ; error: no progress events

;; Non-byte port results:
(define infinite-voids
(make-input-port
’voids
(lambda (s) (lambda args ’void))
(lambda (skip s) (lambda args ’void))
void))

(read-char infinite-voids) ; ⇒ error: non-char in an unsupported context
(read-char-or-special infinite-voids) ; ⇒ ’void

;; This port produces 0, 1, 2, 0, 1, 2, etc., but it is not
;; thread-safe, because multiple threads might read and change n.
(define mod3-cycle/one-thread
(let∗ ([n 2]

[mod! (lambda (s delta)
(bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
1)])

(make-input-port
’mod3-cycle/not-thread-safe
(lambda (s)

103

11.1. Ports 11. Input and Output

(set! n (modulo (add1 n) 3))
(mod! s 0))

(lambda (s skip)
(mod! s skip))

void)))
(read-string 5 mod3-cycle/one-thread) ; ⇒ "01201"
(peek-string 5 (expt 2 5000) mod3-cycle/one-thread) ; ⇒ "20120"

;; Same thing, but thread-safe and kill-safe, and with progress
;; events. Only the server thread touches the stateful part
;; directly. (See the output port examples for a simpler thread-safe
;; example, but this one is more general.)
(define (make-mod3-cycle)
(define read-req-ch (make-channel))
(define peek-req-ch (make-channel))
(define progress-req-ch (make-channel))
(define commit-req-ch (make-channel))
(define close-req-ch (make-channel))
(define closed? #f)
(define n 0)
(define progress-sema #f)
(define (mod! s delta)
(bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
1)

;; --
;; The server has a list of outstanding commit requests,
;; and it also must service each port operation (read,
;; progress-evt, etc.)
(define (serve commit-reqs response-evts)
(apply
sync
(handle-evt read-req-ch (handle-read commit-reqs response-evts))
(handle-evt progress-req-ch (handle-progress commit-reqs response-evts))
(handle-evt commit-req-ch (add-commit commit-reqs response-evts))
(handle-evt close-req-ch (handle-close commit-reqs response-evts))
(append
(map (make-handle-response commit-reqs response-evts) response-evts)
(map (make-handle-commit commit-reqs response-evts) commit-reqs))))

;; Read/peek request: fill in the string and commit
(define ((handle-read commit-reqs response-evts) r)
(let ([s (car r)]

[skip (cadr r)]
[ch (caddr r)]
[nack (cadddr r)]
[peek? (cddddr r)])

(unless closed?
(mod! s skip)
(unless peek?
(commit! 1)))

;; Add an event to respond:
(serve commit-reqs

(cons (choice-evt nack
(channel-put-evt ch (if closed? 0 1)))

response-evts))))

104

11. Input and Output 11.1. Ports

;; Progress request: send a peek evt for the current
;; progress-sema
(define ((handle-progress commit-reqs response-evts) r)
(let ([ch (car r)]

[nack (cdr r)])
(unless progress-sema
(set! progress-sema (make-semaphore (if closed? 1 0))))

;; Add an event to respond:
(serve commit-reqs

(cons (choice-evt nack
(channel-put-evt
ch
(semaphore-peek-evt progress-sema)))

response-evts))))
;; Commit request: add the request to the list
(define ((add-commit commit-reqs response-evts) r)
(serve (cons r commit-reqs) response-evts))

;; Commit handling: watch out for progress, in which case
;; the response is a commit failure; otherwise, try
;; to sync for a commit. In either event, remove the
;; request from the list
(define ((make-handle-commit commit-reqs response-evts) r)
(let ([k (car r)]

[progress-evt (cadr r)]
[done-evt (caddr r)]
[ch (cadddr r)]
[nack (cddddr r)])

;; Note: we don’t check that k is ≤ the sum of
;; previous peeks, because the entire stream is actually
;; known, but we could send an exception in that case.
(choice-evt
(handle-evt progress-evt

(lambda (x)
(sync nack (channel-put-evt ch #f))
(serve (remq r commit-reqs) response-evts)))

;; Only create an event to satisfy done-evt if progress-evt
;; isn’t already ready.
;; Afterward, if progress-evt becomes ready, then this
;; event-making function will be called again, because
;; the server controls all posts to progress-evt.
(if (sync/timeout 0 progress-evt)

never-evt
(handle-evt done-evt

(lambda (v)
(commit! k)
(sync nack (channel-put-evt ch #t))
(serve (remq r commit-reqs) response-evts)))))))

;; Response handling: as soon as the respondee listens,
;; remove the response
(define ((make-handle-response commit-reqs response-evts) evt)
(handle-evt evt

(lambda (x)
(serve commit-reqs

105

11.1. Ports 11. Input and Output

(remq evt response-evts)))))
;; Close handling: post the progress sema, if any, and set
;; the closed? flag
(define ((handle-close commit-reqs response-evts) r)
(let ([ch (car r)]

[nack (cdr r)])
(set! closed? #t)
(when progress-sema
(semaphore-post progress-sema))

(serve commit-reqs
(cons (choice-evt nack

(channel-put-evt ch (void)))
response-evts))))

;; Helper for reads and post-peek commits:
(define (commit! k)
(when progress-sema
(semaphore-post progress-sema)
(set! progress-sema #f))

(set! n (+ n k)))
;; Start the server thread:
(define server-thread (thread (lambda () (serve null null))))
;; --
;; Client-side helpers:
(define (req-evt f)
(nack-guard-evt
(lambda (nack)
;; Be sure that the server thread is running:
(thread-resume server-thread (current-thread))
;; Create a channel to hold the reply:
(let ([ch (make-channel)])
(f ch nack)
ch))))

(define (read-or-peek-evt s skip peek?)
(req-evt (lambda (ch nack)

(channel-put read-req-ch (list* s skip ch nack peek?)))))
;; Make the port:
(make-input-port ’mod3-cycle

;; Each handler for the port just sends
;; a request to the server
(lambda (s) (read-or-peek-evt s 0 #f))
(lambda (s skip) (read-or-peek-evt s skip #t))
(lambda () ; close
(sync (req-evt

(lambda (ch nack)
(channel-put progress-req-ch (list* ch nack))))))

(lambda () ; progress-evt
(sync (req-evt

(lambda (ch nack)
(channel-put progress-req-ch (list* ch nack))))))

(lambda (k progress-evt done-evt) ; commit
(sync (req-evt

(lambda (ch nack)
(channel-put commit-req-ch

106

11. Input and Output 11.1. Ports

(list* k progress-evt done-evt ch nack))))))))

(let ([mod3-cycle (make-mod3-cycle)])
(let ([result1 #f]

[result2 #f])
(let ([t1 (thread (lambda ()

(set! result1 (read-string 5 mod3-cycle))))]
[t2 (thread (lambda ()

(set! result2 (read-string 5 mod3-cycle))))])
(thread-wait t1)
(thread-wait t2)
(string-append result1 "," result2))) ; ⇒ "02120,10201", maybe

(let ([s (make-bytes 1)]
[progress-evt (port-progress-evt mod3-cycle)])

(peek-bytes-avail! s 0 progress-evt mod3-cycle) ; ⇒ 1
s ; ⇒ #"1"
(port-commit-peeked 1 progress-evt (make-semaphore 1)

mod3-cycle) ; ⇒ #t
(sync/timeout 0 progress-evt) ; ⇒ progress-evt
(peek-bytes-avail! s 0 progress-evt mod3-cycle) ; ⇒ 0
(port-commit-peeked 1 progress-evt (make-semaphore 1)

mod3-cycle)) ; ⇒ #f
(close-input-port mod3-cycle))

11.1.7.2 CUSTOM OUTPUT

(make-output-port name-v evt write-proc close-proc [optional-write-special-proc
optional-write-evt-proc optional-special-evt-proc optional-location-proc count-lines!-proc
init-position optional-buffer-mode-proc]) creates an output port. The port is immediately open for
writing. If close-proc procedure has no side effects, then the port need not be explicitly closed. The port can
buffer data within its write-proc and optional-write-special-proc procedures.

• name-v — the name for the output port, which is reported by object-name (see §6.2.3).

• evt — a synchronization event (see §7.7; e.g., a semaphore or another port). The event is used in place of
the output port when the port is supplied to synchronization procedures like sync. Thus, the event should be
unblocked when the port is ready for writing at least one byte without blocking, or ready to make progress in
flushing an internal buffer without blocking. The event must not unblock unless the port is ready for writing;
otherwise, the guarantees of sync will be broken for the output port. Use always-evt if writes to the port
always succeed without blocking.

• write-proc — a procedure of five arguments:

– an immutable byte string containing bytes to write;
– a non-negative exact integer for a starting offset (inclusive) into the byte string;
– a non-negative exact integer for an ending offset (exclusive) into the byte string;
– a boolean; #f indicates that the port is allowed to keep the written bytes in a buffer, and that it is allowed

to block indefinitely; #t indicates that the write should not block, and that the port should attempt to flush
its buffer and completely write new bytes instead of buffering them;

– a boolean; #t indicates that if the port blocks for a write, then it should enable breaks while blocking (e.g.,
using sync/enable-break; this argument is always #f if the fourth argument is #t.

The procedure returns one of the following:

– a non-negative exact integer representing the number of bytes written or buffered;

107

11.1. Ports 11. Input and Output

– #f if no bytes could be written, perhaps because the internal buffer could not be completely flushed;
– a synchronizable event (see §7.7) that acts like the result of write-bytes-avail-evt to complete

the write.

Since write-proc can produce an event, an acceptable implementation of write-proc is to pass its first
three arguments to the port’s optional-write-evt-proc. Some port implementors, however, may choose
not to provide optional-write-evt-proc (perhaps because writes cannot be made atomic), or may im-
plement write-proc to enable a fast path for non-blocking writes or to enable buffering.

From a user’s perspective, the difference between buffered and completely written data is (1) buffered data can
be lost in the future due to a failed write, and (2) flush-output forces all buffered data to be completely
written. Under no circumstances is buffering required.

If the start and end indices are the same, then the fourth argument to write-proc will be #f, and the write
request is actually a flush request for the port’s buffer (if any), and the result should be 0 for a successful flush
(or if there is no buffer).

The result should never be 0 if the start and end indices are different, otherwise the exn:fail:contract ex-
ception is raised. If a returned integer is larger than the supplied byte-string range, the exn:fail:contract
exception is raised.

The #f result should be avoided, unless the next write attempt is likely to work. Otherwise, if data cannot be
written, return an event instead.

An event returned by write-proc can return #f or another event like itself, in contrast to events produced by
write-bytes-avail-evt or optional-write-evt-proc. A writing process loops with sync until
it obtains a non-event result.

The write-proc procedure is always called with breaks disabled, independent of whether breaks were en-
abled when the write was requested by a client of the port. If breaks were enabled for a blocking operation, then
the fifth argument to write-proc will be #t, which indicates that write-proc should re-enable breaks
while blocking.

If the writing procedure raises an exception, due either to write or commit operations, it must not have committed
any bytes (though it may have committed previously buffered bytes).

A port’s writing procedure may be called in multiple threads simultaneously (if the port is accessible in multiple
threads). The port is responsible for its own internal synchronization. Note that improper implementation of
such synchronization mechanisms might cause a non-blocking write procedure to block.

• close-proc — a procedure of zero arguments that is called to close the port. The port is not considered
closed until the closing procedure returns. The port’s procedures will never be used again via the port after it is
closed. However, the closing procedure can be called simultaneously in multiple threads (if the port is accessible
in multiple threads), and it may be called during a call to the other procedures in another thread; in the latter
case, any outstanding writes or flushes should be terminated immediately with an error.

• optional-write-special-proc — either #f (the default), or a procedure to handle write-special
calls for the port. If #f, then the port does not support special output, and port-writes-special? will
return #f when applied to the port.

If a procedure is supplied, it takes three arguments: the special value to write, a boolean that is #f if the
procedure can buffer the special value and block indefinitely, and a boolean that is #t if the procedure should
enable breaks while blocking. The result is one of the following:

– a non-event true value, which indicates that the special is written;
– #f if the special could not be written, perhaps because an internal buffer could not be completely flushed;
– a synchronizable event (see §7.7) that acts like the result of write-special-evt to complete the write.

Since optional-write-special-proc can return an event, passing the first argument to an implementa-
tion of option-write-special-evt-proc is acceptable as an optional-write-special-proc.

108

11. Input and Output 11.1. Ports

As for write-proc, the #f result is discouraged, since it can lead to busy waiting. Also as for write-proc,
an event produced by optional-write-special-proc is allowed to produce #f or another event like it-
self. The optional-write-special-proc procedure is always called with breaks disabled, independent
of whether breaks were enabled when the write was requested by a client of the port.

• optional-write-evt-proc — either #f (the default) or a procedure of three arguments:

– an immutable byte string containing bytes to write;
– a non-negative exact integer for a starting offset (inclusive) into the byte string, and
– a non-negative exact integer for an ending offset (exclusive) into the byte string.

The result is a synchronizable event (see §7.7) to act as the result of write-bytes-avail-evt for the port
(i.e., to complete a write or flush), which becomes available only as data is committed to the port’s underlying
device, and whose result is the number of bytes written.

If optional-write-evt-proc is #f, then port-writes-atomic? will produce #f with applied to
the port, and the port will not be a valid argument to procedures such as write-bytes-avail-evt.

Otherwise, an event returned by optional-write-evt-proc must not cause data to be written to the port
unless the event is chosen in a synchronization, and it must write to the port if the event is chosen (i.e., the write
must appear atomic with respect to the synchronization).

If the event’s result integer is larger than the supplied byte-string range, the exn:fail:contract exception
is raised by a wrapper on the event. If the start and end indices are the same (i.e., no bytes are to be written), then
the event should produce 0 when the buffer is completely flushed. (If the port has no buffer, then it is effectively
always flushed.)

If the event raises an exception, due either to write or commit operations, it must not have committed any new
bytes (though it may have committed previously buffered bytes).

Naturally, a port’s events may be used in multiple threads simultaneously (if the port is accessible in multiple
threads). The port is responsible for its own internal synchronization.

• optional-write-special-evt-proc — either #f (the default), or a procedure to handle
write-special-evt calls for the port. This argument must be #f if either optional-write-special-proc
or optional-write-evt-proc is #f, and it must be a procedure if both of those arguments are proce-
dures.

If it is a procedure, it takes one argument: the special value to write. The resulting event (with its constraints) is
analogous to the result of optional-write-evt-proc.

If the event raises an exception, due either to write or commit operations, it must not have committed the special
value (though it may have committed previously buffered bytes and values).

• optional-location-proc — either #f (the default), or a procedure that takes no arguments and returns
three values: the line number for the next item written to the port’s stream (a positive number or #f), the column
number for the next item written to port’s stream (a non-negative number or #f), and the position for the next
item written to port’s stream (a positive number or #f). See also §11.2.1.1.

This procedure is only called if line counting is enabled for the port via port-count-lines! (in which
case count-lines!-proc is called).

• count-lines!-proc — a procedure of no arguments that is called if and when line counting is enabled for
the port. The default procedure is void.

• init-position — an exact, positive integer that determines the position of the port’s first output item, used
when line counting is not enabled for the port. The default is 1.

• optional-buffer-mode-proc — either #f (the default) or a procedure that accepts zero or one argu-
ments. If optional-buffer-mode-proc is #f, then the resulting port does not support a buffer-mode
setting. Otherwise, the procedure is called with one symbol argument (’block, ’line, or ’none) to set the
buffer mode, and it is called with zero arguments to get the current buffer mode. In the latter case, the result
must be ’block, ’line, ’none, or #f (unknown). See §11.1.6 for more information on buffer modes.

109

11.1. Ports 11. Input and Output

Examples:

;; A port that writes anything to nowhere:
(define /dev/null-out
(make-output-port
’null
always-evt
(lambda (s start end non-block? breakable?) (− end start))
void
(lambda (special non-block? breakable?) #t)
(lambda (s start end) (wrap-evt

always-evt
(lambda (x)
(− end start))))

(lambda (special) always-evt)))
(display "hello" /dev/null-out) ; ⇒void
(write-bytes-avail #"hello" /dev/null-out) ; ⇒5
(write-special ’hello /dev/null-out) ; ⇒#t
(sync (write-bytes-avail-evt #"hello" /dev/null-out)) ; ⇒5

;; A part that accumulates bytes as characters in a list,
;; but not in a thread-safe way:
(define accum-list null)
(define accumulator/not-thread-safe
(make-output-port
’accum/not-thread-safe
always-evt
(lambda (s start end non-block? breakable?)
(set! accum-list

(append accum-list
(map integer->char

(bytes->list (subbytes s start end)))))
(− end start))

void))
(display "hello" accumulator/not-thread-safe)
accum-list ; ⇒ ’(#\h #\e #\l #\l #\o)

;; Same as before, but with simple thread-safety:
(define accum-list null)
(define accumulator
(let∗ ([lock (make-semaphore 1)]

[lock-peek-evt (semaphore-peek-evt lock)])
(make-output-port
’accum
lock-peek-evt
(lambda (s start end non-block? breakable?)
(if (semaphore-try-wait? lock)

(begin
(set! accum-list

(append accum-list
(map integer->char

(bytes->list (subbytes s start end)))))
(semaphore-post lock)
(− end start))

110

11. Input and Output 11.2. Reading and Writing

;; Cheap strategy: block until the list is unlocked,
;; then return 0, so we get called again
(wrap-evt
lock-peek
(lambda (x) 0))))

void)))
(display "hello" accumulator)
accum-list ; ⇒ ’(#\h #\e #\l #\l #\o)

;; A port that transforms data before sending it on
;; to another port. Atomic writes exploit the
;; underlying port’s ability for atomic writes.
(define (make-latin-1-capitalize port)
(define (byte-upcase s start end)
(list->bytes
(map (lambda (b) (char->integer

(char-upcase
(integer->char b))))

(bytes->list (subbytes s start end)))))
(make-output-port
’byte-upcase
;; This port is ready when the original is ready:
port
;; Writing procedure:
(lambda (s start end non-block? breakable?)
(let ([s (byte-upcase s start end)])
(if non-block?

(write-bytes-avail∗ s port)
(begin
(display s port)
(bytes-length s)))))

;; Close procedure --- close original port:
(lambda () (close-output-port port))
#f
;; Write event:
(and (port-writes-atomic? port)

(lambda (s start end)
(write-bytes-avail-evt (byte-upcase s start end) port)))))

(define orig-port (open-output-string))
(define cap-port (make-latin-1-capitalize orig-port))
(display "Hello" cap-port)
(get-output-string orig-port) ; ⇒ "HELLO"
(sync (write-bytes-avail-evt #"Bye" cap-port)) ; ⇒ 3
(get-output-string orig-port) ; ⇒ "HELLOBYE"

11.2 Reading and Writing

MzScheme’s support for reading and writing includes many extensions compared to R5RS, both at the level of indi-
vidual bytes and characters and at the level of S-expressions.

111

11.2. Reading and Writing 11. Input and Output

11.2.1 Reading Bytes, Characters, and Strings

In addition to the standard reading procedures, MzScheme provides byte-reading procedure, block-reading procedures
such as read-line, and more.

• (read-line [input-port mode-symbol]) returns a string containing the next line of bytes from
input-port. If input-port is omitted, the current input port is used.

Characters are read from input-port until a line separator or an end-of-file is read. The line separator is
not included in the result string (but it is removed from the port’s stream). If no characters are read before an
end-of-file is encountered, eof is returned.

The mode-symbol argument determines the line separator(s). It must be one of the following symbols:

– ’linefeed breaks lines on linefeed characters; this is the default.
– ’return breaks lines on return characters.
– ’return-linefeed breaks lines on return-linefeed combinations. If a return character is not followed

by a linefeed character, it is included in the result string; similarly, a linefeed that is not preceded by a
return is included in the result string.

– ’any breaks lines on any of a return character, linefeed character, or return-linefeed combination. If a
return character is followed by a linefeed character, the two are treated as a combination.

– ’any-one breaks lines on either a return or linefeed character, without recognizing return-linefeed com-
binations.

Return and linefeed characters are detected after the conversions that are automatically performed when reading
a file in text mode. For example, reading a file in text mode under Windows automatically changes return-
linefeed combinations to a linefeed. Thus, when a file is opened in text mode, ’linefeed is usually the
appropriate read-line mode.

• (read-bytes-line [input-port mode-symbol]) is analogous to read-line, but it reads bytes
and produces a byte string.

• (read-string k [input-port]) returns a string containing the next k characters from input-port.
The default value of input-port is the current input port.

If k is 0, then the empty string is returned. Otherwise, if fewer than k characters are available before an end-
of-file is encountered, then the returned string will contain only those characters before the end-of-file (i.e., the
returned string’s length will be less than k). 5 If no characters are available before an end-of-file, then eof is
returned.

If an error occurs during reading, some characters may be lost (i.e., if read-string successfully reads some
characters before encountering an error, the characters are dropped.)

• (read-bytes k [input-port]) is analogous to read-string, but it reads bytes and produces a byte
string.

• (read-string! string [input-port start-k end-k]) reads characters from input-port
like read-string, but puts them into string starting from index start-k (inclusive) up to end-k
(exclusive). The default value of input-port is the current input port. The default value of start-k is
0. The default value of end-k is the length of the string. Like substring, the exn:fail:contract
exception is raised if start-k or end-k is out-of-range for string.

If the difference between start-k and end-k is 0, then 0 is returned and bytes is not modified. If no bytes
are available before an end-of-file, then eof is returned. Otherwise, the return value is the number of bytes
read. If m bytes are read and m < end-k − start-k, then bytes is not modified at indices start-k + m
though end-k.

• (read-bytes! string [input-port start-k end-k]) is analogous to read-string!, but it
reads bytes and puts them into a byte string.

5A temporary string of size k is allocated while reading the input, even if the size of the result is less than k characters.

112

11. Input and Output 11.2. Reading and Writing

• (read-bytes-avail! bytes [input-port start-k end-k]) is like read-bytes!, but re-
turns without blocking after reading immediately-available bytes, and it may return a procedure for a “special”
result. The read-bytes-avail! procedure blocks only if no bytes (or specials) are yet available. Also
unlike read-bytes!, read-bytes-avail! never drops bytes; if read-bytes-avail! successfully
reads some bytes and then encounters an error, it suppresses the error (treating it roughly like an end-of-file) and
returns the read bytes. (The error will be triggered by future reads.) If an error is encountered before any bytes
have been read, an exception is raised.

When input-port produces a special value, as described in §11.1.7, the result is a procedure of four ar-
guments. The four arguments correspond to the location of the special value within the port, as described in
§11.1.7. If the procedure is called more than once with valid arguments, the exn:fail:contract exception
is raised. If read-bytes-avail returns a special-producing procedure, then it does not place characters
in bytes. Similarly, read-bytes-avail places only as many bytes into bytes as are available before a
special value in the port’s stream.

• (read-bytes-avail!* bytes [input-port start-k end-k]) is like read-bytes-avail!,
except that it returns 0 immediately if no bytes (or specials) are available for reading and the end-of-file is not
reached.

• (read-bytes-avail!/enable-break bytes [input-port start-k end-k]) is like read-bytes-avail!,
except that breaks are enabled during the read (see also §6.7). If breaking is disabled when
read-bytes-avail!/enable-break is called, and if the exn:break exception is raised as a result
of the call, then no bytes will have been read from input-port.

• (peek-string k skip-k [input-port]) is similar to read-string, except that the returned char-
acters are preserved in the port for future reads. (More precisely, undecoded bytes are left for future reads.) The
skip-k argument indicates a number of bytes (not characters) in the input stream to skip before collecting
characters to return; thus, in total, the next skip-k bytes plus k characters are inspected.

For most kinds of ports, inspecting skip-k bytes and k characters requires at least skip-k+k bytes of
memory overhead associated with the port, at least until the bytes/characters are read. No such overhead is
required when peeking into a string port (see §11.1.5), a pipe port (see §11.1.4), or a custom port with a specific
peek procedure (depending on how the peek procedure is implemented; see §11.1.7).

If a port produces eof mid-stream, peek skips beyond the eof always produce eof until the eof is read.

• (peek-bytes k skip-k [input-port]) is analogous to peek-string, but it peeks bytes and pro-
duces a byte string.

• (peek-string! string skip-k [input-port start-k end-k]) is like read-string!, but
for peeking, and with a skip-k argument like peek-string.

• (peek-bytes! bytes skip-k [input-port start-k end-k]) is analogous to peek-string!,
but it peeks bytes and puts them into a byte string.

• (peek-bytes-avail! bytes skip-k [progress-evt input-port start-k end-k]) is like
read-bytes-avail!, but for peeking, and with two extra arguments. The skip-k argument is as in
peek-bytes. The progress-evt argument must be either #f (the default) or an event produced by
port-progress-evt for input-port.

To peek, peek-bytes-avail! blocks until finding an end-of-file, at least one byte (or special) past the
skipped bytes, or until a non-#f progress-evt becomes ready. Furthermore, if progress-evt is ready
before bytes are peeked, no bytes are peeked or skipped, and progress-evt may cut short the skipping
process if it becomes available during the peek attempt.

The result of peek-bytes-avail! is 0 only in the case that progress-evt becomes ready before bytes
are peeked.

113

11.2. Reading and Writing 11. Input and Output

• (peek-bytes-avail!* bytes skip-k [progress-evt input-port start-k end-k]) is
like read-bytes-avail!*, but for peeking, and with skip-k and progress-evt arguments like
peek-bytes-avail!. Since this procedure never blocks, it may return before even skip-k bytes are
available from the port.

• (peek-bytes-avail!/enable-break bytes skip-k [progress-evt input-port start-k
end-k]) is the peeking version of read-bytes-avail!/enable-break, with skip-k and
progress-evt arguments like peek-bytes-avail!.

• (read-byte [input-port]) is analogous to read-char, but it reads and returns a byte (or eof) instead
of a character.

• (read-char-or-special [input-port]) is the same as read-char, except that if the input port
returns a non-byte value (through a value-generating procedure in a custom port; see §11.1.7 and §11.2.9.1 for
details), the non-byte value is returned.

• (read-byte-or-special [input-port]) is analogous to read-char-or-special, but it reads
and returns a byte instead of a character.

• (peek-char [input-port skip-k]) extends the standard peek-char with an optional argument (de-
faulting to 0) that represents the number of bytes (not characters) to skip.

• (peek-byte [input-port skip-k]) is analogous to peek-char, but it reads and returns a byte in-
stead of a character.

• (peek-char-or-special [input-port skip-k]) is the same as peek-char, except that if the
input port returns a non-byte value after skip-k byte positions, it is returned.

• (peek-byte-or-special [input-port skip-k progress-evt]) is analogous to peek-char-or-special,
but it reads and returns a byte instead of a character, and it supports a progress-evt argument (which is #f
by default) like peek-bytes-avail!.

• (port-progress-evt [input-port]) returns an event that becomes ready after any subsequent read
from input-port, or after input-port is closed. After the event becomes ready, it remains ready. If
progress events are unavailable for input-port (as reported by port-provides-progress-evts?)
the exn:fail:contract exception is raised.

• (port-provides-progress-evts? input-port) returns #t if port-progress-evt can re-
turn an event for input-port. All built-in kinds of ports support progress events, but ports created with
make-input-port (see §11.1.7) may not.

• (port-commit-peeked k progress-evt evt [input-port]) attempts to commit as read the first
k previously peeked bytes, non-byte specials, and eofs from input-port, or the first eof or special
value peeked from input-port.6 The read commits only if progress-evt does not become ready
first (i.e., if no other process reads from input-port first), and only if evt is chosen by a sync within
port-commit-peeked (in which case the event result is ignored); the evt must be either a channel-
put event, channel, semaphore, semaphore-peek event, always event, or never event. Suspending the thread
that calls port-commit-peeked may or may not prevent the commit from proceeding. The result from
port-commit-peeked is #t if data is committed, and #f otherwise.

If no data has been peeked from input-port and progress-evt is not ready, then exn:fail:contract
exception is raised. If fewer than k items have been peeked at the current start of input-port’s stream, then
only the peeked items are committed as read. If input-port’s stream currently starts at an eof or a non-byte
special value, then only the eof or special value is committed as read.

If progress-evt is not a result of port-progress-evt applied to input-port, then
exn:fail:contract exception is raised.

6Only mid-stream eofs can be committed. A eof when the port is exhausted does not correspond to data in the stream.

114

11. Input and Output 11.2. Reading and Writing

11.2.1.1 COUNTING POSITIONS, LINES, AND COLUMNS

By default, MzScheme keeps track of the position in a port as the number of bytes that have been read from or
written to any port (independent of the read/write position, which is accessed or changed with file-position).
Optionally, however, MzScheme can track the position in terms of characters (after UTF-8 decoding), instead of bytes,
and it can track line locations and column locations; this optional tracking must be specifically enabled for a port
via port-count-lines! or the port-count-lines-enabled parameter (see §7.9.1.2). Position, line, and
column locations for a port are used by read-syntax (see §12.2 for more information) and read-honu-syntax.
Position and line locations are numbered from 1; column locations are numbered from 0.

• (port-count-lines! port) turns on line and column counting for a port. Counting can be turned on
at any time, though generally it is turned on before any data is read from or written to a port. When a port
is created, if the value of the port-count-lines-enabled parameter is true (see §7.9.1.2), then line
counting is automatically enabled for the port. Line counting cannot be disabled for a port after it is enabled.

When counting lines, MzScheme treats linefeed, return, and return-linefeed combinations as a line terminator and
as a single position (on all platforms). Each tab advances the column count to one before the next multiple of 8.
When a sequence of bytes in the range 128 to 253 forms a UTF-8 encoding of a character, the position/column
is incremented is incremented once for each byte, and then decremented appropriately when a complete encoding
sequence is discovered. See also §11.1 for more information on UTF-8 decoding for ports.

A position is known for any port as long as its value can be expressed as a fixnum (which is more than enough tracking
for realistic applications in, say, syntax-error reporting). If the position for a port exceeds the value of the largest
fixnum, then the position for the port becomes unknown, and line and column tacking is disabled. Return-linefeed
combinations are treated as a single character position only when line and column counting is enabled.

• (port-next-location port) returns three values: a positive exact integer or #f for the line number of
the next read/written item, a non-negative exact integer or #f for the next item’s column, and a positive exact
integer or #f for the next item’s position. The next column and position normally increases as bytes are read
from or written to the port, but if line/character counting is enabled for port, the column and position results
can decrease after reading or writing a byte that ends a UTF-8 encoding sequence.

Certain kinds of exceptions (see §6.1) encapsulate source-location information using a srcloc structure, which has
five fields:

• source — An arbitrary value identifying the source, often a path (see §11.3.1).

• line — The line number, a positive exact integer (counts from 1) or #f (unknown).

• column — The column number, a non-negative exact integer (counts from 0) or #f (unknown).

• position — The starting position, a positive exact integer (counts from 1) or #f (unknown).

• span — The number of covered positions, a non-negative exact integer (counts from 0) or #f (unknown).

The fields of a srcloc structure are immutable, so no field-mutator procedures are defined for srcloc. The
srcloc structure type is transparent to all inspectors (see §4.5).

11.2.2 Writing Bytes, Characters, and Strings

In addition to the standard printing procedures, MzScheme provides byte-writing procedures, block-writing procedures
such as write-string, and more.

115

11.2. Reading and Writing 11. Input and Output

• (write-string string [output-port start-k end-k]) write characters to output-port
from string starting from index start-k (inclusive) up to end-k (exclusive). The default value of
output-port is the current output port. The default value of start-k is 0. The default value of end-k
is the length of the string. Like substring, the exn:fail:contract exception is raised if start-k
or end-k is out-of-range for string.

The result is the number of characters written to output-port, which is always (− end-k start-k).

• (write-bytes bytes [output-port start-k end-k]) is analogous to write-string, but it
writes a byte string.

• (write-bytes-avail bytes [output-port start-k end-k]) is like write-bytes, but it re-
turns without blocking after writing as many bytes as it can immediately flush. It blocks only if no bytes can be
flushed immediately. The result is the number of bytes written and flushed to output-port; if start-k is
the same as end-k, then the result can be 0 (indicating a successful flush of any buffered data), otherwise the
result is at least 1 but possibly less than (− end-k start-k).

The write-bytes-avail procedure never drops bytes; if write-bytes-avail successfully writes
some bytes and then encounters an error, it suppresses the error and returns the number of written bytes. (The
error will be triggered by future writes.) If an error is encountered before any bytes have been written, an
exception is raised.

• (write-bytes-avail* bytes [output-port start-k end-k]) is like write-bytes-avail,
except that it never blocks, it returns #f if the port contains buffered data that cannot be written immediately,
and it returns 0 if the port’s internal buffer (if any) is flushed but no additional bytes can be written immediately.

• (write-bytes-avail/enable-break bytes [input-port start-k end-k]) is like write-bytes-avail,
except that breaks are enabled during the write. The procedure provides a guarantee about the interaction of writ-
ing and breaks: if breaking is disabled when write-bytes-avail/enable-break is called, and if the
exn:break exception is raised as a result of the call, then no bytes will have been written to output-port.
See also §6.7.

• (write-byte byte [output-port]) is analogous to write-char, but for writing a byte instead of a
character.

• (write-special v [output-port]) writes v directly to output-port if it supports special writes,
or raises exn:fail:contract if the port does not support special write. The result is always #t, indicating
that the write succeeded.

• (write-special-avail* v [output-port]) is like write-special, but without blocking. If v
cannot be written immediately, the result is #f without writing v , otherwise the result is #t and v is written.

• (write-bytes-avail-evt bytes [output-port start-k end-k]) is similar to write-bytes-avail,
but instead of writing bytes immediately, it returns a synchronizable event (see §7.7). The output-port must
support atomic writes, as indicated by port-writes-atomic?.

Synchronizing on the object starts a write from bytes, and the event becomes ready when bytes are written
(unbuffered) to the port. If start-k and end-k are the same, then the synchronization result is 0 when the
port’s internal buffer (if any) is flushed, otherwise the result is a positive exact integer. If the event is not selected
in a synchronization, then no bytes will have been written to output-port.

• (write-special-evt v [output-port]) is similar to write-special, but instead of writing the
special value immediately, it returns a synchronizable event (see §7.7). The output-port must support
atomic writes, as indicated by port-writes-atomic?.

Synchronizing on the object starts a write of the special value, and the event becomes ready when the value is
written (unbuffered) to the port. If the event is not selected in a synchronization, then no value will have been
written to output-port.

116

11. Input and Output 11.2. Reading and Writing

• (port-writes-atomic? output-port) returns #t if write-bytes-avail/enable-break
can provide an exclusive-or guarantee (break or write, but not both) for output-port, and if the port can
be used with procedures like write-bytes-avail-evt. MzScheme’s file-stream ports, pipes, string ports,
and TCP ports all support atomic writes; ports created with make-output-port (see §11.1.7) may support
atomic writes.

• (port-writes-special? output-port) returns #t if procedures like write-special can write
arbitrary values to the port. MzScheme’s file-stream ports, pipes, string ports, and TCP ports all reject special
values, but ports created with make-output-port (see §11.1.7) may support them.

11.2.3 Writing Structured Data

The print procedure is used to print Scheme values in a context where a programmer expects to see a value:

• (print v [output-port]) outputs v to output-port. The default value of output-port is the
current output port.

The rationale for providing print is that display and write both have standard output conventions, and this
standardization restricts the ways that an environment can change the behavior of these procedures. No output con-
ventions should be assumed for print so that environments are free to modify the actual output generated by print
in any way. Unlike the port display and write handlers, a global port print handler can be installed through the
global-port-print-handler parameter (see §7.9.1.2).

The fprintf, printf, and format procedures create formatted output:

• (fprintf output-port format-string v · · ·) prints formatted output to output-port, where
format-string is a string that is printed; format-string can contain special formatting tags:

– ∼n or ∼% prints a newline
– ∼a or ∼A displays the next argument among the vs
– ∼s or ∼S writes the next argument among the vs
– ∼v or ∼V prints the next argument among the vs
– ∼e or ∼E outputs the next argument among the vs using the current error value conversion handler (see
§7.9.1.7) and current error printing width

– ∼c or ∼C write-chars the next argument in vs; if the next argument is not a character, the
exn:fail:contract exception is raised

– ∼b or ∼B prints the next argument among the vs in binary; if the next argument is not an exact number,
the exn:fail:contract exception is raised

– ∼o or ∼O prints the next argument among the vs in octal; if the next argument is not an exact number, the
exn:fail:contract exception is raised

– ∼x or ∼X prints the next argument among the vs in hexadecimal; if the next argument is not an exact
number, the exn:fail:contract exception is raised

– ∼∼ prints a tilde (∼)
– ∼w , where w is a whitespace character, skips characters in format-string until a non-whitespace

character is encountered or until a second end-of-line is encountered (whichever happens first). An end-
of-line is either #\return, #\newline, or #\return followed immediately by #\newline (on all
platforms).

The return value is void.

• (printf format-string v · · ·) same as fprintf with the current output port.

• (format format-string v · · ·) same as fprintf with a string output port where the final string is
returned as the result.

117

11.2. Reading and Writing 11. Input and Output

When an illegal format string is supplied to one of these procedures, the exn:fail:contract exception is
raised. When the format string requires more additional arguments than are supplied, the exn:fail:contract
exception is raised. When more additional arguments are supplied than are used by the format string, the
exn:fail:contract exception is raised.

For example,

(fprintf port "˜a as a string is ˜s.˜n" ’(3 4) "(3 4)")

prints this message to port:7

(3 4) as a string is "(3 4)".

followed by a newline.

11.2.4 Default Reader

MzScheme’s input parser obeys the following non-standard rules. See also §11.2.8 for information on configuring the
input parser through a readtable.

• Square brackets (“[” and “]”) and curly braces (“{” and “}”) can be used in place of parentheses.
An open square bracket must be closed by a closing square bracket and an open curly brace must be
closed by a closing curly brace. Whether square brackets are treated as parentheses is controlled by the
read-square-bracket-as-paren parameter (see §7.9.1.3). Similarly, the parsing of curly braces is
controlled with the read-curly-brace-as-paren parameter. When square brackets and curly braces are
not treated as parentheses, they are disallowed as input. By default, square brackets and curly braces are treated
as parentheses.

• Vector constants can be unquoted, and a vector size can be specified with a decimal integer between the # and
opening parenthesis. If the specified size is larger than the number of vector elements that are provided, the last
specified element is used to fill the remaining vector slots. For example, #4(1 2) is equivalent to #(1 2 2
2). If no vector elements are specified, the vector is filled with 0. If a vector size is provided and it is smaller
than the number of elements provided, the exn:fail:read exception is raised.

• Boxed constants can be created using #&. The datum following #& is treated as a quoted constant and put
into the new box. (Space and comments following the #& are ignored.) Box reading is controlled with the
read-accept-box boolean parameter (see §7.9.1.3). Box reading is enabled by default. When box reading
is disabled and #& is provided as input, the exn:fail:read exception is raised.

• Expressions beginning with #’ are wrapped with syntax in the same way that expressions starting with ’ are
wrapped with quote. Similarly, #‘ generates quasisyntax, #, generates unsyntax, and #,@ generates
unsyntax-splicing. See also §12.2.1.2.

• The following character constants are recognized:

– #\nul or #\null (ASCII 0)
– #\backspace (ASCII 8)
– #\tab (ASCII 9)
– #\newline or #\linefeed (ASCII 10)
– #\vtab (ASCII 11)
– #\page (ASCII 12)
– #\return (ASCII 13)
– #\space (ASCII 32)
– #\rubout (ASCII 127)

7Assuming that the current port display and write handlers are the default ones; see §11.2.7 for more information.

118

11. Input and Output 11.2. Reading and Writing

Whenever #\ is followed by at least two alphabetic characters, characters are read from the input port until
the next non-alphabetic character is returned. If the resulting string of letters does not match one of the above
constants (case-insensitively), the exn:fail:read exception is raised.

Character constants can also be specified through direct Unicode values in octal notation (up to 255): #\n1n2n3
where n1 is in the range [0, 3] and n2 and n3 are in the range [0, 7]. Whenever #\ is followed by at least two
characters in the range [0, 7], the next character must also be in this range, and the resulting octal number must
be in the range 0008 to 3778.

Finally, character constants can be specified through direct Unicode values in hexadecimal notation:
#\un1...nk or #\Un1...nk, where each ni is a hexadecimal digit (0-9, a-f, or A-F), and k is no more than 4
for #\u or 6 for #\U. Whenever #\ is followed by a u or U and one hexadecimal digit, the character constant
is terminated by either the first non-hexadecimal character in the stream, or the fourth/sixth hexadecimal charac-
ter, whichever comes first. The resulting hexadecimal number must be a valid argument to integer->char,
otherwise the exn:fail:read exception is raised.

Unless otherwise specified above, character-constants are terminated after the character following #\ . For
example, if #\ is followed by an alphabetic character other than u and then a non-alphabetic character, then
the character constant is terminated. If #\ is followed by a 8 or 9, then the constant is terminated. If #\ is
followed by a non-alphabetic, non-decimal-digit character then the constant is terminated.

• Within string constants, the following escape sequences are recognized in addition to \" and \\:

– \a: alarm (ASCII 7)
– \b: backspace (ASCII 8)
– \t: tab (ASCII 9)
– \n: linefeed (ASCII 10)
– \v: vertical tab (ASCII 11)
– \f: formfeed (ASCII 12)
– \r: return (ASCII 13)
– \e: escape (ASCII 27)
– \’: quote (i.e., the backslash has no effect)
– \o, \oo, or \ooo: Unicode for octal o, oo, or ooo, where each o is 0, 1, 2, 3, 4, 5, 6, or 7. The \ooo

form takes precedence over the \oo form, and \oo takes precedence over \o.
– \xh or \xhh: Unicode for hexadecimal h or hh, where each h is 0, 1, 2, 3, 4, 5, 6, 7, a, A, b, B, c, C,
d, D, e, E, f, or F. The \xhh form takes precedence over the \xh form.

– \uh, \uhh, \uhhh, or \uhhhh: like \x, but with up to four hexadecimal digits (longer sequences
take precedence). The resulting hexadecimal number must be a valid argument to integer->char,
otherwise the exn:fail:read exception is raised.

– \Uh, \Uhh, \Uhhh, \Uhhhh, \Uhhhhh, \Uhhhhhh, \Uhhhhhhh, or \Uhhhhhhhh: like \x, but
with up to eight hexadecimal digits (longer sequences take precedence). The resulting hexadecimal number
must be a valid argument to integer->char, otherwise the exn:fail:read exception is raised.

Furthermore, a backslash followed by a linefeed, carriage return or return-linefeed combination is elided, allow-
ing string constants to span lines. Any other use of backslash within a string constant is an error.

• A string constant preceded by # is a byte-string constant. Byte string constants support the same escape se-
quences as character strings except \u and \U.

• The sequence #<< starts a here string. The characters following #<< until a newline character define a
terminator for the string. The content of the string includes all characters between the #<< line and a line
whose only content is the specified terminator. More precisely, the content of the string starts after a newline
following #<<, and it ends before a newline that is followed by the terminator, where the terminator is itself
followed by either a newline or end-of-file. No escape sequences are recognized between the starting and
terminating lines; all characters are included in the string (and terminator) literally. A return character is not
treated as a line separator in this context. If no characters appear between #<< and a newline or end-of-file, or
if an end-of-file is encountered before a terminating line, the exn:fail:read exception is raised.

119

11.2. Reading and Writing 11. Input and Output

• The syntax for numbers is extended as described in §3.3. Numbers containing a decimal point or exponent (e.g.,
1.3, 2e78) are normally read as inexact. If the read-decimal-as-inexact parameter is set to #f, then
such numbers are instead read as exact. The parameter does not affect the parsing of numbers with an explicit
exactness tag (#e or #i).

• A parenthesized sequence containing two delimited dots (“.”) triggers infix parsing. A single datum must
appear between the dots, and one or more datums must appear before the first dot and after the last dot:

(left-datum · · ·1 . first-datum . right-datum · · ·1)

The resulting list consists of the datum between the dots, followed by the remaining datums in order:

(first-datum left-datum · · ·1 right-datum · · ·1)

Consequently, the input expression (1 . < . 2) produces #t, and (1 2 . + . 3 4 5) produces 15.

• When the read-accept-dot parameter is set to #f, then a delimited dot (“.”) is disallowed in input. When
the read-accept-quasiquote parameter is set to #f, then a backquote or comma is disallowed in input.
These modes simplify Scheme’s input model for students.

• MzScheme’s identifier and symbol syntax is considerably more liberal than the syntax specified by R5RS. When
input is scanned for tokens, the following characters delimit an identifier in addition to whitespace:

" , ’ ‘ ; () [] { }

In addition, an identifier cannot start with a hash mark (“#”) unless the hash mark is immediately followed by
a percent sign (“%”). The only other special characters are backslash (“\”) and quoting vertical bars (“|”); any
other character is used as part of an identifier.

Symbols containing special characters (including delimiters) are expressed using an escaping backslash (“\”) or
quoting vertical bars (“|”):

– A backslash preceding any character includes that character in the symbol literally; double backslashes
produce a single backslash in the symbol.

– Characters between a pair of vertical bars are included in the symbol literally. Quoting bars can be used
for any part of a symbol, or the whole symbol can be quoted. Backslashes and quoting bars can be mixed
within a symbol, but a backslash is not a special character within a pair of quoting bars.

Characters quoted with a backslash or a vertical bar always preserve their case, even when identifiers are read
case-insensitively.

An input token constructed in this way is an identifier when it is not a numerical constant (following the extended
number syntax described in §3.3). A token containing a backslash or vertical bars is never treated as a numerical
constant.

Examples:

– (quote a\(b) produces the same symbol as (string->symbol "a(b").
– (quote A\B) produces the same symbol as (string->symbol "aB") when identifiers are read

without case-sensitivity.
– (quote a\ b), (quote |a b|), and (quote a| |b) all produce the same symbol as
(string->symbol "a b").

– (quote |a||b|) is the same as (quote |ab|), which produces the same symbol as (string->symbol
"ab").

– (quote 10) is the number 10, but (quote |10|) produces the same symbol as (string->symbol
"10").

Whether a vertical bar is used as a special or normal symbol character is controlled with the
read-accept-bar-quote boolean parameter (see §7.9.1.3). Vertical bar quotes are enabled by default.
Quoting backslashes cannot be disabled.

120

11. Input and Output 11.2. Reading and Writing

• By default, symbols are read case-sensitively. Case sensitivity for reading can be controlled in three ways:

– Quoting part of a symbol with an escaping backslash (“\”) or quoting vertical bar (“|”) always preserves
the case of the quoted portion, as described above.

– The sequence #cs can be used as a prefix for any expression to make reading symbols within the ex-
pression case-sensitive. A #ci prefix similarly makes reading symbols in an expression case-insensitive.
Whitespace can appear between a #cs or #ci prefix and its expression, and prefixes can be nested. Back-
slash and vertical-bar quotes override a #ci prefix.

– When the read-case-sensitive parameter (see §7.9.1.3) is set to #t, then case is preserved when
reading symbols. The default is #t, and it is set to #t while loading a module (see §5.8). A #cs or #ci
prefix overrides the parameter setting, as does backslash or vertical-bar quoting.

Symbol case conversions are not sensitive to the current locale (see §1.2.2).

• A symbol-like expression that starts with an unquoted hash and colon (“#:”) is parsed as a keyword constant.
After the leading colon, backslashes, vertical bars, and case sensitivity are handled as for symbols, except that a
keyword expression can never be interpreted as a number.

• Expressions of the form #rxstring are literal regexp values (see §10) where string is a string constant.
The regexp produced by #rxstring is the same as produced by (regexp string). If string is not a
valid pattern, the exn:fail:read exception is raised.

Expressions of the form #rx#string are similarly literal byte-regexp values. The regexp produced by
#rx#string is the same as produced by (byte-regexp #string).

• Expressions of the form #pxstring and #px#string are like the #rx variants, except that the regexp is as
produced by pregexp and byte-pregexp (see §10) instead of regexp and byte-regexp.

• Expressions of the form #hash((key-datum . val-datum) · · ·) are literal immutable hash tables.
The hash table maps each key-datum to its val-datum, comparing keys with equal?. The table
is constructed by adding each key-datum mapping from left to right, so later mappings can hide ear-
lier mappings if the key-datums are equal?. An expression of the form #hasheq((key-datum .
val-datum) · · ·) produces an immutable hash table with keys compared using eq?. If the value of
read-square-bracket-as-paren parameter (see §7.9.1.3) is true, matching parentheses in a #hash
or #hasheq constant can be replaced by matching square brackets. Similarly, matching curly braces can be
used if read-curly-brace-as-paren is true.

• Values with shared structure are expressed using #n= and #n#, where n is a decimal integer. See §11.2.5.1.

• Expressions of the form #%x are symbols, where x can be a symbol or a number.

• Expressions beginning with #˜ are interpreted as compiled MzScheme code. See §14.3.

• Multi-line comments are started with #| and terminated with |#. Comments of this form can be nested arbi-
trarily.

• A #; comments out the next datum. Whitespace and comments (including #; comments) may appear between
the #; and the commented-out datum. Graph-structure annotations with #n= and #n#work within the comment
as if the datum were not commented out (e.g., bindings can be introduced with #n= for use in parts of the datum
that are not commented out). When #; appears at the beginning of a top-level datum, however, graph-structure
bindings are discarded (along with the first following datum) before reading the second following datum.

• If the first line of a loaded file begins with #!, it is ignored by the default load handler. If an ignored line ends
with a backslash (“\”), then the next line is also ignored. (The #! convention is for shell scripts; see Chapter 18
for details.)

• A #hx shifts the reader into H-expression mode (see §19) for one H-expression. A #sx has no effect in normal
mode, but in H-expression mode, it shifts the reader back to (normal) S-expression mode. The read-honu
and read-honu-syntax procedures read as if the stream starts with #hx.

121

11.2. Reading and Writing 11. Input and Output

• A #honu shifts the reader into H-expression mode (see §19) and reads repeatedly until an end-of-file is encoun-
tered. The H-expression results are wrapped in a module-formed S-expression, as described in §19.

• A #reader must be followed by a datum. The datum is passed to the procedure that is the value of the
current-reader-guard parameter (see §7.9.1.3), and the result is used as a module path. The mod-
ule path is passed to dynamic-require (see §5.5) with either ’read or ’read-syntax (depending on
whether parsing started with read or read-syntax). The resulting procedure should accept the same ar-
guments as read or read-syntax (with all optional arguments as required). The procedure is given the
port whose stream contained #reader, and it should produce a datum result. If the result is a syntax object
in read mode it is converted to a datum using syntax-object->datum; if the result is not a syntax ob-
ject in read-syntax mode, it is converted to one using datum->syntax-object. See also §11.2.9.1
and §11.2.9.2 for information on special-comment results and recursive reads. If the read-accept-reader
parameter is set to #f, then #reader is disallowed as input.

Reading from a custom port can produce arbitrary values generated by the port; see §11.1.7 for details. If
the port generates a non-character value in a position where a character is required (e.g., within a string), the
exn:fail:read:non-char exception is raised.

11.2.5 Default Printer

MzScheme’s printer obeys the following non-standard rules (though the rules for print do not apply when the
print-honu parameter is set to #t; see §7.9.1.4).

• A vector can be printed by write and print using the shorthand described in §11.2.4, where the vector’s
length is printed between the leading # and the opening parenthesis and repeated tail elements are omitted. For
example, #(1 2 2 2) is printed as #4(1 2). The display procedure does not output vectors using this
shorthand. Shorthand vector printing is controlled with the print-vector-length boolean parameter (see
§7.9.1.4). Shorthand vector printing is enabled by default.

• Boxes (see §3.11) can be printed with the #& notation (see §11.2.4). When box printing is disabled, all boxes
are printed unreadably as #<box>. Box printing is controlled with the print-box boolean parameter (see
§7.9.1.4). Box printing is enabled by default.

• Structures (see Chapter 4) can be printed using either a custom-write procedure or vector notation. See §11.2.10
for information on custom-write procedures; the following information applies only when no custom-write
procedure is specified. In the vector form of output, the first item is a symbol of the form struct:s — where
s is the name of the structure — and the remaining elements are the elements of the structure, but the vector
exposes only as much information about the structure as the current inspector can access (see §4.5). When
structure printing is disabled, or when no part of the structure is accessible to the current inspector, a structure
is printed unreadably as #<struct:s>. Structure printing is controlled with the print-struct boolean
parameter (see §7.9.1.4). Structure printing is enabled by default.

• Symbols containing spaces or special characters write using escaping backslashes and quoting vertical bars.
When the read-case-sensitive parameter is set to #f, then symbols containing uppercase characters
also use escaping backslashes or quoting vertical bars. In addition, symbols are quoted with vertical bars or
a leading backslash when they would otherwise print the same as a numerical constant. If the value of the
read-accept-bar-quote boolean parameter is #f (see §7.9.1.3), then backslashes are always used to
escape special characters instead of quoting them with vertical bars, and a vertical bar is not treated as a special
character. Otherwise, quoting bars are used in printing when bar at the beginning and one at the end suffices to
correctly print the symbol. See §11.2.4 for more information about symbol parsing. Symbols display without
escaping or quoting special characters.

• Keywords write and display the same as symbols, except with a leading hash and colon, and without
special handing when the printed form matches a number (since the leading #: distinguishes the keyword).

122

11. Input and Output 11.2. Reading and Writing

• Characters with the special names described in §11.2.4 write using the same name. (Some characters have
multiple names; the #\newline and #\nul names are used instead of #\linefeed and #\null). Other
graphic characters (according to char-graphic?; see §3.4) write as #\ followed by the single character,
and all others characters are written in #\u notation with four digits or #\U notation with eight digits (using the
latter only if the character value it does not fit in four digits). All characters display as a single character.

• Strings containing non-graphic, non-blank characters (according to char-graphic? and char-blank?;
see §3.4) write using the escape sequences described in §11.2.4, using \a, \b, \t, \n, \v, \f, \r, or \e if
possible, otherwise using \u with four hexadecimal digits or \U with eight hexadecimal digits (using the latter
only if the character value does not fit into four digits). All strings display as their literal character sequences.

• Byte strings write using #", where each byte in the string content is written using the corresponding ASCII
decoding if the byte is between 0 and 127 and the character is graphic or blank (according to char-graphic?
and char-blank?; see §3.4). Otherwise, the byte is written using \a, \b, \t, \n, \v, \f, \r, or \e if
possible, otherwise using \o with one to three octal digits (only as many as necessary). All strings display
as their literal byte sequence; this byte sequence may not be a valid UTF-8 encoding, so it may not correspond
to a sequence of characters.

• Paths (see §11.3.1) by write like other unreadable values using #<path:...>. A path displays in the
same way as the result of path->string applied to the path.

• Regexp values print using the form #rxstring, where string is the write form of the regexp’s source
character string or byte string. Similarly, byte-regexp values print starting with #rx#.

• Hash tables by default print unreadably as #<hash−table>. When the print-hash-table pa-
rameter is set to true (see §7.9.1.4), hash tables print using the form #hash((key . val) · · ·) or
#hasheq((key . val) · · ·) for tables using equal? or eq? key comparisons, respectively. Hash
tables with weakly held keys always print unreadably as #<hash−table>.

• Values with shared structure can be printed using #n= and #n#, where n is a decimal integer. See §11.2.5.1.

• A value with no readable format prints as #<...>, but only when the print-unreadable parameter is
set to #t (the default; see also §7.9.1.4). When the parameter’s value is #f, attempting to print an unreadable
value raises exn:fail:contract.

11.2.5.1 SHARING STRUCTURE IN INPUT AND OUTPUT

MzScheme can read and print Common LISP-style graphs, values with shared structure (including cycles). Graphs
are described by tagging the shared structure once with #n= (using some decimal integer n with no more than eight
digits) and then referencing it later with #n# (using the same number n). For example, the following datum represents
the infinite list of ones:

#0=(1 . #0#)

If this graph is entered into MzScheme’s read-eval-print loop, MzScheme’s compiler will loop forever, trying
to compile an infinite expression. In contrast, the following expression defines ones to the infinite list of ones, using
quote to hide the infinite list from the compiler:

(define ones (quote #0=(1 . #0#)))

A tagged structure can be referenced multiple times. Here, v is defined to be a vector containing the same cons cell
in all three slots:

(define v #(#1=(cons 1 2) #1# #1#))

123

11.2. Reading and Writing 11. Input and Output

A tag #n= must appear to the left of all references #n#, and all references must appear in the same top-level datum as
the tag. By default, MzScheme’s printer will display a value without showing the shared structure:

#((1 . 2) (1 . 2) (1 . 2))

Graph reading and printing are controlled with the read-accept-graph and print-graph boolean parameters
(see §7.9.1.4). Graph reading is enabled by default, and graph printing is disabled by default. However, when the
printer encounters a graph containing a cycle, graph printing is automatically enabled, temporarily. (For this reason,
the display, write, and print procedures require memory proportional to the depth of the value being printed.)
When graph reading is disabled and a graph is provided as input, the exn:fail:read exception is raised.

If the n in a #n= form or a #n# form contains more than eight digits, the exn:fail:read exception is raised. If
a #n# form is not preceded by a #n= form using the same n, the exn:fail:read exception is raised. If two #n=
forms are in the same expression for the same n, the exn:fail:read exception is raised.

11.2.6 Replacing the Reader

Each input port has its own port read handler. This handler is invoked to read from the port when the built-in read
or read-syntax procedure is applied to the port.8 A port read handler is applied to either one argument or two
arguments:

• A single argument is supplied when the port is used with read; the argument is the port being read. The return
value is the value that was read from the port (or end-of-file).

• Two arguments are supplied when the port is used with read-syntax; the first argument is the port being
read, and the second argument is a value indicating the source. The return value is a syntax object that was read
from the port (or end-of-file).

A port’s read handler is configured with port-read-handler:

• (port-read-handler input-port) returns the current port read handler for input-port.

• (port-read-handler input-port proc) sets the handler for input-port to proc.

The default port read handler reads standard Scheme expressions with MzScheme’s built-in parser (see §11.2.4). It
handles a special result from a custom input port (see §11.1.7.1) by treating it as a single expression, except that
special-comment values (see §11.2.9.1) are treated as whitespace.

The read and read-syntax procedures themselves can be customized through a readtable; see §11.2.8 for more
information.

11.2.7 Replacing the Printer

Each output port has its own port display handler, port write handler, and port print handler. These handlers are
invoked to output to the port when the standard display, write or print procedure is applied to the port. A
port display/write/print handler takes a two arguments: the value to be printed and the destination port. The handler’s
return value is ignored.

• (port-display-handler output-port) returns the current port display handler for output-port.

8The port read handler is not used for read/recursive or read-syntax/recursive.

124

11. Input and Output 11.2. Reading and Writing

• (port-display-handler output-port proc) sets the display handler for output-port to
proc.

• (port-write-handler output-port) returns the current port write handler for output-port.

• (port-write-handler output-port proc) sets the write handler for output-port to proc.

• (port-print-handler output-port) returns the current port print handler for output-port.

• (port-print-handler output-port proc) sets the print handler for output-port to proc.

The default port display and write handlers print Scheme expressions with MzScheme’s built-in printer (see §11.2.5).
The default print handler calls the global port print handler (the value of the global-port-print-handler
parameter; see §7.9.1.2); the default global port print handler is the same as the default write handler.

11.2.8 Customizing the Reader through Readtables

A readtable configures MzScheme’s built-in reader by adjusting the way that individual characters are parsed.
MzScheme readtables are just like readtables in Common LISP, except that an individual readtable is immutable,
and the procedures for creating and inspecting readtables are somewhat different than the Common LISP procedures.

The readtable is consulted at specific times by the reader:

• when looking for the start of an S-expression;

• when determining how to parse an S-expression that starts with hash (“#”);

• when looking for a delimiter to terminate a symbol or number;

• when looking for an opener (such as “(”), closer (such as “)”), or dot (“.”) after the first character parsed as a
sequence for a list, vector, or hash table; or

• when looking for an opener after #n in a vector of specified length n.

In particular, after parsing a character that is mapped to the default behavior of semi-colon (“;”), the readtable is ignored
until the comment’s terminating newline is discovered. Similarly, the readtable does not affect string parsing until a
closing double-quote is found. Meanwhile, if a character is mapped to the default behavior of an open parenthesis
(“(”), then it starts sequence that is closed by any character that is mapped to a close parenthesis (“)”). An apparent
exception is that the default parsing of a vertical bar (“|”) quotes a symbol until a matching character is found, but the
parser is simply using the character that started the quote; it does not consult the readtable.

For many contexts, #f identifies the default readtable for MzScheme. In particular, #f is the initial value for
the current-readtable parameter (see §7.9.1.3), which causes the reader to behave as described in §11.2.4.
Adjust MzScheme’s default reader by setting the current-readtable parameter to a readtable created with
make-readtable.

(make-readtable readtable [char-or-false symbol-or-char readtable-or-proc ···1]) cre-
ates a new readtable that is like readtable (which can be #f), except that the reader’s behavior is modified for each
char according to the given symbol-or-char and readtable-or-proc. The · · ·1 for make-readtable
applies to all three of char, symbol-or-char, and readtable-or-proc; in other words, the total number of
arguments to make-readtable must be one modulo three.

The possible combinations for char-or-false, symbol-or-char, and readtable-or-proc are as fol-
lows:

125

11.2. Reading and Writing 11. Input and Output

• char ’terminating-macro proc — causes char to be parsed as a delimiter, and an un-
quoted/uncommented char in the input string triggers a call to the reader macro proc; the activity of proc
is described further below. Conceptually, characters like semi-colon (“;”) and parentheses are mapped to termi-
nating reader macros in the default readtable.

• char ’non-terminating-macro proc — like the ’terminating-macro variant, but char is not
treated as a delimiter, so it can be used in the middle of an identifier or number. Conceptually, hash (“#”) is
mapped to a non-terminating macro in the default readtable.

• char ’dispatch-macro proc — like the ’non-terminating-macro variant, but char only when
it follows a hash (“#”) — or, more precisely, when the character follows one that has been mapped to the behavior
of hash in the default readtable.

• char like-char readtable — causes char to be parsed in the same way that like-char is parsed
in readtable, where readtable can be #f to indicate the default readtable. Mapping a character to the
same actions as vertical bar (“|”) in the default reader means that the character starts quoting for symbols, and the
same character terminates the quote; in contrast, mapping a character to the same action as a double quote means
that the character starts a string, but the string is still terminated with a closing double quote. Finally, mapping
a character to an action in the default readtable means that the character’s behavior is sensitive to parameters
that affect the original character; for example, mapping a character to the same action is a curly brace (“{”)
in the default readtable means that the character is disallowed when the read-curly-brace-as-paren
parameter is set to #f.

• #f ’non-terminating-macro proc — replaces the macro used to parse characters with no specific
mapping: i.e., characters (other than hash or vertical bar) that can start a symbol or number with the default
readtable.

If multiple ’dispatch-macro mappings are provided for a single char-or-false, all but the last one are
ignored. Similarly, if multiple non-’dispatch-macro mappings are provided for a single char-or-false, all
but the last one are ignored.

A reader macro proc must accept six arguments, and it can optionally accept two arguments. See §11.2.9 for infor-
mation on the procedure’s arguments and results.

A reader macro normally reads characters from the given input port to produce a value to be used as the “reader macro-
expansion” of the consumed characters. The reader macro might produce a special-comment value to cause the con-
sumed character to be treated as whitespace, and it might use read/recursive or read-syntax/recursive;
see §11.2.9.1 and §11.2.9.2 for more information on these topics.

(readtable-mapping readtable char), where readtable is not #f, produces information about the
mappings in readtable for char. The result is three values:

• either a character (mapping is to same behavior as the character in the default readtable), ’terminating-macro,
or ’non-terminating-macro; this result reports the main (i.e., non-’dispatch-macro) mapping for
char. When the result is a character, then char is mapped to the same behavior as the returned character in
the default readtable.

• either #f or a reader-macro procedure; the result is a procedure when the first result is ’terminating-macro
or ’non-terminating-macro.

• either #f or a reader-macro procedure; the result is a procedure when the character has a ’dispatch-macro
mapping in readtable to override the default dispatch behavior.

Note that reader-macro procedures for the default readtable are not directly accessible. To invoke default behaviors,
use read/recursive or read-syntax/recursive (see §11.2.9.2) with a character and the #f readtable.

126

11. Input and Output 11.2. Reading and Writing

Extended example:

;; Provides raise-read-error and raise-read-eof-error
(require (lib "readerr.ss" "syntax"))

(define (skip-whitespace port)
;; Skips whitespace characters, sensitive to the current
;; readtable’s definition of whitespace
(let ([ch (peek-char port)])
(unless (eof-object? ch)
;; Consult current readtable:
(let-values ([(like-ch/sym proc dispatch-proc)

(readtable-mapping (current-readtable) ch)])
;; If like-ch/sym is whitespace, then ch is whitespace
(when (and (char? like-ch/sym)

(char-whitespace? like-ch/sym))
(read-char port)
(skip-whitespace port))))))

(define (skip-comments read-one port src)
;; Recursive read, but skip comments and detect EOF
(let loop ()
(let ([v (read-one)])
(cond
[(special-comment? v) (loop)]
[(eof-object? v)
(let-values ([(l c p) (port-next-location port)])
(raise-read-eof-error "unexpected EOF in tuple" src l c p 1))]

[else v]))))

(define (parse port read-one src)
;; First, check for empty tuple
(skip-whitespace port)
(if (eq? #\> (peek-char port))

null
(let ([elem (read-one)])
(if (special-comment? elem)

;; Found a comment, so look for > again
(parse port read-one src)
;; Non-empty tuple:
(cons elem

(parse-nonempty port read-one src))))))

(define (parse-nonempty port read-one src)
;; Need a comma or closer
(skip-whitespace port)
(case (peek-char port)
[(#\>) (read-char port)
;; Done
null]

[(#\,) (read-char port)
;; Read next element and recur
(cons (skip-comments read-one port src)

(parse-nonempty port read-one src))]

127

11.2. Reading and Writing 11. Input and Output

[else
;; Either a comment or an error; grab location (in case
;; of error) and read recursively to detect comments
(let-values ([(l c p) (port-next-location port)]

[(v) (read-one)])
(cond
[(special-comment? v)
;; It was a comment, so try again
(parse-nonempty port read-one src)]

[else
;; Wasn’t a comment, comma, or closer; error
((if (eof-object? v) raise-read-eof-error raise-read-error)
"expected ‘,’ or ‘>’" src l c p 1)]))]))

(define (make-delims-table)
;; Table to use for recursive reads to disallow delimiters
;; (except those in sub-expressions)
(letrec ([misplaced-delimiter

(case-lambda
[(ch port) (unexpected-delimiter ch port #f #f #f #f)]
[(ch port src line col pos)
(raise-read-error
(format "misplaced ‘˜a’ in tuple" ch) src line col pos 1)])])

(make-readtable (current-readtable)
#\, ’terminating-macro misplaced-delimiter
#\> ’terminating-macro misplaced-delimiter)))

(define (wrap l)
‘(make-tuple (list ,@l)))

(define parse-open-tuple
(case-lambda
[(ch port)
;; ‘read’ mode
(wrap (parse port

(lambda () (read/recursive port #f
(make-delims-table)))

(object-name port)))]
[(ch port src line col pos)
;; ‘read-syntax’ mode
(datum->syntax-object
#f
(wrap (parse port

(lambda () (read-syntax/recursive src port #f
(make-delims-table)))

src))
(let-values ([(l c p) (port-next-location port)])
(list src line col pos (and pos (− p pos)))))]))

(define tuple-readtable
(make-readtable #f #\< ’terminating-macro parse-open-tuple))

(parameterize ([current-readtable tuple-readtable])
(read (open-input-string "<1 , 2 , \"a\">")))

128

11. Input and Output 11.2. Reading and Writing

;; ⇒ ’(make-tuple (list 1 2 "a"))

(parameterize ([current-readtable tuple-readtable])
(read (open-input-string "< #||# 1 #||# , #||# 2 #||# , #||# \"a\" #||# >")))

;; ⇒ ’(make-tuple (list 1 2 "a"))

(define tuple-readtable+
(make-readtable tuple-readtable

#\∗ ’terminating-macro (lambda a (make-special-comment #f))
#\ #\space #f))

(parameterize ([current-readtable tuple-readtable+])
(read (open-input-string "< ∗ 1 , 2 , ∗ \"a\" ∗ >")))

;; ⇒ ’(make-tuple (list 1 2 "a"))

11.2.9 Reader-Extension Procedures

MzScheme’s reader can be extended in three ways: through a reader-macro procedure in a readtable (see §11.2.8),
through a #reader form (see §11.2.4), or through a custom-port byte reader that returns a “special” result procedure
(see §11.1.7.1). All three kinds of procedures accept similar arguments, and their results are treated in the same way
by read and read-syntax (or, more precisely, by the default read handler; see §11.2.6).

Calls to these reader-extension procedures can be triggered through read, read/recursive, read-syntax,
or read-honu-syntax. In addition, a special-read procedure can be triggered by calls to read-honu,
read-honu/recursive, read-honu-syntax, read-honu-syntax/recursive, read-char-or-special,
or by the context of read-bytes-avail!, read-bytes-avail!*, read-bytes-avail!, and
peek-bytes-avail!*.

Optional arities for reader-macro and special-result procedures allow them to distinguish reads via read, etc. from
reads via read-syntax, etc. in the case that the source value is #f and no other location information is available.

Procedure arguments

A reader-macro procedure must accept six arguments, and it can optionally accept two arguments. The first two
arguments are always the character that triggered the reader macro and the input port for reading. When the reader
macro is triggered by read-syntax (or read-syntax/recursive), the procedure is passed four additional
arguments that represent a source location. When the reader macro is triggered by read (or read/recursive),
the procedure is passed only two arguments if it accepts two arguments, otherwise it is passed six arguments where
the last four are all #f.

A #reader-loaded procedure accepts the same arguments as either read or read-syntax, depending on whether
the procedure was loaded through read, etc. or through read-syntax, etc.

A special-result procedure must accept four arguments, and it can optionally accept zero arguments. When the special
read is triggered by read-syntax (or read-honu-syntax, read-syntax/recursive, etc.), the proce-
dure is passed four arguments that represent a source location. When the special read is triggered by read (or
read-char-or-special, read-honu, read/syntax, etc.), the procedure is passed no arguments if it ac-
cepts zero arguments, otherwise it is passed four arguments that are all #f.

Procedure result

When a reader-extension procedure is called in syntax-reading mode (via read-syntax, etc.), it should generally
return a syntax object that has no lexical context (e.g., a syntax object created using datum->syntax-object
with #f as the first argument and with the given location information as the third argument). Another possible result
is a special-comment value (see §11.2.9.1). If the procedure’s result is not a syntax object and not a special-comment
value, it is converted to one using datum->syntax-object.

129

11.2. Reading and Writing 11. Input and Output

When a reader-extension procedure is called in non-syntax-reading modes, it should generally not return a syntax
object. If a syntax object is returned, it is converted to a plain value using syntax-object->datum.

In either context, when the result from a reader-extension procedure is a special-comment value (see §11.2.9.1), then
read, read-syntax, etc. treat the value as a delimiting comment and otherwise ignore it.

Also in either context, the result may be copied to prevent mutation to pairs, vectors, or boxes before the read result is
completed, and to support the construction of graphs with cycles. Mutable pairs, boxes, and vectors are copied, along
with any pairs, boxes, or vectors that lead to such mutable values, to placeholders produced by a recursive read (see
§11.2.9.2), or to references of a shared value. Graph structure (including cycles) is preserved in the copy.

11.2.9.1 SPECIAL COMMENTS

(make-special-comment v) creates a special-comment value that encapsulates v . The read,
read-syntax, etc. procedures treat values constructed with make-special-comment as delimiting whitespace
when returned by a reader-extension procedure (see §11.2.9).

(special-comment? v) returns #t if v is the result of make-special-comment, #f otherwise.

(special-comment-value sc) returns the value encapsulated by the special-comment value sc. This value
is never used directly by a reader, but it might be used by the context of a read-char-or-special, etc. call that
detects a special comment.

11.2.9.2 RECURSIVE READS

(read/recursive [input-port char-or-false readtable]) is similar to calling read, but it is nor-
mally used during the dynamic extent of read within a reader-extension procedure (see §11.2.9). The main effect of
using read/recursive instead of read is that graph-structure annotations (see §11.2.5.1) in the nested read are
considered part of the overall read. Since the result is wrapped in a placeholder, however, it is not directly inspectable.

If char-or-false is provided and not #f, it is effectively prefixed to the beginning of input-port’s stream for
the read. (To prefix multiple characters, use input-port-append from MzLib’s port library; see Chapter 35 of
PLT MzLib: Libraries Manual.)

The readtable argument, which defaults to (current-readtable), is used for top-level parsing to satisfy the
read request; recursive parsing within the read (e.g., to read the elements of a list) instead uses the current readtable
as determined by the current-readtable parameter. A reader macro might call read/recursive with a
character and readtable to effectively invoke the readtable’s behavior for the character. If readtable is #f, the
default readtable is used for top-level parsing.

When called within the dynamic extent of read, the read/recursive procedure produces either an opaque place-
holder value, a special-comment value, or an end-of-file. The result is a special-comment value (see §11.2.9.1)
when the input stream’s first non-whitespace content parses as a comment. The result is end-of-file when
read/recursive encounters an end-of-file. Otherwise, the result is a placeholder that protects graph references
that are not yet resolved. When this placeholder is returned within an S-expression that is produced by any reader-
extension procedure (see §11.2.9) for the same outermost read, it will be replaced with the actual read value before
the outermost read returns.

(read-syntax/recursive [source-name-v input-port char-or-false readtable]) is anal-
ogous to calling read/recursive, but the resulting value encapsulates S-expression structure with source-location
information. As with read/recursive, when read-syntax/recursive is used within the dynamic extent
of read-syntax, the result of from read-syntax/recursive is either a special-comment value, end-of-file,
or opaque graph-structure placeholder (not a syntax object). The placeholder can be embedded in an S-expression or
syntax object returned by a reader macro, etc., and it will be replaced with the actual syntax object before the outermost

130

11. Input and Output 11.2. Reading and Writing

read-syntax returns.

Using read/recursive within the dynamic extent of read-syntax does not allow graph structure for reading
to be included in the outer read-syntax parsing, and neither does using read-syntax/recursive within the
dynamic extent of read. In those cases, read/recursive and read-syntax/recursive produce results
like read and read-syntax.

See §11.2.8 for an extended example that uses read/recursive and read-syntax/recursive.

11.2.10 Customizing the Printer through Custom-Write Procedures

The built-in prop:custom-write structure type property associates a procedures to a structure type. The proce-
dure is used by the default printer to display or write (or print) instances of the structure type.

See §4.4 for general information on structure type properties.

The procedure for a prop:custom-write value takes three arguments: the structure to be printed, the target port,
and a boolean that is #t for write mode and #f for display mode. The procedure should print the value to the
given port using write, display, fprintf, write-special, etc.

The write handler, display handler, and print handler are specially configured for a port given to a custom-write proce-
dure. Printing to the port through display, write, or print prints a value recursively with sharing annotations.
To avoid a recursive print (i.e., to print without regard to sharing with a value currently being printed), print instead to a
string or pipe and transfer the result to the target port using write-string and write-special. To recursively
print but to a port other than the one given to the custom-write procedure, copy the given port’s write handler, display
handler, and print handler to the other port.

The port given to a custom-write handler is not necessarily the actual target port. In particular, to detect cycles and
sharing, the printer invokes a custom-write procedure with a port that records recursive prints, and does not retain any
other output.

Recursive print operations may trigger an escape from the call to the custom-write procedure (e.g., for pretty-printing
where a tentative print attempt overflows the line, or for printing error output of a limited width).

The following example definition of a tuple type includes custom-write procedures that print the tuple’s list content
using angle brackets in writemode and no brackets in displaymode. Elements of the tuple are printed recursively,
so that graph and cycle structure can be represented.

(define (tuple-print tuple port write?)
(when write? (write-string "<" port))
(let ([l (tuple-ref tuple 0)])
(unless (null? l)
((if write? write display) (car l) port)
(for-each (lambda (e)

(write-string ", " port)
((if write? write display) e port))

(cdr l))))
(when write? (write-string ">" port)))

(define-values (s:tuple make-tuple tuple? tuple-ref tuple-set!)
(make-struct-type ’tuple #f 1 0 #f

(list (cons prop:custom-write tuple-print))))

(display (make-tuple ’(1 2 "a"))) ; prints 1, 2, a

131

11.3. Filesystem Utilities 11. Input and Output

(let ([t (make-tuple (list 1 2 "a"))])
(set-car! (tuple-ref t 0) t)
(write t)) ; prints #0=<#0#, 2, "a">

11.3 Filesystem Utilities

MzScheme provides many operations for accessing and modifying filesystems in a (mostly) platform-independent
manner. Additional filesystem utilities are in MzLib; see also Chapter 20 of PLT MzLib: Libraries Manual.

11.3.1 Paths

The format of a filesystem path varies across platforms. For example, under Unix, directories are separated by “/”
while Windows uses both “/” and “\”. Furthermore, for most Unix filesystems, the true name of a file is a byte string,
but users prefer to see the bytes decoded in a locale-specific way when the filename is printed. MzScheme therefore
provides a path datatype for managing filesystem paths, and procedures such as build-path, path->string,
and bytes->path for manipulating paths.

When a MzScheme procedure takes a filesystem path as an argument, the path can be provided either as a string or
as an instance of the path datatype. If a string is provided, it is converted to a path using string->path. A
MzScheme procedure that generates a filesystem path always generates a path value.

By default, paths are created and manipulated for the current platform, but procedures that merely manipulate
paths (without using the filesystem) can manipulate paths using conventions for other supported platforms. The
bytes->path procedure accepts an optional argument that indicates the platform for the path, either ’unix or
’windows. For other functions, such as build-path or simplify-path, the behavior is sensitive to the kind
of path that is supplied. Unless otherwise specified, a procedure that requires a path accepts only paths for the current
platform.

Two path values are equal? when they are use the same convention type and when their byte-string representa-
tions are equal?. A path string (or byte string) cannot be empty, and it cannot contain a nul character or byte.
When an empty string or a string containing nul is provided as a path to any procedure except absolute-path?,
relative-path?, or complete-path? the exn:fail:contract exception is raised.

Most MzScheme primitives that take path perform an expansion on the path before using it. Procedures that build
paths or merely check the form of a path do not perform this expansion, with the exception of simplify-path for
Windows paths. For more information about path expansion and other platform-specific details, see §20.1 for Unix
and Mac OS X paths and §20.2 for Windows paths.

The basic path utilities are as follows:

• (path? v) returns #t if v is a path value for the current platform (not a string, and not a path for a different
platform), #f otherwise.

• (path-string? v) returns #t if v is either a path value or a non-empty string without nul characters, #f
otherwise.

• (path-for-some-system? v) returns #t if v is a path value for some platform (not a string), #f other-
wise.

• (string->path string) produces a path whose byte-string name is (string->bytes/locale
string (char->integer #\?)); see §3.6 for more information on string->bytes/locale. Be-
ware that the current locale might not encode every string, in which case string->path can produce the
same path for different strings. See also string->path-element, which should be used instead of
string->path when a string represents a single path element.

132

11. Input and Output 11.3. Filesystem Utilities

• (bytes->path bytes [type-symbol]) produces a path (for some platform) whose byte-string name is
bytes. The optional type-symbol specifies the convention to use for the path, and it can be any possible
result from system-path-convention-type (see below); it defaults to the value for the current platform.
For converting relative path elements from literals, use instead bytes->path-element (described below),
which applies a suitable encoding for individual elements.

• (path->string path) produces a string that represents path by decoding path’s byte-string name using
the current locale’s encoding; “?” is used in the result string where encoding fails, and if the encoding result is
the empty string, then the result is "?". The resulting string is suitable for displaying to a user, string-ordering
comparisons, etc., but it is not suitable for re-creating a path (possibly modified) via string->path, since
decoding and re-encoding the path’s byte string may lose information. Furthermore, for display and sorting
based on individual path elements (such as pathless file names), use path-element->string, instead,
to avoid special encodings use to represent some relative paths. See §20.2 for specific information about the
conversion of Windows paths.

• (path->bytes path) produces path’s byte string representation. No information is lost in this transla-
tion, so that (bytes->path (path->bytes path) (path-convention-type path)) always
produces a path is that is equal? to path. The path argument can be a path for any platform. Conversion
to and from byte values is useful for marshaling and unmarshaling paths, but manipulating the byte form of
a path is generally a mistake. In particular, the byte string may start with a \\?\REL encoding for Windows
paths or a ./∼ encoding for Unix and Mac OS X paths. Instead of path->bytes, use split-path and
path-element->bytes (described below) to manipulate individual path elements.

• (string->path-element string) is like string->path, except that string corresponds to a
single relative element in a path, and it is encoded as necessary to convert it to a path. See §20.1 for more infor-
mation on the conversion for Unix and Mac OS X paths, and see §20.2 for more information on the conversion
for Windows paths. If string does not correspond to any path element (e.g., it is an absolute path, or it can
be split), or if it corresponds to an up-directory or same-directory indicator under Unix and Mac OS X, then
exn:fail:contract exception is raised. As for path->string, information can be lost from string
in the locale-specific conversion to a path.

• (bytes->path-element bytes [type-symbol]) is like bytes->path, except that bytes cor-
responds to a single relative element in a path. In terms of conversions and restrictions on bytes,
bytes->path-element is like string->path-element. The bytes->path-element procedure
is generally the best choice for reconstructing a path based on another path (where the other path is deconstructed
with split-path and path-element->bytes) when ASCII-level manipulation of path elements is nec-
essary.

• (path-element->string path) is like path->string, except any encoding prefix is removed. See
§20.1 for more information on the conversion for Unix and Mac OS X paths, and see §20.2 for more information
on the conversion for Windows paths. In addition, trailing path separators are removed, as by split-path.
The path argument must be such that split-path applied to path would return ’relative as its
first result and a path as its second result, otherwise the exn:fail:contract exception is raised. The
path-element->string procedure is generally the best choice for presenting a pathless file or directory
name to a user.

• (path-element->bytes path) is like path->bytes, except that any encoding prefix is removed, etc.,
as for path-element->string. For any reasonable locale, consecutive ASCII characters in the printed
form of path are mapped to consecutive byte values that match each character’s code-point value, and a leading
or trailing ASCII character is mapped to a leading or trailing byte, respectively. The path argument can be a
path for any platform. The path-element->bytes procedure is generally the right choice (in combination
with split-path) for extracting the content of a path to manipulate it at the ASCII level (then reassembling
the result with bytes->path-element and build-path).

• (path-convention-type path) accepts a path value (not a string) and returns its convention type. The
possible results are the same as the possible results of system-path-convention-type (see below).

133

11.3. Filesystem Utilities 11. Input and Output

• (system-path-convention-type) returns the path convention type of the current platform: ’unix for
Unix and Mac OS X, ’windows for Windows.

• (build-path base-path sub-path · · ·) creates a path given a base path and any number of sub-path
extensions. If base-path is an absolute path, the result is an absolute path; if base is a relative path, the
result is a relative path. Each sub-path must be either a relative path, a directory name, the symbol ’up
(indicating the relative parent directory), or the symbol ’same (indicating the relative current directory). For
Windows paths, if base-path is a drive specification (with or without a trailing slash) the first sub-path
can be an absolute (driveless) path. For all platforms, the last sub-path can be a filename.

The base-path and sub-paths arguments can be paths for any platform. The platform for the resulting
path is inferred from the base-path and sub-path arguments, where string arguments imply a path for the
current platform. If different arguments are for different platforms, the exn:fail:contract exception is
raised. If no argument implies a platform (i.e., all are ’up or ’same), the generated path is for the current
platform.

Each sub-path and base-path can optionally end in a directory separator. If the last sub-path ends in a
separator, it is included in the resulting path.

If base-path or sub-path is an illegal path string (because it is empty or contains a nul character), the
exn:fail:contract exception is raised.

The build-path procedure builds a path without checking the validity of the path or accessing the filesystem.

See §20.1 for more information on the construction of Unix and Mac OS X paths, and see §20.2 for more
information on the construction of Windows paths.

The following examples assume that the current directory is /home/joeuser for Unix examples and C:\Joe’s
Files for Windows examples.

(define p1 (build-path (current-directory) "src" "scheme"))
; Unix: p1 ⇒ "/home/joeuser/src/scheme"
; Windows: p1 ⇒ "C:\Joe’s Files\src\scheme"

(define p2 (build-path ’up ’up "docs" "MzScheme"))
; Unix: p2 ⇒ "../../docs/MzScheme"
; Windows: p2 ⇒ "..\..\docs\MzScheme"

(build-path p2 p1)
; Unix and Windows: raises exn:fail:contract because p1 is absolute

(build-path p1 p2)
; Unix: ⇒ "/home/joeuser/src/scheme/../../docs/MzScheme"
; Windows: ⇒ "C:\Joe’s Files\src\scheme\..\..\docs\MzScheme"

• (build-path/convention-type type-symbol base-path sub-path ···) is like build-path,
except a path convention type is specified explicitly. The type-symbol argument must be a possible result of
system-path-convention-type (see above) for some platform.

• (absolute-path? path) returns #t if path is an absolute path, #f otherwise. The path argument can
be a path for any platform. If path is not a legal path string (e.g., it contains a nul character), #f is returned.
This procedure does not access the filesystem.

• (relative-path? path) returns #t if path is a relative path, #f otherwise. The path argument can
be a path for any platform. If path is not a legal path string (e.g., it contains a nul character), #f is returned.
This procedure does not access the filesystem.

• (complete-path? path) returns #t if path is a completely determined path (not relative to a directory
or drive), #f otherwise. The path argument can be a path for any platform. Note that for Windows paths, an
absolute path can omit the drive specification, in which case the path is neither relative nor complete. If path
is not a legal path string (e.g., it contains a nul character), #f is returned. This procedure does not access the
filesystem.

134

11. Input and Output 11.3. Filesystem Utilities

• (path->complete-path path [base-path]) returns path as a complete path. If path is already
a complete path, it is returned as the result. Otherwise, path is resolved with respect to the complete
path base-path. If base-path is omitted, path is resolved with respect to the current directory. If
base-path is provided and it is not a complete path, the exn:fail:contract exception is raised. The
path and base-path arguments can paths for any platform, as long as both are supplied; if they are for differ-
ent platforms, the exn:fail:contract exception is raised. This procedure does not access the filesystem.

• (path->directory-path path) returns path if path syntactically refers to a directory and ends in a
separator, otherwise it returns an extended version of path that specifies a directory and ends with a separator.
For example, under Unix and Mac OS X, the path x/y/ syntactically refers to a directory and ends in a separator,
but x/y would be extended to x/y/, and x/.. would be extended to x/../. The path argument can be a path for any
platform, and the result will be for the same platform. This procedure does not access the filesystem.

• (resolve-path path) expands path and returns a path that references the same file or directory as path.
Under Unix and Mac OS X, if path is a soft link to another path, then the referenced path is returned (this may
be a relative path with respect to the directory owning path) otherwise path is returned (after expansion).

• (expand-path path) returns the expanded version of path (as described at the beginning of this section).
The filesystem might be accessed, but the source or expanded path might be a non-existent path.

• (simplify-path path [use-filesystem?]) eliminates redundant path separators (except for a sin-
gle trailing separator), up-directory (“..”), and same-directory (“.”) indicators in path, and changes forward-
slash separators to backslahs separators in Windows paths, such that the result accesses the same file or directory
(if it exists) as path. In general, the pathname is normalized as much as possible — without consulting the
filesystem if use-filesystem? is #f, and (under Windows) without changing the case of letters within the
path. If path syntactically refers to a directory, the result ends with a directory separator.

When path is simplified and use-filesystem? is true (the default), a complete path is returned; if path
is relative, it is resolved with respect to the current directory, and up-directory indicators are removed taking
into account soft links (so that the resulting path refers to the same directory as before).

When use-filesystem? is #f, up-directory indicators are removed by deleting a preceding path element,
and the result can be a relative path with up-directory indicators remaining at the beginning of the path or, for
Unix and Mac OS X paths, after an initial path element that starts with tilde (“∼”); otherwise, up-directory
indicators are dropped when they refer to the parent of a root directory. Similarly, the result can be the same
as (build-path ’same) (but with a trailing separator) if eliminating up-directory indicators leaves only
same-directory indicators, and the result can start with a same-directory indicator for Unix and Mac OS X paths
if eliminating it would make the result start with a tilde (“∼”).

The path argument can be a path for any platform when use-filesystem? is #f, and the resulting path is
for the same platform.

The filesystem might be accessed when use-filesystem? is true, but the source or expanded path might
be a non-existent path. If path cannot be simplified due to a cycle of links, the exn:fail:filesystem
exception is raised (but a successfully simplified path may still involve a cycle of links if the cycle did not inhibit
the simplification).

See §20.1 for more information on simplifying Unix and Mac OS X paths, and see §20.2 for more information
on simplifying Windows paths.

• (normal-case-path path) returns path with “normalized” case letters. For Unix and Mac OS X paths,
this procedure always returns the input path, because filesystems for these platforms can be case-sensitive. For
Windows paths, if path does not start \\?\, the resulting string uses only lowercase letters, based on the current
locale. In addition, for Windows paths when the path does not start \\?\, all forward slashes (“/”) are converted
to backward slashes (“\”), and trailing spaces and periods are removed. The path argument can be a path for
any platform, but beware that local-sensitive decoding and conversion of the path may be different on the current
platform than for the path’s platform. This procedure does not access the filesystem.

• (split-path path) deconstructs path into a smaller path and an immediate directory or file name. Three
values are returned (see §2.2):

135

11.3. Filesystem Utilities 11. Input and Output

– base is either
∗ a path,
∗ ’relative if path is an immediate relative directory or filename, or
∗ #f if path is a root directory.

– name is either
∗ a directory-name path,
∗ a filename,
∗ ’up if the last part of path specifies the parent directory of the preceding path (e.g., “..” under Unix),

or
∗ ’same if the last part of path specifies the same directory as the preceding path (e.g., “.” under

Unix).
– must-be-dir? is #t if path explicitly specifies a directory (e.g., with a trailing separator), #f oth-

erwise. Note that must-be-dir? does not specify whether name is actually a directory or not, but
whether path syntactically specifies a directory.

Compared to path, redundant separators (if any) are removed in the result base and name. If base is #f,
then name cannot be ’up or ’same. The path argument can be a path for any platform, and resulting paths
for the same platform. This procedure does not access the filesystem.

See §20.1 for more information on splitting Unix and Mac OS X paths, and see §20.2 for more information on
splitting Windows paths.

(path-replace-suffix path string-or-bytes) returns a path that is the same as path, except
that the suffix for the last element of the path is changed to string-or-bytes. If the last element of path
has no suffix, then string-or-bytes is added to the path. A suffix is defined as a period followed by any
number of non-period characters/bytes at the end of the path element. The path argument can be a path for
any platform, and the result is for the same platform. If path represents a root, the exn:fail:contract
exception is raised.

11.3.2 Locating Paths

The find-system-path and find-executable-path procedures locate useful files and directories:

• (find-system-path kind-symbol) returns a machine-specific path for a standard type of path speci-
fied by kind-symbol, which must be one of the following:

– ’home-dir — the current user’s home directory.
Under Unix and Mac OS X, this directory is determined by expanding the path ∼, which is expanded by
first checking for a HOME environment variable. If none is defined, the USER and LOGNAME environment
variables are consulted (in that order) to find a user name, and then system files are consulted to locate the
user’s home directory.
Under Windows, the user’s home directory is the user-specific profile directory as determined by the Win-
dows registry. If the registry cannot provide a directory for some reason, the value of the USERPROFILE
environment variable is used instead, as long as it refers to a directory that exists. If USERPROFILE also
fails, the directory is the one specified by the HOMEDRIVE and HOMEPATH environment variables. If
those environment variables are not defined, or if the indicated directory still does not exist, the directory
containing the MzScheme executable is used as the home directory.

– ’pref-dir— the standard directory for storing the current user’s preferences. Under Unix, the directory
is .plt-scheme in the user’s home directory. Under Windows, it is PLT Scheme in the user’s application-
data folder as specified by the Windows registry; the application-data folder is usually Application Data
in the user’s profile directory. Under Mac OS X, it is Library/Preferences in the user’s home directory.
This directory might not exist.

– ’pref-file — a file that contains a symbol-keyed association list of preference values. The file’s
directory path always matches the result returned for ’pref-dir. The file name is plt-prefs.ss under
Unix and Windows, and it is org.plt-scheme.prefs.ss under Mac OS X. The file’s directory might not
exist. See also get-preference in Chapter 20 of PLT MzLib: Libraries Manual.

136

11. Input and Output 11.3. Filesystem Utilities

– ’temp-dir — the standard directory for storing temporary files. Under Unix and Mac OS X, this is the
directory specified by the TMPDIR environment variable, if it is defined.

– ’init-dir — the directory containing the initialization file used by stand-alone MzScheme application.
It is the same as the current user’s home directory.

– ’init-file — the file loaded at start-up by the stand-alone MzScheme application. The directory part
of the path is the same path as returned for ’init-dir. The file name is platform-specific:
∗ Unix and Mac OS X: .mzschemerc
∗ Windows: mzschemerc.ss

– ’addon-dir — a directory for installing PLT Scheme extensions. It’s the same as ’pref-dir, except
under Mac OS X, where it’s Library/PLT Scheme in the user’s home directory. This directory might not
exist.

– ’doc-dir — the standard directory for storing the current user’s documents. It’s the same as
’home-dir under Unix and Mac OS X. Under Windows, it is the user’s documents folder as specified
by the Windows registry; the documents folder is usually My Documents in the user’s home directory.

– ’desk-dir — the directory for the current user’s desktop. Under Unix, it’s the same as ’home-dir.
Under Windows, it is the user’s desktop folder as specified by the Windows registry; the documents folder
is usually Desktop in the user’s home directory. Under Mac OS X, it is the desktop directory, which is
specifically ∼/Desktop under Mac OS X.

– ’sys-dir — the directory containing the operating system for Windows. Under Unix and Mac OS X,
the result is "/".

– ’exec-file— the path of the MzScheme executable as provided by the operating system for the current
invocation.9

– ’run-file — the path of the current executable; this may be different from result for ’exec-file
because an alternate path was provided through a --name or -N command-line flag to stand-alone
MzScheme (or MrEd), or because an embedding executable installed an alternate path. In particular a
“launcher” script created by make-mzscheme-launcher sets this path to the script’s path. In the
stand-alone MzScheme application, this path is also bound initially to program.

– ’collects-dir — a path to the main collection of libraries (see §16). If this path is relative, it’s
relative to the directory of (find-system-path ’exec-file). This path is normally embedded in
a stand-alone MzScheme executable, but it can be overridden by the --collects or -X command-line
flag.

– ’orig-dir — the current directory at start-up, which can be useful in converting a relative-path result
from (find-system-path ’exec-file) or (find-system-path ’run-file) to a com-
plete path.

• (path-list-string->path-list string default-path-list) parses a string or byte string
containing a list of paths, and returns a list of path strings. Under Unix and Mac OS X, paths in a path list
are separated by a colon (“:”); under Windows, paths are separated by a semi-colon (“;”). Whenever the path
list contains an empty path, the list default-path-list is spliced into the returned list of paths. Parts of
string that do not form a valid path are not included in the returned list.

• (find-executable-path program-sub-path related-sub-path [deepest?]) finds a path
for the executable program-sub-path, returning #f if the path cannot be found.

If related-sub-path is not #f, then it must be a relative path string, and the path found for
program-sub-path must be such that the file or directory related-sub-path exists in the same di-
rectory as the executable. The result is then the full path for the found related-sub-path, instead of the
path for the executable.

This procedure is used by MzScheme (as a stand-alone executable) to find the standard library collection
directory (see Chapter 16). In this case, program is the name used to start MzScheme and related
is "collects". The related-sub-path argument is used because, under Unix and Mac OS X,
program-sub-path may involve to a sequence of soft links; in this case, related-sub-path deter-
mines which link in the chain is relevant.

9For MrEd, the executable path is the name of a MrEd executable.

137

11.3. Filesystem Utilities 11. Input and Output

If related-sub-path is not #f, then when find-executable-path does not finds a
program-sub-path that is a link to another file path, the search can continue with the destination of the
link. Further links are inspected until related-sub-path is found or the end of the chain of links is
reached. If deepest? is #f (the default), then the result corresponds to the first path in a chain of links
for which related-sub-path is found (and further links are not actually explored); otherwise, the result
corresponds to the last link in the chain for which related-sub-path is found.

If program-sub-path is a pathless name, find-executable-path gets the value of the PATH en-
vironment variable; if this environment variable is defined, find-executable-path tries each path in
PATH as a prefix for program-sub-path using the search algorithm described above for path-containing
program-sub-paths. If the PATH environment variable is not defined, program-sub-path is prefixed
with the current directory and used in the search algorithm above. (Under Windows, the current directory is al-
ways implicitly the first item in PATH, so find-executable-path checks the current directory first under
Windows.)

11.3.3 Files

The file management utilities are:

• (file-exists? path) returns #t if a file (not a directory) path exists, #f otherwise.10

• (link-exists? path) returns #t if a link path exists (Unix and Mac OS X), #f otherwise. Note that
the predicates file-exists? or directory-exists? work on the final destination of a link or series of
links, while link-exists? only follows links to resolve the base part of path (i.e., everything except the
last name in the path). This procedure never raises the exn:fail:filesystem exception.

• (delete-file path) deletes the file with path path if it exists, returning void if a file was deleted suc-
cessfully, otherwise the exn:fail:filesystem exception is raised. If path is a link, the link is deleted
rather than the destination of the link.

• (rename-file-or-directory old-path new-path [exists-ok?]) renames the file or direc-
tory with path old-path — if it exists — to the path new-path. If the file or directory is renamed success-
fully, void is returned, otherwise the exn:fail:filesystem exception is raised.

This procedure can be used to move a file/directory to a different directory (on the same disk) as well as rename
a file/directory within a directory. Unless exists-ok? is provided as a true value, new-path cannot refer
to an existing file or directory. Even if exists-ok? is true, new-path cannot refer to an existing file when
old-path is a directory, and vice versa. (If new-path exists and is replaced, the replacement is atomic in
the filesystem, except under Windows 95, 98, or Me. However, the check for existence is not included in the
atomic action, which means that race conditions are possible when exists-ok? is false or not supplied.)

If old-path is a link, the link is renamed rather than the destination of the link, and it counts as a file for
replacing any existing new-path.

• (file-or-directory-modify-seconds path [secs-n fail-thunk]) returns the file or direc-
tory’s last modification date as platform-specific seconds (see also §15.1) when secs-n is not provided or
is #f.11 If secs-n is provided and not #f, the access and modification times of path are set to the
given time. On error (e.g., if no such file exists), fail-thunk is called if it is provided, otherwise the
exn:fail:filesystem exception is raised

• (file-or-directory-permissions path) returns a list containing ’read, ’write, and/or
’execute for the given file or directory path. On error (e.g., if no such file exists), the
exn:fail:filesystem exception is raised. Under Unix and Mac OS X, permissions are checked for the
current effective user instead of the real user.

10Under Windows, file-exists? reports #t for all variations of the special filenames (e.g., "LPT1", "x:/baddir/LPT1").
11For FAT filesystems under Windows, directories do not have modification dates. Therefore, the creation date is returned for a directory (but the

modification date is returned for a file).

138

11. Input and Output 11.4. Networking

• (file-size path) returns the (logical) size of the specified file in bytes. (Under Mac OS X, this size
excludes the resource-fork size.) On error (e.g., if no such file exists), the exn:fail:filesystem exception
is raised.

• (copy-file src-path dest-path) creates the file dest-path as a copy of src-path. If the
file is successfully copied, void is returned, otherwise the exn:fail:filesystem exception is raised. If
dest-path already exists, the copy will fail. File permissions are preserved in the copy. Under Mac OS X,
the resource fork is also preserved in the copy. If src-path refers to a link, the target of the link is copied,
rather than the link itself.

• (make-file-or-directory-link to-path path) creates a link path to to-path under Unix
and Mac OS X. The creation will fail if path already exists. The to-path need not refer to an exist-
ing file or directory, and to-path is not expanded before writing the link. If the link is created success-
fully, void is returned, otherwise the exn:fail:filesystem exception is raised. Under Windows, the
exn:fail:unsupported exception is raised always.

11.3.4 Directories

The directory management utilities are:

• (current-directory) returns the current directory and (current-directory path) sets the cur-
rent directory to path. This procedure is actually a parameter, as described in §7.9.1.1.

• (current-drive) returns the current drive name Windows. For other platforms, the exn:fail:unsupported
exception is raised. The current drive is always the drive of the current directory.

• (directory-exists? path) returns #t if path refers to a directory, #f otherwise.

• (make-directory path) creates a new directory with the path path. If the directory is created success-
fully, void is returned, otherwise the exn:fail:filesystem exception is raised.

• (delete-directory path) deletes an existing directory with the path path. If the directory is deleted
successfully, void is returned, otherwise the exn:fail:filesystem exception is raised.

• (rename-file-or-directory old-path new-path exists-ok?), as described in the previous
section, renames directories.

• (file-or-directory-modify-seconds path), as described in the previous section, gets directory
dates.

• (file-or-directory-permissions path), as described in the previous section, gets directory per-
missions.

• (directory-list [path]) returns a list of all files and directories in the directory specified by path. If
path is omitted, a list of files and directories in the current directory is returned. Under Unix and Mac OS X,
an element of the list can start with period–slash–tilde (“./∼”) if it would otherwise start with tilde (“∼”). Under
Windows, an element of the list may start with \\?\REL\\.

• (filesystem-root-list) returns a list of all current root directories. Obtaining this list can be particu-
larly slow under Windows.

11.4 Networking

MzScheme supports networking with the TCP and UDP protocols.

139

11.4. Networking 11. Input and Output

11.4.1 TCP

For information about TCP in general, see TCP/IP Illustrated, Volume 1 by W. Richard Stevens.

• (tcp-listen port-k [max-allow-wait-k reuse? hostname-string-or-false]) creates
a “listening” server on the local machine at the specified port number (where port-k is an exact integer be-
tween 1 and 65535 inclusive). The max-allow-wait-k argument determines the maximum number of
client connections that can be waiting for acceptance. (When max-allow-wait-k clients are waiting ac-
ceptance, no new client connections can be made.) The default value for max-allow-wait-k argument is
4.

If the reuse? argument is true, then tcp-listen will create a listener even if the port is involved in a
TIME WAIT state. Such a use of reuse? defeats certain guarantees of the TCP protocol; see Stevens’s book
for details. Furthermore, on many modern platforms, a true value for reuse? overrides TIME WAIT only if
the listener was previously created with a true value for reuse?. The default for reuse? is #f.

If hostname-string-or-false is #f (the default), then the listener accepts connections to all of the lis-
tening machine’s addresses.12 Otherwise, the listener accepts connections only at the interface(s) associated with
the given hostname. For example, providing "127.0.0.1" as hostname-string-or-false creates a
listener that accepts only connections to "127.0.0.1" (the loopback interface) from the local machine.

The return value of tcp-listen is a TCP listener value. This value can be used in future calls to
tcp-accept, tcp-accept-ready?, and tcp-close. Each new TCP listener value is placed into the
management of the current custodian (see §9.2).

If the server cannot be started by tcp-listen, the exn:fail:network exception is raised.

• (tcp-connect hostname-string port-k [local-hostname-string-or-false local-port-k-or-false])
attempts to connect as a client to a listening server. The hostname-string argument is the server host’s
Internet address name13 (e.g., "www.plt-scheme.org"), and port-k (an exact integer between 1 and
65535) is the port where the server is listening.

The optional local-hostname-string-or-false and local-port-k-or-false specify the
client’s address and port. If both are #f (the default), the client’s address and port are selected automatically. If
local-hostname-string-or-false is not #f, then local-port-k-or-false must be non-#f.
If local-port-k-or-false is non-#f and local-hostname-string-or-false is #f, then the
given port is used but the address is selected automatically.

Two values (see §2.2) are returned by tcp-connect: an input port and an output port. Data can be received
from the server through the input port and sent to the server through the output port. If the server is a MzScheme
process, it can obtain ports to communicate to the client with tcp-accept. These ports are placed into the
management of the current custodian (see §9.2).

Initially, the returned input port is block-buffered, and the returned output port is block-buffered. Change the
buffer mode using file-stream-buffer-mode (see §11.1.6).

Both of the returned ports must be closed to terminate the TCP connection. When both ports are still open,
closing the output port with close-output-port sends a TCP close to the server (which is seen as an end-
of-file if the server reads the connection through a port). In contrast, tcp-abandon-port (see below) closes
the output port, but does not send a TCP close until the input port is also closed.

Note that the TCP protocol does not support a state where one end is willing to send but not read, nor does
it include an automatic message when one end of a connection is fully closed. Instead, the other end of a

12MzScheme implements a listener with multiple sockets, if necessary, to accomodate multiple addresses with different protocol families. Under
Linux, if hostname-string-or-false maps to both IPv4 and IPv6 addresses, then the behavior depends on whether IPv6 is supported and
IPv6 sockets can be configured to listen to only IPv6 connections: if IPv6 is not supported or IPv6 sockets are not configurable, then the IPv6
addresses are ignored; otherwise, each IPv6 listener accepts only IPv6 connections.

13If hostname-string is associated with multiple addresses, they are tried one at a time until a connection succeeds. The name
"localhost" generally specifies the local machine.

140

11. Input and Output 11.4. Networking

connection discovers that one end is fully closed only as a response to sending data; in particular, some number
of writes on the still-open end may appear to succeed, though writes will eventually produce an error.

If a connection cannot be established by tcp-connect, the exn:fail:network exception is raised.

• (tcp-connect/enable-break hostname-string port-k [local-hostname-string local-port-k])
is like tcp-connect, but breaking is enabled (see §6.7) while trying to connect. If breaking is disabled when
tcp-connect/enable-break is called, then either ports are returned or the exn:break exception is
raised, but not both.

• (tcp-accept tcp-listener) accepts a client connection for the server associated with tcp-listener.
The tcp-listener argument is a TCP listener value returned by tcp-listen. If no client connection is
waiting on the listening port, the call to tcp-accept will block. (See also tcp-accept-ready?, below.)

Two values (see §2.2) are returned by tcp-accept: an input port and an output port. Data can be received
from the client through the input port and sent to the client through the output port. These ports are placed into
the management of the current custodian (see §9.2).

In terms of buffering and connection states, the ports act the same as ports from tcp-connect.

If a connection cannot be accepted by tcp-accept, or if the listener has been closed, the
exn:fail:network exception is raised.

• (tcp-accept-ready? tcp-listener) tests whether an unaccepted client has connected to the server
associated with tcp-listener. The tcp-listener argument is a TCP listener value returned by
tcp-listen. If a client is waiting, the return value is #t, otherwise it is #f. A client is accepted with
the tcp-accept procedure, which returns ports for communicating with the client and removes the client
from the list of unaccepted clients.

If the listener has been closed, the exn:fail:network exception is raised.

• (tcp-accept/enable-break tcp-listener) is like tcp-accept, but breaking is enabled (see
§6.7) while trying to accept a connection. If breaking is disabled when tcp-accept/enable-break is
called, then either ports are returned or the exn:break exception is raised, but not both.

• (tcp-close tcp-listener) shuts down the server associated with tcp-listener. The
tcp-listener argument is a TCP listener value returned by tcp-listen. All unaccepted clients receive
an end-of-file from the server; connections to accepted clients are unaffected.

If the listener has already been closed, the exn:fail:network exception is raised.

The listener’s port number may not become immediately available for new listeners (with the default
reuse? argument of tcp-listen). For further information, see Stevens’s explanation of the TIME WAIT
TCP state.

• (tcp-listener? v) returns #t if v is a TCP listener value created by tcp-listen, #f otherwise.

• (tcp-accept-evt tcp-listener) returns a synchronizable event (see §7.7) that is in a blocking state
when tcp-accept on tcp-listener would block. If the event is chosen in a synchronization, the result
is a list of two items, which correspond to the two results of tcp-accept. (If the event is not chosen, no
connections are accepted.)

• (tcp-abandon-port tcp-port) is like close-output-port or close-input-port (depend-
ing on whether tcp-port is an input or output port), but if tcp-port is an output port and its associated
input port is not yet closed, then the other end of the TCP connection does not receive a TCP close message
until the input port is also closed.14

14The TCP protocol does not include a “no longer reading” state on connections, so tcp-abandon-port is equivalent to
close-input-port on input TCP ports.

141

11.4. Networking 11. Input and Output

• (tcp-addresses tcp-port [port-numbers?]) returns two strings when port-numbers? is #f
(the default). The first string is the Internet address for the local machine a viewed by the given TCP port’s
connection.15 The second string is the Internet address for the other end of the connection.

If port-numbers? is true, then four results are returned: a string for the local machine’s address, an exact
integer between 1 and 65535 for the local machine’s port number, a string for the remote machine’s address,
and an exact integer between 1 and 65535 for the remote machine’s port number.

If the given port has been closed, the exn:fail:network exception is raised.

• (tcp-port? v) returns #t if v is a port returned by tcp-accept, tcp-connect, tcp-accept/enable-break,
or tcp-connect/enable-break, #f otherwise.

11.4.2 UDP

For information about UDP in general, see TCP/IP Illustrated, Volume 1 by W. Richard Stevens (which discusses UDP
in addition to TCP).

• (udp-open-socket [family-hostname-string-or-false family-port-k-or-false]) cre-
ates and returns a UDP socket to send and receive datagrams (broadcasting is allowed). Initially, the socket is
not bound or connected to any address or port.

If family-hostname-string-or-false or family-port-k-or-false is provided and not #f,
then the socket’s protocol family is determined from these arguments. The socket is not bound to the hostname
or port number. For example, the arguments might be the hostname and port to which messages will be sent
through the socket, which ensures that the socket’s protocol family is consistent with the destination. Alter-
nately, the arguments might be the same as for a future call to udp-bind!, which ensures that the socket’s
protocol family is consistent with the binding. If neither family-hostname-string-or-false nor
family-port-k-or-false is provided as non-#f, then the socket’s protocol family is IPv4.

• (udp-bind! udp-socket hostname-string-or-false port-k) binds an unbound udp-socket
to the local port number port-k (an exact integer between 1 and 65535). The result is always void.

If hostname-string-or-false is #f, then the socket accepts connections to all of the listening machine’s
IP addresses at port-k. Otherwise, the socket accepts connections only at the IP address associated with the
given name. For example, providing "127.0.0.1" as hostname-string-or-false typically creates a
listener that accepts only connections to "127.0.0.1" from the local machine.

A socket cannot receive datagrams until it is bound to a local address and port. If a socket is not bound before
it is used with a sending procedure udp-send, udp-send-to, etc., the sending procedure binds the socket
to a random local port. Similarly, if an event from udp-send-evt or udp-send-to-evt is chosen for a
synchronization (see §7.7), the socket is bound; if the event is not chosen, the socket may or may not become
bound. The binding of a bound socket cannot be changed.

If udp-socket is already bound or closed, the exn:fail:network exception is raised.

• (udp-connect! udp-socket hostname-string-or-false port-k-or-false) connects the
socket to the indicated remote address and port if hostname-string-or-false is a string and
port-k-or-false is an exact integer between 1 and 65535. The result is always void.

If hostname-string-or-false is #f, then port-k-or-false also must be #f, and the port is dis-
connected (if connected). If one of hostname-string-or-false or port-k-or-false is #f and the
other is not, the exn:fail:contract exception is raised.

A connected socket can be used with udp-send (not udp-send-to), and it accepts datagrams only from the
connected address and port. A socket need not be connected to receive datagrams. A socket can be connected,
re-connected, and disconnected any number of times.

15For most machines, the answer corresponds to the current machine’s only Internet address. But when a machine serves multiple addresses, the
result is connection-specific.

142

11. Input and Output 11.4. Networking

If udp-socket is closed, the exn:fail:network exception is raised.

• (udp-send-to udp-socket hostname-address port-k bytes [start-k end-k]) sends
(subbytes bytes start-k end-k) as a datagram from the unconnected udp-socket to the socket
at the remote machine hostname-address on the port port-k. The udp-socket need not be bound or
connected; if it is not bound, udp-send-to binds it to a random local port. If the socket’s outgoing datagram
queue is too full to support the send, udp-send-to blocks until the datagram can be queued. The result is
always void.

The optional start-k argument defaults to 0, and the optional end-k argument defaults to the length of
bytes. If start-k is greater than the length of bytes, or if end-k is less than start-k or greater than
the length of bytes, the exn:fail:contract exception is raised.

If udp-socket is closed or connected, the exn:fail:network exception is raised.

• (udp-send udp-socket bytes [start-k end-k]) is like udp-send-to, except that udp-socket
must be connected, and the datagram goes to the connection target. If udp-socket is closed or unconnected,
the exn:fail:network exception is raised.

• (udp-send-to* udp-socket hostname-address port-k bytes [start-k end-k]) is like
udp-send-to, except that it never blocks; if the socket’s outgoing queue is too full to support the send, #f is
returned, otherwise the datagram is queued and the result is #t.

• (udp-send* udp-socket bytes [start-k end-k]) is like udp-send, except that (like udp-send-to)
it never blocks and returns #f or #t.

• (udp-send-to/enable-break udp-socket hostname-address port-k bytes [start-k
end-k]) is like udp-send-to, but breaking is enabled (see §6.7) while trying to send the datagram. If
breaking is disabled when udp-send-to/enable-break is called, then either the datagram is sent or the
exn:break exception is raised, but not both.

• (udp-send/enable-break udp-socket bytes [start-k end-k]) is like udp-send, except
that breaks are enabled like udp-send-to/enable-break.

• (udp-receive! udp-socket mutable-bytes [start-k end-k]) accepts up to end-k −
start-k bytes of udp-socket’s next incoming datagram into mutable-bytes, writing the datagram
bytes starting at position start-k within mutable-bytes. The udp-socketmust be bound to a local ad-
dress and port (but need not be connected). If no incoming datagram is immediately available, udp-receive!
blocks until one is available.

Three values are returned: an exact integer that indicates the number of received bytes (between 0 and end-k−
start-k), a hostname string indicating the source address of the datagram, and an exact integer between 1 and
65535 indicating the source port of the datagram. If the received datagram is longer than end-k−start-k
bytes, the remainder is discarded.

The optional start-k argument defaults to 0, and the optional end-k argument defaults to the length of
mutable-bytes. If start-k is greater than the length of mutable-bytes, or if end-k is less than
start-k or greater than the length of mutable-bytes, the exn:fail:contract exception is raised.

• (udp-receive!* udp-socket mutable-bytes [start-k end-k]) is like udp-receive!,
except that it never blocks. If no datagram is available, the three result values are all #f.

• (udp-receive!/enable-break udp-socket mutable-bytes [start-k end-k]) is like udp-receive!,
but breaking is enabled (see §6.7) while trying to receive the datagram. If breaking is disabled when
udp-receive!/enable-break is called, then either a datagram is received or the exn:break exception
is raised, but not both.

• (udp-close udp-socket) closes udp-socket, discarding unreceived datagrams. If the socket is al-
ready closed, the exn:fail:network exception is raised.

143

11.4. Networking 11. Input and Output

• (udp? v) returns #t if v is a socket created by udp-open-socket, #f otherwise.

• (udp-bound? udp-socket) returns #t if udp-socket is bound to a local address and port, #f other-
wise.

• (udp-connected? udp-socket) returns #t if udp-socket is connected to a remote address and port,
#f otherwise.

• (udp-send-ready-evt udp-socket) returns a synchronizable event (see §7.7) that is in a blocking
state when udp-send-to on udp-socket would block.

• (udp-receive-ready-evt udp-socket) returns a synchronizable event (see §7.7) that is in a blocking
state when udp-receive! on udp-socket would block.

• (udp-send-to-evt udp-socket hostname-address port-k bytes [start-k end-k]) re-
turns a synchronizable event. The event is in a blocking state when udp-send on udp-socket would block.
Otherwise, if the event is chosen in a synchronization, data is sent as for (udp-send-to udp-socket
hostname-address port-k bytes start-k end-k), and the synchronization result is void. (No
bytes are sent if the event is not chosen.)

• (udp-send-evt udp-socket bytes [start-k end-k]) is like udp-send-to-evt, except that
udp-socket must be connected when the event is synchronized, and if the event is chosen in a syn-
chronization, the datagram goes to the connection target. If udp-socket is closed or unconnected, the
exn:fail:network exception is raised during a synchronization attempt.

• (udp-receive!-evt udp-socket bytes [start-k end-k]) returns a synchronizable event. The
event is in a blocking state when udp-receive on udp-socket would block. Otherwise, if the event is
chosen in a synchronization, data is receive into bytes as for (udp-receive! udp-socket bytes
start-k end-k), and the synchronization result is a list of three values, corresponding to the three results
from udp-receive!. (No bytes are received and the bytes content is not modified if the event is not
chosen.)

144

12. Syntax and Macros

MzScheme supports the R5RS define-syntax, let-syntax, and letrec-syntax forms with
syntax-rules, with minor pattern and template extensions described in §12.1.

In addition to syntax-rules, MzScheme supports macros that perform arbitrary transformations on syntax. In par-
ticular, a transformer expression — the right-hand side of a define-syntax, let-syntax, or letrec-syntax
binding — can be an arbitrary expression, and it is evaluated in a transformer environment. When the expres-
sion produces a procedure, it is associated as a syntax transformer to the identifier bound by define-syntax,
let-syntax, or letrec-syntax. This more general, mostly hygienic macro system is based on syntax-case
by Dybvig, Hieb, and Bruggeman (see “Syntactic abstraction in Scheme” in Lisp and Symbolic Computation, Decem-
ber 1993).

A transformer procedure consumes a syntax object and produces a new syntax object. A syntax object encodes S-
expression structure, but also includes source-location information and lexical-binding information for each element
within the S-expression. A syntax object is a first-class value, and it can exist at run-time. However, syntax objects are
more typically used at syntax-expansion time — which is the run-time of a transformer procedure.1

Unlike traditional defmacro systems, MzScheme keeps the top-level transformer environment separate from the
normal top-level environment. The environments are separated because the expressions in the different environments
are evaluated at different times (transformer expressions are evaluated at syntax-expansion time, while normal expres-
sions are evaluated at run time). Separating each environment ensures that compilation and analysis tools can process
programs properly. See §12.3.3 for more information.

Also unlike traditional macro systems, a transformer procedure is invoked whenever its identifier is used in an expres-
sion position, not in application positions only. Even more generally, a transformer expression might not produce a
procedure value, in which case the non-procedure is associated to its identifier as a generic expansion-time value. For
example, a unit signature (see Chapter 55 of PLT MzLib: Libraries Manual) is associated to an identifier through an
expansion-time value. See §12.6 for more information on transformer applications and expansion-time values.

12.1 syntax-rules Extensions

MzScheme extends the pattern language for syntax-rules so that a pattern of the form

(... pattern)

is equivalent to pattern where ... is treated like any other identifier. Similarly, a template of the form

(... template)

is equivalent to template where ... is treated like any other identifier.

In a pattern, additional patterns can follow ..., but only one ... can appear in a sequence:

(pattern · · ·1 ... pattern · · ·)
1In general, modules and for-syntax imports create a hierarchy of run times and expansion times. See §12.3.4 for more information.

145

12.1. syntax-rules Extensions 12. Syntax and Macros

Furthermore, a sequence containing ... can end with a dotted pair:

(pattern · · ·1 ... pattern · · · . pattern)

but in this case, the final pattern is never matched to a syntactic list.

A template element consists of any number of ...s after a template. For each ... after the first one, the preced-
ing element (with earlier ...s) is conceptually wrapped with parentheses for generating output, and then wrapping
parentheses in the output are removed. If a pattern identifier is followed by more ellipses in a template than in the
pattern, then the pattern’s match is expanded normally for inner ellipses (up to the number of ellipses that appear in
the pattern), and then the match is replicated as necessary to satisfy outer ellipses.

To mesh gracefully with modules, literal identifiers are compared with module-identifier=?, which is equiv-
alent to the comparison behavior of R5RS in the absence of modules; see §12.3.1 for more information on identifier
syntax comparisons.

Examples:

(define-syntax ex1
(syntax-rules ()
[(ex1 a) ’(a (... ...))]))

(ex1 1) ; ⇒ ’(1 ...)

(define-syntax ex2
(syntax-rules ()
[(ex2 a ... b) ’(b a ...)]))

(ex2 1 2 3) ; ⇒ ’(3 1 2)

(define-syntax ex3
(syntax-rules ()
[(ex3 a ... b . c) ’(b a ... c)]))

(ex3 1 2 3 4) ; syntax error
(ex3 1 2 3 . 4) ; ⇒ ’(3 1 2 4)

(define-syntax ex4
(syntax-rules ()
[(ex4 (a ...) ... b) ’(a b)]))

(ex4 (1) (2 3) 4) ; ⇒ ’(1 2 3 4)

The syntax-id-rules form has the same syntax as syntax-rules, except that each pattern is used in its
entirety (instead of starting with a keyword placeholder that is ignored). Furthermore, when an identifier id is bound
as syntax to a syntax-id-rules transformer, the transformer is applied whenever id appears in an expression
position — not just when it is in the application position — or when id appears as the target of an assignment.
When the identifier appears in an application position, (id expr · · ·), the entire “application” is provided to the
transformer, and when the identifier appears as a set! target, (set! id expr), the entire set! expression is
provided to the transformer; otherwise, the id is provided alone to the transformer. Typically, set! is included as a
keyword in a syntax-id-rules use, and three patterns match the three possible uses of the identifier.

(define-syntax pwd
; For this macro to work, the set! case must
; be first, and the pwd case must be last
(syntax-id-rules (set!)
[(set! pwd expr) (current-directory expr)]
[(pwd expr ...) ((current-directory) expr ...)]
[pwd (current-directory)]))

146

12. Syntax and Macros 12.2. Syntax Objects

(set! pwd "/tmp") ; sets current-directory parameter
pwd ; ⇒ "/tmp"
(current-directory) ; ⇒ "/tmp"
(current-directory "/usr/tmp")
pwd ; ⇒ "/usr/tmp"

12.2 Syntax Objects

(read-syntax [source-name-v input-port]) is like read, except that it produces a syntax object with
source-location information. The source-name-v is used as the source field of the syntax object; it can be an
arbitrary value, but it should generally be a path for the source file. The default source-name-v is the input port’s
name (according to object-name; see §6.2.3). See §11.2.4 for more information about read and read-syntax,
see §11.2.1.1 for information about port locations, and see §12.6.2 for information on the ’paren-shape property
and original-indicator property attached to a syntax object by read-syntax.

The result of read-syntax is a syntax object with source-location information, but no lexical information. Syntax
objects acquire lexical information during expansion, so that by the time a transformer is called, the provided syntax
object has lexical information.

The eval, compile, expand, expand-once, and expand-to-top-form procedures work on syntax ob-
jects, especially syntax objects with no lexical context. (If one of these procedures is given a non-syntax S-expression,
the S-expression is converted to a syntax object containing no source information and no lexical context.) Each
of these procedures adds context to the syntax object using namespace-syntax-introduce before expand-
ing the syntax (but see §14.1 for information on the special handling of module). In contrast, the eval-syntax,
compile-syntax, expand-syntax, expand-syntax-once, and expand-syntax-to-top-form pro-
cedures do not add context to a given syntax object before expanding.

The syntax object produced by expand, expand-syntax, etc. includes lexical information that influences future
expansion and compilation of the syntax object. Thus, a syntax object produced by read-syntax should be passed
to eval or expand (or another procedure without -syntax in its name), but a syntax object returned by expand
should be passed to eval-syntax (or another procedure with -syntax in its name), since the result from expand
has acquired a lexical context.

For example, if the following text is parsed by read-syntax,

(lambda (x) (+ x y))

the result is a syntax object that contains the S-expression structure ’(lambda (x) (+ x y)), but also source
information indicating that the first x is in column 9, etc. If expand is applied to the syntax object with a normal
top-level environment, then the result will be a similar syntax object (with the source-location information intact), but
the second x in the syntax object will have lexical information that ties it to the first x, and y in the syntax object will
be annotated as a free variable. Even the syntax object’s ’lambda will have lexical information tying it to the built-in
lambda form.

Compilation (often as a prelude to interactive evaluation) strips away source and context information as it processes a
syntax object. The compilation of a quote-syntax form is an exception:

(quote-syntax datum)

The quote-syntax form produces a syntax object that preserves the source-location information for datum. It
also encapsulates lexical-binding information accumulated by compilation in the quote-syntax expression’s en-
vironment. A quote-syntax expression rarely appears in normal expressions; quote-syntax is more typically
used within a transformer expression.

147

12.2. Syntax Objects 12. Syntax and Macros

In addition to local and lexical information, a syntax object may have properties and certificates attached. Properties are
added or inspected using syntax-property, as described in §12.6.2. Certificates validate references to identifiers
that are not exported from a macro, as described in §12.6.3.

The syntax-object->datum procedure strips away location, lexical, property, and certificate information from a
syntax object to produce a plain S-expression. The datum->syntax-object procedure wraps syntax information
onto an S-expression, copying the source-location information of a given syntax object, the lexical information of
another syntax object, and the properties of a third syntax object (where some or all three of the given objects can
be the same). The syntax-e procedure unwraps only the immediate S-expression structure from a syntax object,
leaving nested structure in place. These procedures are described in §12.2.2.

Although procedures such as syntax-object->datum permit arbitrary manipulation of syntax objects, a syntax
transformer is more likely to use the pattern-matching syntax-case and syntax forms, which are described in
the following subsection.

12.2.1 Syntax Patterns

The syntax-case form pattern-matches and deconstructs a syntax object:

(syntax-case stx-expr (literal-identifier ...)
syntax-clause
· · ·)

syntax-clause is one of
(pattern expr)
(pattern fender-expr expr)

If stx-expr expression does not produce a syntax object value, it is converted to one using datum->syntax-object
with the lexical context of the expression (see §12.2.2). The syntax is then compared to the pattern in
each syntax-clause until a match is found, and the result of the corresponding expr is the result of the
syntax-case expression. If a syntax-clause contains a fender-expr, the clause matches only when both
the pattern matches the syntax object and the fender-expr returns a true value. If no pattern matches, a “bad
syntax” exn:fail:syntax exception is raised.

A pattern is nearly the same as a syntax-rules pattern (see R5RS), with the ellipsis-escaping extension
(see §12.1). The difference is that the first identifier in pattern is not ignored, unlike the leading keyword in a
syntax-rules pattern.

As in syntax-rules, a non-literal identifier in a pattern is bound to a corresponding part of the syntax object
within the clause’s expr and optional fender-expr. The identifier cannot be used directly, however; a use of the
identifier in an expression position is a syntax error. Instead, the identifier can be used only in syntax expressions
within the binding’s scope.

A syntax expression has the form

(syntax template)

where template is as in syntax-rules (extended, as usual, for escaped ellipses). The result of a syntax ex-
pression is a syntax object. Identifiers in the template that are bound by a syntax-case pattern are replaced with
their bindings in the generated syntax object. A syntax expression that contains no pattern identifiers is equivalent to
a quote-syntax expression, except that unlike quote-syntax, the syntax form always fails to compile (i.e.,
it loops forever) when template is cyclic.

The syntax-rules form can be expressed as a syntax-case form wrapped in lambda:

148

12. Syntax and Macros 12.2. Syntax Objects

(syntax-rules (literal-identifier · · ·)
((ignored-identifier . pattern) template)
· · ·)

=expands=>
(lambda (stx)
(syntax-case stx (literal-identifier · · ·)
((generated-identifier . pattern) (syntax template))
· · ·))

Note that implicit lambda of syntax-rules for the transformer procedure is made explicit with syntax-case.
The define-syntax form supports define-style abbreviations for transformer procedures (see §2.8.1).

The following example shows one reason to use syntax-case instead of syntax-rules: custom error reporting.

(define-syntax (let1 stx)
(syntax-case stx ()
[(id val body)
(begin
;; If id is not an identifier, report an error in terms of let1 instead of let:
(unless (identifier? (syntax id))
(raise-syntax-error #f "expected an identifier" stx (syntax id)))

(syntax (let ([id val]) body)))]))
(let1 x 10 (add1 x)) ; ⇒ 11
(let1 2 10 (add1 x)) ; ⇒ let1: expected an identifier at: 2 in: (let1 2 10 (add1 x))

Another reason to use syntax-case is to implement “non-hygienic” macros that introduce capturing identifiers:

(define-syntax (if-it stx)
(syntax-case stx ()
[(src-if-it test then else)
(syntax-case (datum->syntax-object (syntax src-if-it) ’it) ()
[it (syntax (let ([it test]) (if it then else)))])])))

(if-it (memq ’b ’(a b c)) it ’nope) ; ⇒ ’(b c)

The nested syntax-case is used to bind the pattern variable it. The syntax for it is generated with
datum->syntax-object using the context of src-if-it, which means that the introduced variable has the
same lexical context as if-it at the macro’s use; in other words, it acts as if it existed in the input syntax, so it can
bind uses of it in test.

The syntax-case∗ form is a generalization of syntax-case where the procedure for comparing
literal-identifiers is determined by a comparison-proc-expr:

(syntax-case∗ stx-expr (literal-identifier ...) comparison-proc-expr
syntax-clause
· · ·)

The result of comparison-proc-expr must be a procedure that accepts two arguments. The first argument is
an identifier from stx-expr, and the second argument is an identifier from a syntax-clause pattern that is
module-identifier=? to one of the literal-identifiers. A true result from the comparison procedure
indicates that the first identifier matches the second.

12.2.1.1 BINDING PATTERN VARIABLES

The with-syntax form is a let-like form for binding pattern variables:

149

12.2. Syntax Objects 12. Syntax and Macros

(with-syntax ((pattern stx-expr)
· · ·)

expr)

The patterns are matched the stx-expr values, and all pattern identifiers are bound in expr. The pattern
identifiers across all patterns must be distinct. If a stx-expr expression does not produce a syntax object, its
result is converted using datum->syntax-object and the lexical context of the stx-expr (see §12.2.2). If the
result of a stx-expr does not match its pattern, the exn:fail:syntax exception is raised.

The if-it example can be written more simply using with-syntax:

(define-syntax (if-it stx)
(syntax-case stx ()
[(src-if-it test then else)
(with-syntax ([it (datum->syntax-object (syntax src-if-it) ’it)])
(syntax (let ([it test]) (if it then else))))]))

Macros that expand to non-hygienic macros rarely work as intended. For example:

(define-syntax (cond-it stx)
(syntax-case stx ()
[((test body) . rest)
(syntax (if-it test body (cond-it . rest)))]
[() (syntax (void))]))

(cond-it [(memq ’b ’(a b c)) it] [#t ’nope]) ; ⇒ undefined variable it

The problem is that cond-it introduces if-it (hygienically), so cond-it effectively introduces it (hygieni-
cally), which doesn’t bind it in the source use of cond-it. In general, the solution is to avoid macros that expand
to uses of non-hygienic macros.2

12.2.1.2 QUASIQUOTING TEMPLATES

The quasisyntax form is like syntax, except with quasiquoting within the template:

(quasisyntax quasitemplate)

A quasitemplate is the same as a template, except that unsyntax and unsyntax-splicing escape to
an expression:

(unsyntax expr)
(unsyntax-splicing expr)

The expression must produce a syntax object (or syntax list) to be substituted in place of the unsyntax or
unsyntax-splicing form within the quasiquoting template, just like unquote and unquote-splicing
within quasiquote. (If the escaped expression does not generate a syntax object, it is converted to one in the same
was as for the right-hand sides of with-syntax.) Nested quasisyntaxes introduce quasiquoting layers in the
same way as nested quasiquotes.

Also analogous to quote and quasiquote, the reader converts #’ to syntax, #‘ to quasisyntax, #, to
unsyntax, and #,@ to unsyntax-splicing. See also §11.2.4.

Example:
2In this particular case, Shriram Krishnamurthi points out changing if-it to use (datum->syntax-object (syntax test) ’it)

solves the problem in a sensible way.

150

12. Syntax and Macros 12.2. Syntax Objects

(with-syntax ([(v ...) (list 1 2 3)])
#‘(0 v ... #,(+ 2 2) #,@(list 5 6) 7)) ; ⇒ syntax for (0 1 2 3 4 5 6 7)

12.2.1.3 ASSIGNING SOURCE LOCATION

The syntax/loc form is like syntax, except that the immediate resulting syntax object takes its source-location
information from a supplied syntax object, unless the template is just a pattern variable:

(syntax/loc location-stx-expr template)

Use syntax/loc instead of syntax whenever possible to help tools that report source locations. For example, the
earlier if-it example should have been written with syntax/loc:

(define-syntax (if-it stx)
(syntax-case stx ()
[(src-if-it test then else)
(with-syntax ([it (datum->syntax-object (syntax src-if-it) ’it)])
(syntax/loc stx (let ([it test]) (if it then else))))]))

The quasisyntax/loc form is the quasiquoting analogue of syntax/loc:

(quasisyntax/loc location-stx-expr template)

12.2.2 Syntax Object Content

(syntax? v) returns #t if v is a syntax object, #f otherwise.

(syntax-source stx) returns the source for the syntax object stx, or #f if none is known. The source is
represented by an arbitrary value (e.g., one passed to read-syntax), but it is typically a file path string. See also
§14.3.

(syntax-line stx) returns the line number (positive exact integer) for the start of the syntax object in its source,
or #f if the line number or source is unknown. The result is #f if and only if (syntax-column stx) produces
#f. See also §11.2.1.1 and §14.3.

(syntax-column stx) returns the column number (non-negative exact integer) for the start of the syntax object
in its source, or #f if the source column is unknown. The result is #f if and only if (syntax-line stx) produces
#f. See also §11.2.1.1 and §14.3.

(syntax-position stx) returns the character position (positive exact integer) for the start of the syntax object
in its source, or #f if the source position is unknown. See also §11.2.1.1 and §14.3.

(syntax-span stx) returns the span (non-negative exact integer) in characters of the syntax object in its source,
or #f if the span is unknown. See also §14.3.

(syntax-original? stx) returns #t if stx has the property that read-syntax and read-honu-syntax
attach to the syntax objects that they generate (see §12.6.2), and if stx’s lexical information does not indicate that the
object was introduced by a syntax transformer (see §12.3). The result is #f otherwise. This predicate can be used to
distinguish syntax objects in an expanded expression that were directly present in the original expression, as opposed
to syntax objects inserted by macros.

(syntax-source-module stx) returns a module path index or symbol (see §5.4.2) for the module whose
source contains stx, or #f if stx has no source module.

151

12.2. Syntax Objects 12. Syntax and Macros

(syntax-e stx) unwraps the immediate S-expression structure from a syntax object, leaving nested syntax struc-
ture (if any) in place. The result of (syntax-e stx) is one of the following:

• a symbol

• a syntax pair (described below)

• the empty list

• a vector containing syntax objects

• some other kind of datum, usually a number, boolean, or string

A syntax pair is a pair containing a syntax object as its first element, and either the empty list, a syntax pair, or a syntax
object as its second element.

A syntax object that is the result of read-syntax reflects the use of dots (.) in the input by creating a syntax object
for every pair of parentheses in the source, and by creating a pair-valued syntax object only for parentheses in the
source. For example:

input read-syntax result
(a b) stx, where

(syntax-e stx) is equivalent to (list a-stx b-stx)
and (syntax-e a-stx) is equivalent to ’a
and (syntax-e b-stx) is equivalent to ’b

(a . (b)) stx, where
(syntax-e stx) is equivalent to (cons a-stx sb-stx)
and (syntax-e a-stx) is equivalent to ’a
and (syntax-e sb-stx) is equivalent to (list b-stx)
and (syntax-e b-stx) is equivalent to ’b

(syntax->list stx) returns an immutable list of syntax objects or #f. The result is a list of syntax objects when
(syntax-object->datum stx) would produce a list. In other words, syntax pairs in (syntax-e stx) are
flattened.

(syntax-object->datum stx) returns an S-expression by stripping the syntactic information from stx.
Graph structure is preserved by the conversion.

(datum->syntax-object ctxt-stx v [src-stx-or-list prop-stx cert-stx]) converts the S-
expression v to a syntax object, using syntax objects already in v in the result. Converted objects in v are given the
lexical context information of ctxt-stx and the source-location information of src-stx-or-list. If v is
not already a syntax object, then the resulting immediate syntax object it is given the properties (see §12.6.2) of
prop-stx and the inactive certificates (see §12.6.3) of cert-stx. Any of ctxt-stx, src-stx-or-list,
prop-stx, or cert-stx can be #f, in which case the resulting syntax has no lexical context, source information,
new properties, and/or certificates.

If src-stx-or-list is not #f or a syntax object, it must be a list of five elements:

(list source-name-v line-k column-k position-k span-k)

where source-name-v is an arbitrary value for the source name; line-k is a positive, exact integer for the source
line, or #f; and column-k is a non-negative, exact integer for the source column, or #f; position-k is a positive,
exact integer for the source position, or #f; and span-k is a non-negative, exact integer for the source span, or #f.
The line-k and column-k values must both be numbers or both be #f, otherwise the exn:fail exception is
raised.

152

12. Syntax and Macros 12.3. Syntax and Lexical Scope

Graph structure is preserved by the conversion of v to a syntax object, but graph structure that is distributed
among distinct syntax objects in v may be hidden from future applications of syntax-object->datum and
syntax-graph? to the new syntax object.

(syntax-graph? stx) returns #t if stx might be preservably shared within a syntax object created
by read-syntax, read-honu-syntax, or datum->syntax-object. In general, sharing detection
is approximate—datum->syntax-object can construct syntax objects with sharing that is hidden from
syntax-graph?—but syntax-graph? reliably returns #t for at least one syntax object in a cyclic struc-
ture. Meanwhile, deconstructing a syntax object with procedures such as syntax-e and comparing the results
with eq? can also fail to detect sharing (even cycles), due to the way lexical information is lazily propagated; only
syntax-object->datum reliably exposes sharing in a way that can be detected with eq?.

(identifier? v) returns #t if v is a syntax object and (syntax-e stx) produces a symbol.

(generate-temporaries stx-pair) returns a list of identifiers that are distinct from all other identifiers.
The list contains as many identifiers as stx-pair contains elements. The stx-pair argument must be a syntax
pair that can be flattened into a list. The elements of stx-pair can be anything, but string, symbol, and identifier
elements will be embedded in the corresponding generated name (useful for debugging purposes). The generated
identifiers are built with interned symbols (not gensyms), so the limitations described in §14.3 do not apply.

12.3 Syntax and Lexical Scope

Hygienic macro expansion depends on information associated with each syntax object that records the lexical context
of the site where the syntax object is introduced. This information includes the identifiers that are bound by lambda,
let, letrec, etc., at the syntax object’s introduction site, the required identifiers at the introduction site, and the
macro expansion that introduces the object.

Based on this information, a particular identifier syntax object falls into one of three classifications:

• lexical — the identifier is bound by lambda, let, letrec, or some other form besides module or a top-level
definition.

• module-imported — the identifier is bound through a require declaration or a top-level definition within
module.

• free — the identifier is not bound (and therefore refers to a top-level definition, if the identifier is not within a
module).

The identifier-binding procedure (described in §12.3.2) reports an identifiers classification. Further infor-
mation about a lexical identifier is available only in relative terms, such as whether two identifiers refer to the same
binding (see bound-identifier=? in §12.3.1). For module-imported identifiers, information about the module
source is available.

In a freshly read syntax object, identifiers have no lexical information, so they are all classified as free. During
expansion, some identifiers acquire lexical or module-import classifications. An identifier that becomes classified
as lexical will remain so classified, though its binding might shift as expansion proceeds (i.e., as nested binding
expressions are parsed, and as macro introductions are tracked). An identifier classified as module-imported might
similarly shift to the lexical classification, but if it remains module-imported, its source-module designation will never
change.

Lexical information is used to expand and parse syntax in a way that it obeys lexical and module scopes. In addition,
an identifier’s lexical information encompasses a second dimension, which distinguishes the environment of normal
expressions from the environment of transformer expressions. The module bindings of each environment can be

153

12.3. Syntax and Lexical Scope 12. Syntax and Macros

different, so an identifier may be classified differently depending on whether it is ultimately used in a normal expression
or in a transformer expression. See §12.3.3 and §12.3.4 for more information on the two environments.

12.3.1 Syntax Object Comparisons

(bound-identifier=? a-id-stx b-id-stx) returns #t if the identifier a-id-stx would bind
b-id-stx (or vice-versa) if the identifiers were substituted in a suitable expression context, #f otherwise.

(free-identifier=? a-id-stx b-id-stx) returns #t if a-id-stx and b-id-stx access the same
lexical, module, or top-level binding and return the same result for syntax-e, #f otherwise.

(module-identifier=? a-id-stx b-id-stx) returns #t if a-id-stx and b-id-stx access the same
lexical, module, or top-level binding in the normal environment. “Same module binding” means that the identifiers re-
fer to the same original definition site, not necessarily the require or provide site. Due to renaming in require
and provide, the identifiers may return distinct results with syntax-e.

(module-transformer-identifier=? a-id-stx b-id-stx) returns #t if a-id-stx and b-id-stx
access the same lexical, module, or top-level binding in the identifiers’ transformer environments (see §12.3.3).

(module-template-identifier=? a-id-stx b-id-stx) returns #t if a-id-stx and b-id-stx
access the same lexical or module binding in the identifiers’ template environments (see §12.3.4).

(check-duplicate-identifier id-stx-list) compares each identifier in id-stx-list with every
other identifier in the list with bound-identifier=?. If any comparison returns #t, one of the duplicate identi-
fiers is returned (the first one in id-stx-list that is a duplicate), otherwise the result is #f.

12.3.2 Syntax Object Bindings

(identifier-binding id-stx) returns one of three kinds of values, depending on the binding of id-stx in
its normal environment:

• The result is ’lexical if id-stx is bound in its context to anything other than a top-level variable or a
module variable.

• The result is a list of five items when id-stx is bound in its context to a module-defined identifier: (list
source-mod source-id nominal-source-mod nominal-source-id et?).

– source-mod is a module path index or symbol (see §5.4.2) that indicates the defining module.
– source-id is a symbol for the identifier’s name at its definition site in the source module. This can be

different from the local name returned by syntax-object->datum for several reasons: the identifier
is renamed on import, it is renamed on export, or it is implicitly renamed because the identifier (or its
import) was generated by a macro invocation.

– nominal-source-mod is a module path index or symbol (see §5.4.2) that indicates the module
required into the context of id-stx to provide its binding. It can be different from source-mod
due to a re-export in nominal-source-mod of some imported identifier.

– nominal-source-id is a symbol for the identifier’s name as exported by nominal-source-mod.
It can be different from source-id due to a renaming provide, even if source-mod and
nominal-source-mod are the same.

– et? is #t if the source definition is for-syntax, #f otherwise.

• The result is #f if id-stx is not bound (or bound only to a top-level variable) in its lexical context.

(identifier-transformer-binding id-stx) is like identifier-binding, except that the re-
ported information is for the identifier’s bindings in the transformer environment (see §12.3.3), instead

154

12. Syntax and Macros 12.3. Syntax and Lexical Scope

of the normal environment. If the result is ’lexical for either of identifier-binding or
identifier-transformer-binding, then the result is always ’lexical for both.

(identifier-template-binding id-stx) is like identifier-binding, except that the reported in-
formation is for the identifier’s bindings in the template environment (see §12.3.4), instead of the normal environment.
If the result is ’lexical for either of identifier-binding or identifier-template-binding, then
the result is always ’lexical for both.

(identifier-binding-export-position id-stx) returns either #f or an exact non-negative integer. It
returns an integer only when identifier-binding returns a list, when id-stx represents an imported binding,
and when the source module assigns internal positions for its definitions. This function is intended for use by mzc.

(identifier-transformer-binding-export-position id-stx) is like identifier-binding-export-position,
except that the reported information is for the transformer environment. This function is intended for use by mzc.

12.3.3 Transformer Environments

The top-level environment for transformer expressions is separate from the normal top-level environment. Conse-
quently, top-level definitions are not available for use in top-level transformer definitions. For example, the following
program does not work:

(define count 0)
(define (inc!) (set! count (add1 count)))
(define-syntax (let1 stx)
(syntax-case stx ()
[(x v b)
(begin
(printf "expanding ˜a˜n" count) ; DOESN’T WORK
(inc!) ; ALSO DOESN’T WORK
(syntax (let ([x v]) b)))]))

(let1 x 2 (add1 x))

The variables count and inc! are bound in the normal top-level environment, but it is not bound in the transformer
environment, so the attempt to expand (let1 x 2 (add1 x)) will result in an undefined-variable error.

In the same way that define binds only in the normal environment, a require expression imports only into
the normal environment, and the imported bindings are not made visible in the transformer environment. A top-
level require-for-syntax imports into the transformer environment without affecting the normal environment.
Furthermore, the require and require-for-syntax forms create separate instantiations of any module that is
imported into both environments, in keeping with the separation of the environments.

The initial namespace created by the stand-alone MzScheme application imports all of MzScheme’s built-in syntax,
procedures, and constants into the transformer environment.3 To extend this environment, use one of the following:

• define-for-syntax, which is like define, but binds in the transformer environment. The body of
the definition is also evaluated in the transformer environment. The define-values-for-syntaxes
form is the multiple-values variant of define-for-syntax. Within a module, define-for-syntax
or define-values-for-syntaxes binds identifiers for unquoted expressions only after the definition
(plus in the right-hand side of the definition itself); in particular, mutually-referential for-syntax definitions in a
module must be defined with a single define-values-for-syntaxes.

3In contrast, a namespace created by (scheme-report-environment 5) imports only syntax-rules into the transformer environ-
ment.

155

12.3. Syntax and Lexical Scope 12. Syntax and Macros

• begin-for-syntax, which is like begin, but its body is evaluated in the transformer environment. Fur-
thermore, define, define-values, require, and require-for-template declarations are treated
like define-for-syntax, define-values-for-syntax, require-for-syntax, and require
declarations, respectively.

• require-for-syntax, to import bindings into the transformer environment.

In particular, the example above can be repairs by replacing

(define count 0)
(define (inc!) (set! count (add1 count)))

with either

(define-for-syntax count 0)
(define-for-syntax (inc!) (set! count (add1 count)))

or

(begin-for-syntax
(define count 0)
(define (inc!) (set! count (add1 count))))

or

(module counter mzscheme
(define count 0)
(define (inc!) (set! count (add1 count)))
(provide count inc!))

(require-for-syntax counter)

When an identifier binding is introduced by a form other than module or a top-level definition, it extends the environ-
ment for both normal and transformer expressions within its scope, but the binding is only accessible by expressions
resolved in the proper environment (i.e., the one in which it was introduced). In particular, a transformer expression in
a let-syntax or letrec-syntax expression cannot access identifiers bound by enclosing forms, and an iden-
tifier bound in a transformer expression should not appear as an expression in the result of the transformer. Such
out-of-context uses of an identifier are flagged as syntax errors when attempting to resolve the identifier.

A let-syntax or letrec-syntax expression can never usefully appear as a transformer expression, because
MzScheme provides no mechanism for importing into the meta-transformer environment that would be used by meta-
transformer expressions to operate on transformer expressions. In other words, an expression of the form

(let-syntax ([identifier (let-syntax ([identifier expr])
body-expr)])

...)

is always illegal, assuming that let-syntax is bound in both the normal and transformer environments to the
let-syntax of mzscheme. No syntax (not even function application) is bound in expr’s environment. This
restriction in the mzscheme language is of little consequence, however, since for-syntax exports allow the definition
of syntax applicable to the above body-expr.

12.3.4 Module Environments

In the same way that the normal and transformer environments are kept separate at the top level, a module’s normal
and transformer environments are also separated. Normal imports and definitions in a module — both variable and
syntax — contribute to the module’s normal environment, only.

156

12. Syntax and Macros 12.3. Syntax and Lexical Scope

For example, the module expression

(module m mzscheme
(define (id x) x)
(define-syntax (macro stx)
(id (syntax (printf "hi˜n")))))

is ill-formed because id is not bound in the transformer environment for the macro implementation. To make id
usable from the transformer, the body of the module m would have to be executed — which is impossible in general,
because a syntax definition such as macro affects the expansion of the rest of the module body.

Consequently, if a procedure such as id is to be used in a transformer, it must either remain local to the transformer
expression, or reside in a different module. For example, the above module is trivially repaired as

(module m mzscheme
(define-syntax macro
(let ([id (lambda (x) x)])
(lambda (stx)
(id (syntax (printf "hi˜n")))))))

The define-for-syntax, begin-for-syntax, and define-syntaxes forms (see §12.3.3 and §12.4) are
useful for defining multiple macros that share helper functions.

In the mzscheme language, the base environment for a transformer expression includes all of MzScheme. The
mzscheme language also provides a require-for-syntax form (in the normal environment) for importing
bindings from another module into the importing module’s transformer environment:

(require-for-syntax require-spec · · ·)

A for-syntax import of M within N causes M to be executed at N’s expansion time, instead of (or possibly in addition to)
run time for N. The syntax and variable identifiers exported by the for-syntax module are visible within the module’s
transformer environment, but not its normal environment. Like a normal expression, a transformer expression in a
module cannot contain free variables.

Finally, mzscheme provides the require-for-template form, which is roughly dual to require-for-syntax:

(require-for-template require-spec · · ·)

A for-template import of M within N causes the referenced module to be executed at the run-time of any P that includes
a for-syntax import of N. In other words, require-for-template introduces bindings that become available in
a future run time.

Transformer expressions and imports for a module M are executed once each time a module is expanded using M’s
syntax bindings or using M as a for-syntax import. After the module is expanded, its transformer environment is
destroyed, including bindings from modules used at expansion time.

Example:

(module rt mzscheme
(printf "RT here˜n")
(define mx (lambda () 7))
(provide mx))

(module tt mzscheme
(printf "RT here, too˜n")
(define x 700)
(provide x))

157

12.3. Syntax and Lexical Scope 12. Syntax and Macros

(module et mzscheme
(require-for-template tt)
(printf "ET here˜n")
;; The x below is future-time:
(define mx (lambda () (syntax x)))
(provide mx))

(module m mzscheme
(require-for-syntax mzscheme)
(require rt) ; rt provides run-time mx
(require-for-syntax et) ; et provides exp-time mx

;; The mx below is run-time:
(printf "˜a˜n" (mx)) ; prints 7 when run

;; The mx below is exp-time:
(define-syntax onem (lambda (stx) (mx)))
(printf "˜a˜n" (onem)) ; prints 700 when run

;; The mx below is run-time:
(define-syntax twom (lambda (stx) (syntax (mx))))
(printf "˜a˜n" (twom))) ; prints 7 when run

;; "ET here" is printed during the expansion of m

(require m) ; prints "ET here" (for later macro expansion in the top level, if any)
; and "RT here, too" and "RT here" in some order,
; then 7, then 700, then 7

This expansion-time execution model explains the need to execute declared modules only when they are invoked. If
a declared module is imported into other modules only for syntax, then the module is needed only at expansion time
and can be ignored at run time. The separation of declaration and execution also allows a for-syntax module to be
executed once for each module that it expands through require-for-syntax.

The hierarchy of run times avoids confusion among expansion and executing layers that can prevent separate compila-
tion. By ensuring that the layers are separate, a compiler or programming environment can expand, partially expand,
or re-expand a module without affecting the module’s run-time behavior, whether the module is currently executing or
not.

Since transformer expressions may themselves use macros defined by modules with for-syntax imports (to implement
the macros), expansion of a module creates a hierarchy of run times (or ”tower of expanders”). The expansion time of
each layer corresponds to the run time of the next deeper layer.

In the absence of let-syntax and letrec-syntax, the hierarchy of run times would be limited to three levels,
since the transformer expressions for run-time imports would have been expanded before the importing module must be
expanded. The let-syntax and letrec-syntax forms, however, allow syntax visible in a for-syntax import’s
transformers to appear in the expansion of transformer expressions in the module. Consequently, the hierarchy is
bounded in principle only by the number of declared modules. In practice, the hierarchy will rarely exceed a few
levels.

12.3.5 Macro-Generated Top-Level and Module Definitions

When a top-level definition binds an identifier that originates from a macro expansion, the definition captures only
uses of the identifier that are generated by the same expansion. This behavior is consistent with internal definitions
(see §2.8.5), where the defined identifier turns into a fresh lexical binding.

158

12. Syntax and Macros 12.3. Syntax and Lexical Scope

Example:

(define-syntax def-and-use-of-x
(syntax-rules ()
[(def-and-use-of-x val)
; x below originates from this macro:
(begin (define x val) x)]))

(define x 1)
x ; ⇒ 1
(def-and-use-of-x 2) ; ⇒ 2
x ; ⇒ 1

(define-syntax def-and-use
(syntax-rules ()
[(def-and-use x val)
; x below was provided by the macro use:
(begin (define x val) x)]))

(def-and-use x 3) ; ⇒ 3
x ; ⇒ 3

For a top-level definition (outside of module), the order of evaluation affects the binding of a generated definition for
a generated identifier use. If the use precedes the definition, then the use refers to a non-generated binding, just as if the
generated definition were not present. (No such dependency on order occurs within a module, since a module binding
covers the entire module body.) To support the declaration of an identifier before its use, the define-syntaxes
form avoids binding an identifier if the body of the define-syntaxes declaration produces zero results (see also
§12.4).

Example:

(define bucket-1 0)
(define bucket-2 0)
(define-syntax def-and-set!-use-of-x
(syntax-rules ()
[(def-and-set!-use-of-x val)
(begin (set! bucket-1 x) (define x val) (set! bucket-2 x))]))

(define x 1)
(def-and-set!-use-of-x 2)
x ; ⇒ 1
bucket-1 ; ⇒ 1
bucket-2 ; ⇒ 2

(define-syntax defs-and-uses/fail
(syntax-rules ()
[(def-and-use)
(begin
; Initial reference to even precedes definition:
(define (odd x) (if (zero? x) #f (even (sub1 x))))
(define (even x) (if (zero? x) #t (odd (sub1 x))))
(odd 17))]))

(defs-and-uses/fail) ; ⇒ error: undefined identifier even

(define-syntax defs-and-uses
(syntax-rules ()
[(def-and-use)
(begin

159

12.4. Binding Multiple Syntax Identifiers 12. Syntax and Macros

; Declare before definition via no-values define-syntaxes:
(define-syntaxes (odd even) (values))
(define (odd x) (if (zero? x) #f (even (sub1 x))))
(define (even x) (if (zero? x) #t (odd (sub1 x))))
(odd 17))]))

(defs-and-uses) ; ⇒ #t

Within a module, macro-generated require and provide clauses also introduce and reference generation-specific
bindings:

• In require (see §5.2), for a require-spec of the form (rename local-identifier
exported-identifier), the local-identifier is bound only for uses of the identifier generated
by the same macro expansion as local-identifier. In require for other require-specs, the gen-
erator of the require-spec determines the scope of the bindings.

• In provide (see §5.2), for a provide-spec of the form identifier, the exported identifier is the one
that binds identifier within the module in a generator-specific way, but the external name is the plain
identifier. The exceptions for all-from-except and all-defined-except are similarly deter-
mined in a generator-specific way, as is the local-identifier binding of a rename form, but plain iden-
tifiers are used for the external names. For struct, the context of the struct-identifier determines lo-
cal bindings for all of the expanded struct names. For all-defined and all-defined-except, only
identifiers with definitions having the same generator as the all-defined or all-defined-except key-
word are exported; the external name is the plain identifier from the definition. The generator of an all-from
or all-from-except provide-spec does not affect the set identifiers exported by the provide-spec.

12.4 Binding Multiple Syntax Identifiers

In addition to define-syntax, let-syntax, and letrec-syntax, MzScheme provides define-syntaxes,
let-syntaxes, and letrec-syntaxes. These forms are analogous to define-values, let-values, and
letrec-values, allowing multiple syntax bindings at once (see §2.8).

(define-syntaxes (identifier · · ·) expr)

(let-syntaxes (((identifier · · ·) expr)
· · ·)

expr · · ·1)

(letrec-syntaxes (((identifier · · ·) expr)
· · ·)

expr · · ·1)

At the top level, define-syntaxes accepts zero results for any number of identifiers, and in that case, it
neither binds the identifiers nor signals an error. This behavior is useful for identifiers that are introduced by a
macro that produces top-level defines. See §12.3.5 for more information.

MzScheme also provides a letrec-syntaxes+values form for binding both values and syntax in a single,
mutually recursive scope:

(letrec-syntaxes+values (((identifier · · ·) expr) · · ·)
(((identifier · · ·) expr) · · ·)

expr · · ·1)

The first set of bindings are syntax bindings (as in letrec-syntaxes), and the second set of bindings are normal
variable bindings (as in letrec-values).

160

12. Syntax and Macros 12.5. Special Syntax Identifiers

Examples:

;; Defines let/cc and let-current-continuation as the same macro:
(define-syntaxes (let/cc let-current-continuation)
(let ([macro (syntax-rules ()

[(id body1 body ...)
(call/cc (lambda (id) body1 body ...))])])

(values macro macro)))

(letrec-syntaxes+values ([(get-id) (syntax-rules ()
[() id])])

([(id) (lambda (x) x)]
[(x) (get-id)])

x) ; ⇒ the id identify procedure

12.5 Special Syntax Identifiers

To enable the definition of syntax transformers for application forms and other data (numbers, vectors, etc.), the syntax
expander treats #%app, #%top, and #%datum as special identifiers.

Any expandable expression of the form

(datum . datum)

where the first datum is not an identifier bound to an expansion-time value, is treated as

(#%app datum . datum)

so that the syntax transformer bound to #%app is applied. In addition, () is treated as (#%app). Similarly, an
expression

identifier

where identifier has no binding other than a top-level binding, is treated as

(#%top . identifier)

Finally, an expression

datum

where datum is not an identifier or pair, is treated as

(#%datum . datum)

The mzscheme module provides #%app, #%top, and #%datum as regular application, top-level variable reference,
and implicit quote, respectively. A module can export different transformers with these names to support languages
different from conventional Scheme.

In the case of read-eval-print-loop or the default load handler, every input datum is wrapped with
#%top-interaction:

(#%top-interaction . datum)

161

12.5. Special Syntax Identifiers 12. Syntax and Macros

The mzscheme module provides #%top-interaction as a macro that expands to just the datum.

Within module, #%module-begin is used as a transformer for the module body. A #%module-begin is im-
plicitly added around a module body when it contains multiple S-expressions, or when the S-expression expands to
a core form other than #%module-begin or #%plain-module-begin; the lexical context for the introduced
#%module-begin identifier includes only the exports of the module’s initial import. After such wrapping, if any,
and before any expansion, an ’enclosing-module-name property is attached to the module-body syntax object;
the property’s value is a symbol for the module name as specified after the module keyword.

The mzscheme module binds #%module-begin to a form that inserts a for-syntax import of mzscheme, so that
mzscheme bindings can be used in syntax definitions. It also exports #%plain-module-begin, which can be
substituted for #%module-begin to avoid the for-syntax import of mzscheme. Any other transformer used for
#%module-begin must expand to mzscheme’s #%module-begin or #%plain-module-begin.

When an expression is fully expanded, all applications, top-level variable references, and literal datum expressions
will appear as explicit #%app, #%top, and #%datum forms, respectively. Those forms can also be used di-
rectly by source code. The #%module-begin form can never usefully appear in an expression, and the body
of a fully expanded module declaration is not wrapped with #%module-begin; instead, it is wrapped with
#%plain-module-begin.

The following example shows how the special syntax identifiers can be defined to create a non-Scheme module lan-
guage:

(module lambda-calculus mzscheme

; Restrict lambda to one argument:
(define-syntax lc-lambda
(syntax-rules ()
[((x) E) (lambda (x) E)]))

; Restrict application to two expressions:
(define-syntax lc-app
(syntax-rules ()
[(E1 E2) (E1 E2)]))

; Restrict a lambda calculus module to one body expression:
(define-syntax lc-module-begin
(syntax-rules ()
[(E) (#%module-begin E)]))

; Disallow numbers, vectors, etc.
(define-syntax lc-datum
(syntax-rules ()))

; Provide (with renaming):
(provide #%top ; keep mzscheme’s free-variable error

(rename lc-lambda lambda)
(rename lc-app #%app)
(rename lc-module-begin #%module-begin)
(rename lc-datum #%datum)))

(module m lambda-calculus
; The only syntax defined by lambda-calculus is
; unary lambda, unary application, and variables.
; Also, the module must contain exactly one expression.

162

12. Syntax and Macros 12.6. Macro Expansion

((lambda (y) (y y))
(lambda (y) (y y))))

(require m) ; executes m, loops forever

12.6 Macro Expansion

A define-syntax, let-syntax, or letrec-syntax form associates an identifier to an expansion-time value.
If the expansion-time value is a procedure of one argument, then the procedure is applied by the syntax expander when
the identifier is used in the scope of the syntax binding.

The transformer for an identifier is applied whenever the identifier appears in an expression position —
not just when it appears after a parenthesis as (identifier ...). When it does appear as (identifier
...), the entire (identifier ...) expression is provided as the argument to the transformer. Otherwise only
identifier is provided to the transformer.

A typical transformer is implemented as

(lambda (stx)
(syntax-case stx ()
[(rest-of-pattern) expr]))

so that identifier by itself does not match the pattern; thus, the exn:fail:syntax exception is raised when
identifier does not appear as (identifier ...).

(make-set!-transformer proc) also creates a transformer procedure. The proc argument must be a proce-
dure of one argument; if the result of (make-set!-transformer proc) is bound as syntax to identifier,
then proc is applied as a transformer when identifier is used in an expression position, or when it is used as
the target of a set! assignment: (set! identifier expr). When the identifier appears as a set! target, the
entire set! expression is provided to the transformer.

Example:

(let ([x 1]
[y 2])

(let-syntax ([x (make-set!-transformer
(lambda (stx)
(syntax-case stx (set!)
; Redirect mutation of x to y
[(set! id v) (syntax (set! y v))])))]
; Normal use of x really gets x
[id (identifier? (syntax id)) (syntax x)])))])

(begin
(set! x 3)
(list x y)))) ; ⇒ ’(1 3)

(set!-transformer? v) returns #t if v is a value created by make-set!-transformer, #f otherwise.

(set!-transformer-procedure transformer) returns the procedure passed to make-set!-transformer
to create transformer.

(make-rename-transformer id-stx) creates a transformer procedure that inserts the identifier id-stx in
place of whatever identifier binds the transformer, including in non-application positions, and in set! expressions.
Such a transformer could be written manually, but the one created by make-rename-transformer cooperates
specially with syntax-local-value (see below).

163

12.6. Macro Expansion 12. Syntax and Macros

(rename-transformer? v) returns #t if v is a value created by make-rename-transformer, #f other-
wise.

(rename-transformer-target transformer) returns the identifier passed to make-rename-transformer
to create transformer.

If a transformer expression produces a non-procedure value, the value is associated with the identifier as a generic
expansion-time value. Any use of the identifier in an expression position is rejected as a syntax error, but syntax
transformers can access the value. For example, the define-signature form (see Chapter 55 of PLT MzLib:
Libraries Manual) associates a component interface description to the defined identifier.

When a syntax transformer is applied, it can query the bindings of identifiers in the lexical environment of
the expression being transformed. For example, the unit form can access a named interface description with
syntax-local-value:

• (syntax-local-value id-stx [failure-thunk]) returns the expansion-time value of id-stx
in the transformed expression’s context. If id-stx is not bound to an expansion-time value (via
define-syntax, let-syntax, etc.) in the environment of the expression being transformed,
the result is obtained by applying failure-thunk. If failure-thunk is not provided, the
exn:fail:contract exception is raised. If id-stx is bound to a rename transformer created with
make-rename-transformer, syntax-local-value effectively calls itself with the target of the re-
name and returns that result, instead of the rename transformer.

Resolving id-stx can use certificates for the expression being transformed (see §12.6.3) as well as inactive
certificates associated with id-stx (see §12.6.3.1). Furthermore, if the transformer is defined within a module
(i.e., the current transformation was triggered by a use of a module-defined identifier) or if the current expression
is being expanded for the body of a module, then resolving id-stx can access any identifier defined by the
module.

• (syntax-local-lift-expression stx) returns a fresh identifier, and it cooperates with the
module, letrec-syntaxes+values, define-syntaxes, begin-for-syntax, and top-level ex-
panders to bind the generated identifier to the expression stx. A run-time expression within a mod-
ule is lifted to the module’s top level, just before the expression whose expansion requests the lift.
Similarly, a run-time expression outside of a module is lifted to a top-level definition. A compile-
time expression in a letrec-syntaxes+values or define-syntaxes binding is lifted to a let
wrapper around the corresponding right-hand side of the binding. A compile-time expression within
begin-for-syntax is lifted to a define-for-syntax declaration just before the requesting ex-
pression. Other syntactic forms can capture lifts by using local-expand/capture-lifts or
local-transformer-expand/capture-lifts.

• (syntax-local-lift-module-end-declaration stx) cooperates with the module form to in-
sert stx as a top-level declaration at the end of the module currently being expanded. The result is void. If the
current expression being transformed is not within a module form, or if it is not a run-time expression, then the
exn:fail:contract exception is raised. If the current expression being transformed is not in the module
top-level, then stx is eventually expanded in an expression context.

• (syntax-local-name) returns an inferred name for the expression position being transformed, or #f; see
also §6.2.3.

• (syntax-local-context) returns either ’expression, ’top-level, ’module, ’module-begin,
or a non-empty list of arbitrary values.

The first three possibilities indicate that the expression is being expanded for a (non-definition) expression
position, a top-level position, or a module top-level position, respectively. The next-to-last, ’module-begin,
indicates that the expression is being expanded as the sole form within a module, where it might produce
#%plain-module-begin.

164

12. Syntax and Macros 12.6. Macro Expansion

The last possibility, a list, indicates expansion for an internal-definition position. The identity of the lists’s first
element (i.e., its eq?ness) reflects the identity of the internal-definition context; in particular two transformer
expansions receive the same first value if and only if they are invoked for the same internal-definition context.
Later values in the list similarly identify internal-definition contexts that are still being expanded, and that
required the expansion of nested internal-definition contexts.

• (syntax-local-get-shadower identifier) returns identifier if no binding in the current ex-
pansion context shadows identifier, if identifier has no module context, and if the current expansion
context is not a module. If a binding of inner-identifier shadows identifier, the result is the same
as (syntax-local-get-shadower inner-identifier), except that it has the location and prop-
erties of identifier. Otherwise, the result is the same as identifier with its module context (if any)
removed and the current module context (if any) added. Thus, the result is an identifier corresponding to the
innermost shadowing of identifier in the current context if its shadowed, and a module-contextless version
of identifier otherwise.

• (syntax-local-certifier [active?]) returns a procedure that captures any certificates currently
available for syntax-local-value or local-expand. The procedure accepts one to three arguments:
stx (required), key-v (optional), and intro-proc (optional). The procedure’s result is a syntax object like
stx, except that it includes the captured certificates as inactive (see §12.6.3.1) if active? is #f (the default)
or active otherwise. If key-v is supplied and not #f, it is associated with each captured certificate for later use
through syntax-recertify (see §12.6.3.3). If intro-proc is supplied, and if it is not #f (the default),
then it must be a procedure created by make-syntax-introducer, in which case the certificate applies
only to parts of stx that are marked as introduced by intro-proc.

Supply #t for active? when the syntax to be certified can be safely used in any context by any party, and
where access to the syntax object should not confer any additional access. Supply #f for active? when the
syntax to be certified is not accessible to parties that might abuse the access that the certificate provides, and
when the certified syntax eventually appears (via macro expansion) within a larger expression from which it
cannot be safely extracted by other parties.

• (syntax-transforming?) returns #t if an expression is currently being transformed (so that procedures
like syntax-local-value can be called), #f otherwise.

A transformer can also expand or partially expand subexpressions from its input syntax object:

• (local-expand stx context-v stop-id-stx-list [intdef-ctx]) expands stx in the lex-
ical context of the expression currently being expanded. The context-v argument is used as the result of
syntax-local-context for immediate expansions; for a particular internal-definition context, generate a
unique value and cons it onto the current result of syntax-local-context if it is a list.

When an identifier in stop-id-stx-list is encountered by the expander in a subexpression, expansions
stops for the subexpression. If #%app, #%top, or #%datum (see §12.5) appears in stop-id-stx-list,
then application, top-level variable reference, and literal data expressions without the respective explicit form
are not wrapped with the explicit form. If stop-id-stx-list is #f instead of a list, then stx is expanded
only as long as the outermost form of stx is a macro (i.e., expansion does not proceed to sub-expressions).

The optional intdef-ctx argument must be either #f (the default) or the result of syntax-local-make-definition-context.
In the latter case, lexical information for internal definitions is added to stx before it is expanded. The lexical
information is also added to the expansion result (because the expansion might introduce bindings or references
to internal-definition bindings).

Expansion of stx can use certificates for the expression already being expanded (see §12.6.3) , and inactive
certificates associated with stx are activated for stx (see §12.6.3.1). Furthermore, if the macro expander is
defined within a module (i.e., the current expansion was triggered by a use of a module-defined identifier) or
if the current expression is being expanded for the body of a module, then the expansion of stx can use any
identifier defined by the module.

165

12.6. Macro Expansion 12. Syntax and Macros

• (syntax-local-expand-expression stx [l])ike local-expand given ’expression and an
empty stop list, but with two results: a syntax object for the fully expanded expression, and a syntax object
whose content is opaque. The latter can be used in place of the former (perhaps in a larger expression produced
by a macro transformer), and when the macro expander encouters the opaque object, it substitutes the fully
expanded expression without re-expanding it; the exn:fail:syntax exception is raised if the expansion
context includes bindings or marks that were not present for the original expansion, in which case re-expansion
might produce different results. Consistent use of syntax-local-expand-expression and the opaque
object thus avoids quadratic expansiontimes when local expansions are nested.

• (local-transformer-expand stx context-v stop-id-stx-list intdef-ctx) is like
local-expand, but stx is expanded as a transformer expression instead of a run-time expression.

• (local-expand/capture-lifts stx context-v stop-id-stx-list intdef-ctx) is like
local-expand, but if syntax-local-lift-expression is called during the expansion of stx, the
result is a syntax object that represents a begin expression; lifted expression appear with their identifiers in
define-values forms, and the expansion of stx is the last expression in the begin. The lifted expressions
are not expanded.

• (local-transformer-expand/capture-lifts stx context-v stop-id-stx-list intdef-ctx)
is like local-expand/capture-lifts, but stx is expanded as a transformer expression instead of a run-
time expression. Lifted expressions are reported as define-values forms (in the transformer environment).

• (syntax-local-make-definition-context) creates an opaque internal-definition context value to
be used with local-expand and other functions. A transformer should create one context for each set
of internal definitions to be expanded, and use it when expanding any form whose lexical context should in-
clude the definitions. After discovering an internal define-values or define-syntaxes form, use
syntax-local-bind-syntaxes to add bindings to the context.

• (syntax-local-bind-syntaxes id-list expr-or-false intdef-ctx) binds each identi-
fier in id-list within the internal-definition context represented by intdef-ctx, where intdef-ctx
is the result of syntax-local-make-definition-context. Supply #f for expr-or-false when
the identifiers correspond to define-values bindings, and supply a compile-time expression when the iden-
tifiers correspond to define-syntaxes bindings; the later case, the number of values produces by the ex-
pression should match the number of identifiers, otherwise the exn:fail:contract:arity exception is
raised.

To track the introduction of identifiers by a macro (see §12.3), the syntax expander adds a special “mark” to a syntax
object that is provided to a transformer, and also marks the result of the transformer. Consecutive marks cancel, and
each transformer application has a distinct mark, so the only parts of the resulting syntax object with marks are the
parts that were introduced by the transformer. A transformer can explicitly add a current mark to a syntax object using
syntax-local-introduce or the result of make-syntax-introducer:

• (syntax-local-introduce stx) produces a syntax object that is like stx, except that a mark for the
current expansion is added (possibly canceling an existing mark in parts of stx).

• (make-syntax-introducer) produces a procedure that behaves like syntax-local-introduce,
except using a fresh mark. Multiple applications of the same make-syntax-introducer result procedure
use the same mark, and different result procedures use distinct marks.

Explicit marking is useful on syntax objects that flow into or out of a transformer without being the transformer
argument or result. For example, DrScheme’s Check Syntax tool recognizes ’disappeared-binding and
’disappeared-use properties, which specify bound–binding identifier pairs in the source program that do not
appear in the expansion. Example:

(define-syntax (match-list stx)

166

12. Syntax and Macros 12.6. Macro Expansion

(syntax-case stx ()
[(expr (id ...) result-id)
(let ([ids (syntax->list (syntax (id ...)))]

[result-id (syntax result-id)])
;; Make sure the expression is well formed:
(for-each (lambda (id)

(unless (identifier? id)
(raise-syntax-error #f "not an identifier" stx id)))

(append ids (list result-id)))
;; Find the matching identifier and produce a list-ref expression:
(let loop ([ids ids] [pos 0])
(cond
[(null? ids) (raise-syntax-error #f "no pattern binding" stx result-id)]
[(bound-identifier=? (car ids) result-id)
;; Found it; produce the list-ref expression, and
;; tell the Check Syntax tool about the pattern-variable binding:
(with-syntax ([pos pos])
(syntax-property
(syntax-property
(syntax (list-ref expr pos)) ; the expansion result
’disappeared-binding
(syntax-local-introduce (car ids)))
’disappeared-use
(syntax-local-introduce result-id)))]

[else (loop (cdr ids) (add1 pos))])))]))

;; Test it:
(match-list ’(1 2 3) (a b c) b) ; ⇒ 2

In this example, Check Syntax will draw a binding arrow from the first b to the second b. Without the calls to
syntax-local-introduce, the identifiers stored in the property would appear to have originated from the trans-
former, instead of from the transformer’s argument; consequently, Check Syntax would not draw the arrow, because it
would not know that the bs exist in the source program.

12.6.1 Expanding Expressions to Primitive Syntax

(expand stx-or-sexpr) expands all non-primitive syntax in stx-or-sexpr, and returns a syntax object
for the expanded expression. See below for the grammar of fully expanded expressions. Before stx-or-sexpr is
expanded, its lexical context is enriched with namespace-syntax-introduce as for eval (see §8.3 and §14.1).
Use syntax-object->datum to convert the returned syntax object into an S-expression.

(expand-syntax stx) is like (expand stx), except that the argument must be a syntax object, and its lexical
context is not enriched before expansion.

(expand-once stx-or-sexpr) partially expands syntax in the stx-or-sexpr and returns a syntax ob-
ject for the partially-expanded expression. Due to limitations in the expansion mechanism, some context in-
formation may be lost. In particular, calling expand-once on the result may produce a result that is dif-
ferent from expansion via expand. Before stx-or-sexpr is expanded, its lexical context is enriched with
namespace-syntax-introduce as for eval (see §8.3 and §14.1).

(expand-syntax-once stx) is like (expand-once stx), except that the argument must be a syntax ob-
ject, and its lexical context is not enriched before expansion.

(expand-to-top-form stx-or-sexpr) partially expands syntax in stx-or-sexpr to reveal the outer-

167

12.6. Macro Expansion 12. Syntax and Macros

most syntactic form. This partial expansion is mainly useful for detecting top-level uses of begin. Unlike expanding
the result of expand-once, expanding the result of expand-to-top-form with expand produces the same
result as using expand on the original syntax. Before stx-or-sexpr is expanded, its lexical context is enriched
with namespace-syntax-introduce as for eval (see §8.3 and §14.1).

(expand-syntax-to-top-form stx) is like (expand-to-top-form stx), except that the argument
must be a syntax object, and its lexical context is not enriched before expansion.

The possible shapes of a fully expanded expression are defined by top-level-expr:

top-level-expr is one of
general-top-level-expr
(#%expression expr)
(module identifier name (#%plain-module-begin module-level-expr · · ·))
(begin top-level-expr · · ·)

module-level-expr is one of
general-top-level-expr
(provide provide-spec ...)

general-top-level-expr is one of
expr
(define-values (variable · · ·) expr)
(define-syntaxes (identifier · · ·) expr)
(define-values-for-syntax (variable · · ·) expr)
(require require-spec · · ·)
(require-for-syntax require-spec · · ·)
(require-for-template require-spec · · ·)

expr is one of
variable
(lambda formals expr · · ·1)
(case-lambda (formals expr · · ·1) · · ·)
(if expr expr)
(if expr expr expr)
(begin expr · · ·1)
(begin0 expr expr · · ·)
(let-values (((variable · · ·) expr) · · ·) expr · · ·1)
(letrec-values (((variable · · ·) expr) · · ·) expr · · ·1)
(set! variable expr)
(quote datum)
(quote-syntax datum)
(with-continuation-mark expr expr expr)
(#%app expr · · ·1)
(#%datum . datum)
(#%top . variable)
(#%variable-reference variable)
(#%variable-reference (#%top . variable))

where formals is defined in §2.9, and require-spec and provide-spec are defined in §5.2.

When a variable expression appears in a fully-expanded expression, it either refers to a variable bound by lambda,
case-lambda, let-values, letrec-values, or define (within the current module), or it refers to an im-
ported variable. (In other words, a variable not wrapped by #%top never refers to a top-level variable.)

168

12. Syntax and Macros 12.6. Macro Expansion

The keywords in the above grammar are placeholders for identifiers that are module-identifier=? (or
module-transformer-identifier=? for define-syntax expressions) to the same-named exports of
mzscheme. Due to import renamings, the printed identifier names can be different in the expanded expression.

12.6.2 Syntax Object Properties

Every syntax object has an associated property list, which can be queried or extended with syntax-property:

• (syntax-property stx key-v v) extends stx by associating an arbitrary property value v with the
key key-v; the result is a new syntax object with the association (while stx itself is unchanged).

• (syntax-property stx key-v) returns an arbitrary property value associated to stx with the key
key-v , or #f if no value is associated to stx for key-v .

• (syntax-property-symbol-keys stx) returns a list of all symbols that as keys have associated prop-
erties in stx. Uninterned symbols (see §3.7) are not included in the result list.

The read-syntax procedure attaches a ’paren-shape property to any pair or vector syntax object generated
from parsing a pair of square brackets (“[” and “]”) or curly braces (“{” and “}”).4 The property value is #\[in the
former case, and #\{ in the latter case. The syntax form copies any ’paren-shape property from the source of
a template to corresponding generated syntax.

Both the syntax input to a transformer and the syntax result of a transformer may have associated properties. The two
sets of properties are merged by the syntax expander: each property in the original and not present in the result is
copied to the result, and the values of properties present in both are combined with cons-immutable (result value
first, original value second).

Before performing the merge, however, the syntax expander automatically add a property to the original syntax object
using the key ’origin. If the source syntax has no ’origin property, it is set to the empty list. Then, still before
the merge, the identifier that triggered the macro expansion (as syntax) is cons-immutabled onto the ’origin
property so far.

The ’origin property thus records (in reverse order) the sequence of macro expansions that produced an expanded
expression. Usually, the ’origin value is an immutable list of identifiers. However, a transformer might return
syntax that has already been expanded, in which case an ’origin list can contain other lists after a merge.

For example, the expression

(or x y)

expands to

(let ((or-part x)) (if or-part or-part (or y)))

which, in turn, expands to

(let-values ([(or-part) x]) (if or-part or-part y))

The syntax object for the final expression will have an ’origin property whose value is (list-immutable
(quote-syntax let) (quote-syntax or)).

(syntax-track-origin new-stx orig-stx id-stx) adds properties to new-stx in the same way that
macro expansion adds properties to a transformer result. In particular, it merges the properties of orig-stx into

4More precisely, the property is attached by the default read handler in syntax mode when using the default readtable.

169

12.6. Macro Expansion 12. Syntax and Macros

new-stx, first adding id-stx as an ’origin property, and it returns the property-extended syntax object. Use
the syntax-track-origin procedure in a macro transformer that discards syntax (corresponding to orig-stx
with a keyword id-stx) leaving some other syntax in its place (corresponding to new-stx).

Besides ’origin tracking for general macro expansion, MzScheme adds properties to expanded syntax (often using
syntax-track-origin) to record additional expansion details:

• When a begin form is spliced into a sequence with internal definitions (see §2.8.5), syntax-track-origin
is applied to every spliced element from the begin body. The second argument to syntax-track-origin
is the begin form, and the third argument is the begin keyword (extracted from the spliced form).

• When an internal define-values or define-syntaxes form is converted into a letrec-values+syntaxes
form (see §2.8.5), syntax-track-origin is applied to each generated binding clause. The second argu-
ment to syntax-track-origin is the converted form, and the third argument is the define-values or
define-syntaxes keyword form the converted form.

• When a letrec-values+syntaxes expression is fully expanded, syntax bindings disappear, and the result
is either a letrec-values form (if the unexpanded form contained non-syntax bindings), or only the body of
the letrec-values+syntaxes form (wrapped with begin if the body contained multiple expressions).
To record the disappeared syntax bindings, a property is added to the expansion result: an immutable list of
identifiers from the disappeared bindings, as a ’disappeared-binding property.

• When a subtyping define-struct form is expanded, the identifier used to reference the base type does not
appear in the expansion. Therefore, the define-struct transformer adds the identifier to the expansion
result as a ’disappeared-use property.

• When a reference to an unexported or protected identifier from a module is discovered (and the reference is
certified; see §12.6.3), the ’protected property is added to the identifier with a #t value.

• When or read-syntax or read-honu-syntax generates a syntax object, it attaches a property to the
object (using a private key) to mark the object as originating from a read. The syntax-original? predicate
looks for the property to recognize such syntax objects. (See §12.2.2 for more information.)

The syntax-original? procedure and the ’origin, ’disappeared-binding, and ’disappeared-use
properties are used by program-processing tools (such as Check Syntax in DrScheme) to relate source code to
its expanded form. Implementors of macro transformers should consider whether properties added automati-
cally by MzScheme are sufficient for tools to make sense of expansion result, and implementors should use
syntax-track-origin and syntax-property as necessary to fill in gaps (see §12.6 for an example).

See §12.6.5 for information about properties generated by the expansion of a module declaration. See §3.12.1 and
§6.2.3 for information about properties recognized when compiling a procedure. See §14.3 for information on proper-
ties and byte codes.

12.6.3 Certificates for Protected References

As illustrated in §5.3, a macro can expand into a use of an identifier that is not exported from the macro’s module. In
general, such an identifier must not be extracted from the expanded expression and used in a different context, because
using the identifier in a different context may break invariants of the macro’s module. For example, the following
module exports a macro go that expands to a use of unchecked-go:

(module m mzscheme
(provide go)
(define (unchecked-go n x)
;; to avoid disaster, n must be a number
(+ n 17))

170

12. Syntax and Macros 12.6. Macro Expansion

(define-syntax (go stx)
(syntax-case stx ()
[(x)
#’(unchecked-go 8 x)])))

If the reference to unchecked-go is extracted from the expansion of (go ’a), then it might be inserted into a new
expression, (unchecked-go #f ’a), leading to disaster. The datum->syntax-object procedure can be
used similarly to construct references to an unexported identifier, even when no macro expansion includes a reference
to the identifier.

To prevent such abuses of unexported identifiers, MzScheme’s macro expander and compiler reject references to un-
exported identifiers unless they appear in certified syntax objects. The macro expander always certifies a syntax object
that is produced by a transformer. For example, when (go ’a) is expanded to (unchecked-go 8 ’a), a cer-
tificate is attached to the result (unchecked-go 8 ’a). Extracting just unchecked-go removes the identifier
from the certified expression, so that the reference is disallowed when it is inserted into (unchecked-go #f ’a).

In addition to checking module references, the macro expander disallows references to local bindings where the bind-
ing identifier is less certified than the reference. Otherwise, the expansion of (go ’a) could be wrapped with a local
binding that redirects #%app to values, thus obtaining the value of unchecked-go. Note that a capturing #%app
would have to be extracted from the expansion of (go ’a), since lexical scope would prevent an arbitrary #%app
from capturing. The act of extracting #%app removes its certification, whereas the #%appwithin the expansion is still
certified; comparing these certifications, the macro expander rejects the local-binding reference, and unchecked-go
remains protected.

In much the same way that the macro expander copies properties from a transformer’s input to its output, the expander
copies certificates from a transformer’s input to its output. Building on the previous example,

(module n mzscheme
(require m)
(provide go-more)
(define y ’hello)
(define-syntax (go-more stx)
#’(go y)))

the expansion of (go-more) introduces a reference to the unexported y in (go y), and a certificate allows the
reference to y . As (go y) is expanded to (unchecked-go 8 y), the certificate that allows y is copied over, in
addition to the certificate that allows the reference to unchecked-go.

When a protected identifier becomes inaccessible by direct reference (i.e., when the current code inspector is changed
so that it does not control the module’s invocation; see §9.4), the protected identifier is treated like an unexported
identifier.

12.6.3.1 CERTIFICATE PROPAGATION

When the result of a macro expansion contains a quote-syntax form, the macro expansion’s certificate must be
attached to the resulting syntax object to support macro-generating macros. In general, when the macro expander
encounters quote-syntax, it attaches all certificates from enclosing expressions to the quoted syntax constant.
However, the certificates are attached to the syntax constant as inactive certificates, and inactive certificates do not
count directly for certifying identifier access. Inactive certificates become active when the macro expander certifies
the result of a macro expansion; at that time, the expander removes all inactive certificates within the expansion result
and attaches active versions of the certificates to the overall expansion result.

For example, suppose that the go macro is implemented through a macro:

(module m mzscheme

171

12.6. Macro Expansion 12. Syntax and Macros

(provide def-go)
(define (unchecked-go n x)
(+ n 17))

(define-syntax (def-go stx)
(syntax-case stx ()
[(go)
#’(define-syntax (go stx)

(syntax-case stx ()
[(x)
#’(unchecked-go 8 x)]))])))

When def-go is used inside another module, the generated macro should legally generate expressions that use
unchecked-go, since def-go in m had complete control over the generated macro.

(module n mzscheme
(require m)
(def-go go)
(go 10)) ; access to unchecked-go is allowed

This example works because the expansion of (def-go go) is certified to access protected identifiers in m, including
unchecked-go. Specifically, the certified expansion is a definition of the macro go, which includes a syntax-object
constant unchecked-go. Since the enclosing macro declaration is certified, the unchecked-go syntax constant
gets an inactive certificate to access protected identifiers of m. When (go 10) is expanded, the inactive certificate on
unchecked-go is activated for the macro result (unchecked-go 8 10), and the access of unchecked-go
is allowed.

To see why unchecked-go as a syntax constant must be given an inactive certificate instead of an active one, it’s
helpful to write the def-go macro as follows:

(define-syntax (def-go stx)
(syntax-case stx ()
[(go)
#’(define-syntax (go stx)

(syntax-case stx ()
[(x)
(with-syntax ([ug (quote-syntax unchecked-go)])
#’(ug 8 x))]))]))

In this case, unchecked-go is clearly quoted as an immediate syntax object in the expansion of (def-go go).
If this syntax object were given an active certificate, then it would keep the certificate—directly on the identifier
unchecked-go—in the result (unchecked-go 8 10). Consequently, the unchecked-go identifier could
be extracted and used with its certificate intact. Attaching an inactive certificate to unchecked-go and activating
it only for the complete result (unchecked-go 8 10) ensures that unchecked-go is used only in the way
intended by the implementor of def-go.

The datum->syntax-object procedure allows inactive certificates to be transferred from one syntax object to
another. Such transfers are allowed because a macro transformer with access to the syntax object could already wrap it
with an arbitrary context before activating the certificates. In practice, transferring inactive certificates is useful mainly
to macros that implement to new template forms, such as syntax/loc.

12.6.3.2 INTERNAL CERTIFICATES

In some cases, a macro implementor intends to allow limited destructuring of a macro result without losing the result’s
certificate. For example, given the following define-like-y macro,

172

12. Syntax and Macros 12.6. Macro Expansion

(module q mzscheme
(provide define-like-y)
(define y ’hello)
(define-syntax (define-like-y stx)
(syntax-case stx ()
[(id) #’(define-values (id) y)])))

someone may use the macro in an internal definition:

(let ()
(define-like-y x)
x)

The implementor of the q module most likely intended to allow such uses of define-like-y . To convert an
internal definition into a letrec binding, however, the define form produced by define-like-y must be
deconstructed, which would normally lose the certificate that allows the reference to y .

The internal use of define-like-y is allowed because the macro expander treats specially a transformer result
that is a syntax list beginning with define-values. In that case, instead of attaching the certificate to the overall
expression, the certificate is instead attached to each individual element of the syntax list, pushing the certificates
into the second element of the list so that they are attached to the defined identifiers. Thus, a certificate is attached
to define-values, x, and y in the expansion result (define-values (x) y), and the definition can be
deconstructed for conversion to letrec.

Just like the new certificate that is added to a transformer result, old certificates from the input are similarly moved
to syntax-list elements when the result starts with define-values. Thus, define-like-y could have been
implemented to produce (define id y), using define instead of define-values. In that case, the certificate
to allow reference to y would be attached initially to the expansion result (define x y), but as the define is
expanded to define-values, the certificate would be moved to the parts.

The macro expander treats syntax-list results starting with define-syntaxes in the same way that it treats results
starting with define-values. Syntax-list results starting with begin are treated similarly, except that the second
element of the syntax list is treated like all the other elements (i.e., the certificate is attached to the element instead
of its content). Furthermore, the macro expander applies this special handling recursively, in case a macro produces a
begin form that contains nested define-values forms.

The default application of certificates can be overridden by attaching a ’certify-mode property (see §12.6.2) to
the result syntax object of a macro transformer. If the property value is ’opaque, then the certificate is attached
to the syntax object and not its parts. If the property value is ’transparent, then the certificate is attached to
the syntax object’s parts. If the property value is ’transparent-binding, then the certificate is attached to the
syntax object’s parts and to the sub-parts of the second part (as for define-values and define-syntaxes).
The ’transparent and ’transparent-binding modes triggers recursive property checking at the parts, so
that the certificate can be pushed arbitrarily deep into a transformer’s result.

12.6.3.3 CHECKING AND TRANSFERRING CERTIFICATES

In general, a certificate combines a mark (see §12.6), a module name (more precisely, a module path index; see §5.4.2),
an inspector, and an arbitrary key object. Within a certified syntax object, the certificate’s mark is attached to every
piece of syntax that was introduced by the relevant macro transformation (see again §12.6), so the certificate applies
only to those pieces of syntax, and only to identifiers that are bound by the transformer’s module. The certificate’s
inspector depends on the module that defined the transformer; specifically, it is the inspector for the module’s dec-
laration (see §9.4). A certificate’s key is hidden if it is introduced by macro expansion, but applying the result of
syntax-local-certifier (see §12.6) can introduce certificates with other keys.

173

12.6. Macro Expansion 12. Syntax and Macros

To check access to an unexported identifier, the compiler or macro expander checks each of the identifier’s marks
and module bindings; if, for some mark, the identifier’s enclosing expressions include a certificate with the mark, the
identifier’s binding module, and with an inspector that controls the module’s invocation (as opposed to the module’s
declaration; see again §9.4), then the access is allowed. To check access to a protected identifier, only the certificate’s
mark and inspector are used (i.e., the module that bound the transformer is irrelevant, as long as it was evaluated with
a sufficiently powerful inspector). The certificate key is not used in checking references.

To check access to a locally bound identifier, the compiler or macro expander checks the marks of the binding and
reference identifiers; for every mark that they have in common, if the reference identifier has a certificate for the mark
from an enclosing expression, the binding identifier must have a certificate for the mark from an enclosing expression,
otherwise the reference is disallowed. (The reference identifier can have additional certificates for marks that are not
attached to the binding identifier.) The binding module (if any) and the certificate key are not used for checking a local
reference.

The datum->syntax-object procedure never transfers a certificate from one syntax object to another, so it cannot
be used to gain access to an unexported identifier. The syntax-recertify procedure can be used to transfer a
certificate from one syntax object to another, but only if the certificate’s key is provided, or if a sufficiently powerful
inspector is provided. Thus, a certificate’s inspector serves two roles: it determines the certificate’s power to grant
access, and also allows the certificate to be moved arbitrarily by anyone with a more powerful inspector.

(syntax-recertify new-stx old-stx inspector key-v) copies certain certificates of old-stx to
new-stx: a certificate is copied if its inspector is either inspector or controlled by inspector, or if the
certificate’s key is key-v; otherwise the certificate is not copied. The result is a syntax object like new-stx, but
with the copied certificates. (The new-stx object itself is not modified.) Both active and inactive certificates are
copied.

12.6.4 Information on Structure Types

The define-struct form (see §4.1) binds the name of a structure type to an expansion-time value that records the
identifiers bound to the structure type, the constructor procedure, the predicate procedure, and the field accessor and
mutator procedures. This information can be used during the expansion of other expressions by transformer that call
syntax-local-value (see §12.6).

For example, the define-struct variant for subtypes (see §4.2) uses the base type name t to find the variable
struct:t containing the base type’s descriptor; it also folds the field accessor and mutator information for the base
type into the information for the subtype. The match form (see Chapter 27 of PLT MzLib: Libraries Manual) uses a
type name to find the predicates and field accessors for the structure type.

Besides using the information, other syntactic forms can even generate information with the same shape. For ex-
ample, the struct form in an imported signature for unit (see Chapter 55 of PLT MzLib: Libraries Manual)
causes the unit transformer to generate information about imported structure types, so that match and subtyping
define-struct expressions work within the unit.

The expansion-time information for a structure type is represented as an immutable list of six items:

• an identifier that is bound to the structure type’s descriptor, or #f it none is known;

• an identifier that is bound to the structure type’s constructor, or #f it none is known;

• an identifier that is bound to the structure type’s predicate, or #f it none is known;

• an immutable list of identifiers bound to the field accessors of the structure type, optionally with #f as the list’s
last element. A #f as the last element indicates that the structure type may have additional fields, otherwise the
list is a reliable indicator of the number of fields in the structure type. Furthermore, the accessors are listed in

174

12. Syntax and Macros 12.6. Macro Expansion

reverse order for the corresponding constructor arguments. (The reverse order enables sharing in the lists for a
subtype and its base type.)

• an immutable list of identifiers bound to the field mutators of the structure type, or #f for each field that has
no known mutator, and optionally with an extra #f as the list’s last element (if the accessor list has such a #f).
The list’s order and the meaning of a final #f are the same as for the accessor identifiers, and the length of the
mutator list is the same as the accessor list’s length.

• an identifier that determines a super-type for the structure type, #f if the super-type (if any) is unknown, or #t
if there is no super-type. If a super-type is specified, the identifier is also bound to structure-type expansion-time
information.

The implementor of a syntactic form can expect users of the form to know what kind of information is available about
a structure type. For example, the match implementation works with structure information containing an incomplete
set of accessor bindings, because the user is assumed to know what information is available in the context of the
match expression. In particular, the match expression can appear in a unit form with an imported structure type,
in which case the user is expected to know the set of fields that are listed in the signature for the structure type.

12.6.5 Information on Expanded and Compiled Modules

MzScheme provides an interface for obtaining information about an expanded or compiled module declaration’s im-
ports and exports. This information is intended for use by tools such as a compilation manager.

Information for an expanded module declaration is stored in a set of properties attached to the syntax object:

• ’module-direct-requires — an immutable list of module path indices (or symbols) representing the
modules explicitly imported into the module.

• ’module-direct-for-syntax-requires — an immutable list of module path indices (or symbols)
representing the modules explicitly for-syntax imported into the module.

• ’module-direct-for-template-requires — an immutable list of module path indices (or symbols;
see §5.4.2) representing the modules explicitly for-template imported into the module.

• ’module-variable-provides — an immutable list of provided items, where each item is one of the
following:

– symbol — represents a locally defined variable that is provided with its defined name.
– (cons-immutable provided-symbol defined-symbol) — represents a locally defined

variable that is provided with renaming; the first symbol is the exported name, and the second symbol
is the defined name.

– (list*-immutable module-path-index provided-symbol defined-symbol)— rep-
resents a re-exported and possibly re-named variable from the specified module; module-path-index
is either an index or symbol (see §5.4.2), indicating the source module for the binding. The
provided-symbol is the external name for the re-export, and defined-symbol is the originally
defined name in the module specified by module-path-index.

• ’module-syntax-provides — like ’module-variable-provides, but for syntax exports instead
of variable exports.

• ’module-indirect-provides — an immutable list of symbols for variables that are defined in the mod-
ule but not exported; they may be exported indirectly through macro expansions. Definitions of macro-generated
identifiers create uninterned symbols in this list.

• ’module-kernel-reprovide-hint— either #f, #t, or a symbol. If it is #t, then the module re-exports
all of the functionality from MzScheme’s internal kernel module. If it is a symbol, then all kernel exports but the

175

12.6. Macro Expansion 12. Syntax and Macros

indicated one is re-exported, and some other export is provided with the indicated name. This ad hoc information
is used in an optimization by the mzc compiler.

• ’module-self-path-index — a module path index (see §5.4.2) whose parts are both #f. This informa-
tion is used by the mzc compiler to manage syntax objects (which contain module-relative information keyed
on the module’s own index).

(compiled-module-expression? v) returns #t if v is a compiled expression for a module declaration, #f
otherwise. See also §14.3.

(module-compiled-name compiled-module-code) takes a module declaration in compiled form (see
§14.3) and returns a symbol for the module’s declared name.

(module-compiled-imports compiled-module-code) takes a module declaration in compiled form
(see §14.3) and returns three values: an immutable list of module path indices (and symbols; see §5.4.2) for the
module’s explicit imports, an immutable list of module path indices (and symbols) for the module’s explicit for-syntax
imports, and an immutable list of module path indices (and symbols) for the module’s explicit for-template imports.

(module-compiled-exports compiled-module-code) takes a module declaration in compiled form
(see §14.3) and returns two values: an immutable list of symbols for the module’s explicit variable exports, an im-
mutable list symbols for the module’s explicit syntax exports.

176

13. Memory Management

13.1 Weak Boxes

A weak box is similar to a normal box (see §3.11), but when the automatic memory manager can prove that the content
value of a weak box is only reachable via weak references, the content of the weak box is replaced with #f. A weak
reference is a reference through a weak box, through a key reference in a weak hash table (see §3.14), through a value
in an ephemeron where the value can be replaced by #f (see §13.2), or through a custodian (see §9.2).

• (make-weak-box v) returns a new weak box that initially contains v .

• (weak-box-value weak-box) returns the value contained in weak-box. If the memory manager has
proven that the previous content value of weak-box was reachable only through a weak reference, then #f is
returned.

• (weak-box? v) returns #t if v is a weak box, #f otherwise.

13.2 Ephemerons

An ephemeron is similar to a weak box (see §13.1), except that

1. an ephemeron contains a key and a value; the value can be extracted from the ephemeron, but the value is
replaced by #fwhen the automatic memory manager can prove that either the ephemeron or the key is reachable
only through weak references (see §13.1); and

2. nothing reachable from the value in an ephemeron counts toward the reachability of an ephemeron key (whether
for the same ephemeron or another), unless the same value is reachable through a non-weak reference, or
unless the value’s ephemeron key is reachable through a non-weak reference (see §13.1 for information on weak
references).

In particular, an ephemeron can be combined with a weak hash table (see §3.14) to produce a mapping where the
memory manager can reclaim key–value pairs even when the value refers to the key. An example is shown below.

• (make-ephemeron key-v v) returns a new ephemeron whose key is key-v and whose value is initially
v .

• (ephemeron-value ephemeron) returns the value contained in ephemeron. If the memory manager
has proven that the key for ephemeron is only weakly reachable, then the result is #f.

• (ephemeron? v) returns #t if v is an ephemeron, #f otherwise.

Example:

;; This weak map is like a weak hash table, but

177

13.3. Will Executors 13. Memory Management

;; without the key-in-value problem:
(define (make-weak-map)
(make-hash-table ’weak))

(define (weak-map-put! m k v)
(hash-table-put! m k (make-ephemeron k (box v))))

(define (weak-map-get m k def-v)
(let ([v (hash-table-get m k (lambda () #f))])
(if v

(let ([v (ephemeron-value v)])
(if v

(unbox v)
def-v))

def-v)))

(define m (make-weak-map))
(define k (list 1 2))
(weak-map-put! m k k)
(weak-map-get m k #f) ; ⇒ ’(1 2)
(set! k #f)

list is eventually GCed even if m remains reachable

13.3 Will Executors

A will executor manages a collection of values and associated will procedures. The will procedure for each value is
ready to be executed when the value has been proven (by the automatic memory manager) to be unreachable, except
through weak references (see §13.1) or as the registrant for other will executors. A will is useful for triggering clean-up
actions on data associated with an unreachable value, such as closing a port embedded in an object when the object is
no longer used.

Calling the will-execute or will-try-execute procedure executes a will that is ready in the specified will
executor. Wills are not executed automatically, because certain programs need control to avoid race conditions. How-
ever, a program can create a thread whose sole job is to execute wills for a particular executor.

• (make-will-executor) returns a new will executor with no managed values.

• (will-executor? v) returns #t if v is a will executor, #f otherwise.

• (will-register executor v proc) registers the value v with the will procedure proc in the will
executor executor. When v is proven unreachable, then the procedure proc is ready to be called with v as
its argument via will-execute or will-try-execute. The proc argument is strongly referenced until
the will procedure is executed.

• (will-execute executor) invokes the will procedure for a single “unreachable” value registered with
the executor executable. The value(s) returned by the will procedure is the result of the will-execute
call. If no will is ready for immediate execution, will-execute blocks until one is ready.

• (will-try-execute executor) is like will-execute if a will is ready for immediate execution.
Otherwise, #f is returned.

If a value is registered with multiple wills (in one or multiple executors), the wills are readied in the reverse order of
registration. Since readying a will procedure makes the value reachable again, the will must be executed and the value

178

13. Memory Management 13.4. Garbage Collection

must be proven again unreachable through only weak references before another of the wills is readied or executed.
However, wills for distinct unreachable values are readied at the same time, regardless of whether the values are
reachable from each other.

A will executor’s register is held non-weakly until after the corresponding will procedure is executed. Thus, if the
content value of a weak box (see §13.1) is registered with a will executor, the weak box’s content is not changed to
#f until all wills have been executed for the value and the value has been proven again reachable through only weak
references.

13.4 Garbage Collection

(collect-garbage) forces an immediate garbage collection. Some effectively unreachable data may remain
uncollected, because the collector cannot prove that it is unreachable, and the MzSchemeCGC variant of MzScheme is
generally less able to prove unreachability than MzScheme3m. The collect-garbage procedure provides some
control over the timing of collections, but garbage will obviously be collected even if this procedure is never called.

(current-memory-use [custodian]) returns an estimate of the number of bytes of memory occupied by
reachable data from custodian. (The estimate is calculated without performing an immediate garbage collection;
performing a collection generally decreases the number returned by current-memory-use.) If custodian
is not provided, the estimate is a total reachable from any custodians. When MzScheme is compiled without sup-
port for memory accounting, the estimate is the same (i.e., all memory) for any individual custodian; see also
custodian-memory-accounting-available? in §9.2.

(dump-memory-stats) dumps information about memory usage to the (low-level) standard output port.

179

14. Evaluation and Compilation

14.1 Eval and Load

(eval expr [namespace]) evaluates expr in namespace, or in the current namespace if namespace is
not supplied.1 (See §8 and §7.9.1.5 for more information about namespaces.) The expr is evaluated in tail po-
sition with respect to the eval call. The expr can be a syntax object, a compiled expression, a compiled ex-
pression wrapped as a syntax object, or an arbitrary S-expression (which will be converted to a syntax object using
datum->syntax-object; see §12.2.2). If expr is a syntax object or S-expression, then is enriched with lexical
context using namespace-syntax-introduce before it is evaluated. However, if expr is a pair (or syntax pair)
whose first element is module-identifier=? to MzScheme’s module (after giving the identifier context with
namespace-syntax-introduce), then only the module identifier is given context, and the rest of expr is left
to the module’s language.

(eval-syntax stx [namespace]) is like (eval stx), except that stx must be a syntax object, and its
lexical context is not enriched before it is evaluated.

(load file-path) evaluates each expression in the specified file using eval, wrapping the evaluation in a
continuation prompt (see §6.5) for the default continuation prompt tag with handler that propagates the abort to the
continuation of the load call.2 The return value from load is the value of the last expression from the loaded file
(or void if the file contains no expressions). If file-path is a relative path, then it is resolved to an absolute path
using the current directory. Before the first expression of file-path is evaluated, the current load-relative
directory (the value of the current-load-relative-directory parameter; see §7.9.1.6) is set to the absolute
path of the directory containing file-path; after the last expression in file-path is evaluated (or when the load
is aborted), the load-relative directory is restored to its pre-load value.

(load-relative file-path) is like load, but when file-path is a relative path, it is resolved to
an absolute path using the current load-relative directory rather than the current directory. If the current
load-relative directory is #f, then load-relative is the same as load.

(load/use-compiled file-path) is like load-relative, but load/use-compiled also checks
for .zo files (usually produced with compile-file; see Chapter 13 of PLT MzLib: Libraries Manual) and
.so (Unix), .dll (Windows), or .dylib (Mac OS X) files.3 The check for a compiled file occurs whenever
file-path ends with any extension (e.g., .ss or .scm), and the check consults the subdirectories indicated by the
use-compiled-file-paths parameter (see §7.9.1.6), relative to file-path. The subdirectories are checked
in order. A .zo version of the file is loaded if it exists directly in one of the indicated subdirectories, or a .so/.dll/.dylib
version of the file is loaded if it exists within a native subdirectory of a use-compiled-file-paths directory,
in an even deeper subdirectory as named by system-library-subpath. A compiled file is loaded only if its
modification date is not older than the date for file-path. If both .zo and .so/.dll/.dylib files are available, the
.so/.dll/.dylib file is used.

1The eval procedure actually calls the current evaluation handler (see §7.9.1.5) to evaluate the expression.
2The load procedure actually just sets the current load-relative directory and calls the current load handler (see §7.9.1.6) with

file-path to load the file. The description of load here is actually a description of the default load handler.
3The load/use-compiled procedure actually just calls the current load/use-compiled handler (see §7.9.1.6). The default handler, in turn,

calls the load or load-extension handler, depending on the type of file that is loaded.

180

14. Evaluation and Compilation 14.2. Exiting

Multiple files can be combined into a single .so/.dll/.dylib file by creating a special dynamic extension loader.so,
loader.dll, or loader.dylib. When such an extension is present where a normal .so/.dll/.dylib would be loaded, then

the loader extension is first loaded. The result returned by loader must be a procedure that accepts a symbol. This
procedure will be called with a symbol matching the base part of file-path (without the directory path part of the
name and without the filename extension), and the result must be two values; if #f is returned as the first result, then
load/use-compiled ignores loader for file-path and continues as normal. Otherwise, the first return value
is yet another procedure. When this procedure is applied to no arguments, it should have the same effect as loading
file-path. The second return value is either a symbol or #f; a symbol indicates that calling the returned procedure
has the effect of declaring the module named by the symbol (which is potentially useful information to a load handler;
see §5.8).

While a .zo, .so, .dll, or .dylib file is loaded (or while a thunk returned by loader is invoked), the current
load-relative directory is set to the directory of the original file-path.

(load/cd file-path) is the same as (load file-path), but load/cd sets both the current directory and
current load-relative directory to the directory of file-path before the file’s expressions are evaluated.

(read-eval-print-loop) starts a new read-eval-print loop using the current input, output, and error
ports. The read-eval-print loop wraps each evaluation with a continuation prompt (see §6.5) using the de-
fault continuation prompt tag and prompt handler. The read-eval-print loop also wraps the read and print
operations with a prompt for the default tag whose handler ignores abort arguments and continues the loop. The
read-eval-print-loop procedure does not return until eof is read as an input expression; then it returns void.

The read-eval-print-loop procedure is parameterized by the current prompt read handler, the current evalua-
tion handler, and the current print handler; a custom read-eval-print loop can be implemented as in the following
example (see also §7.9.1):

(parameterize ([current-prompt-read my-read]
[current-eval my-eval]
[current-print my-print])

(read-eval-print-loop))

14.2 Exiting

(exit [v]) passes v on to the current exit handler (see exit-handler in §7.9.1.9). The default value for v is
#t. If the exit handler does not escape or terminate the thread, void is returned.

The default exit handler quits MzScheme (or MrEd), using its argument as the exit code if it is between 1 and 255
inclusive (meaning “failure”), or 0 (meaning “success”) otherwise.

When MzScheme is embedded within another application, the default exit handler may behave differently.

14.3 Compilation

Normally, compilation happens automatically: when syntax is evaluated, it is first compiled and then the compiled code
is executed. However, MzScheme can also write and read compiled code. MzScheme can read compiled code much
faster than reading syntax and compiling it, so compilation can be used to speed up program loading. The MzLib
procedure compile-file (see Chapter 13 of PLT MzLib: Libraries Manual) is sufficient for most compilation
purposes.

• (compile expr) returns a compiled expression for expr such that (eval (compile expr)) is the
same as (eval expr). More precisely, compile calls the current compilation handler (see §7.9.1.5) to
compile expr.

181

14.4. Dynamic Extensions 14. Evaluation and Compilation

• (compile-syntax stx) returns a compiled expression for stx such that (eval (compile-syntax
stx)) is the same as (eval-syntax stx).

• (compiled-expression? v) returns #t if v is a compiled expression, #f otherwise.

When a compiled expression is written to an output port, the written form starts with #˜. These expressions are
essentially assembly code for the MzScheme interpreter, and reading such an expression produces a compiled expres-
sion. When a compiled expression contains syntax object constants, the #˜ form of the expression drops location
information and properties for the syntax objects (see §12.2 and §12.6.2).

The read procedure will not parse input beginning with #˜ unless the read-accept-compiled parameter (see
§7.9.1.3) is set to true. When the default load handler is used to load a file, compiled-expression reading is automati-
cally (temporarily) enabled as each expression is read.

Compiled code parsed from #˜ may contain references to unexported or protected bindings from a module. At read
time, such references are associated with the current code inspector (see §7.9.1.8), and the code will only execute if
that inspector controls the relevant module invocation (see §9.4).

A compiled-expression object may contain uninterned symbols (see §3.7) that were created by gensym or
string->uninterned-symbol. When the compiled object is read via #˜, each uninterned symbol in the orig-
inal expression is mapped to a new uninterned symbol, where multiple instances of a single symbol are consistently
mapped to the same new symbol. The original and new symbols have the same printed representation.

Due to the above restrictions, do not use gensym or string->uninterned-symbol to construct an identifier
for a top-level or module binding. Instead, generate distinct identifiers either with generate-temporaries (see
§12.2.2) or by applying the result of make-syntax-introducer (see §12.6) to an existing identifier.

14.4 Dynamic Extensions

A dynamically-linked extension library is loaded into MzScheme with (load-extension file-path). The
separate document Inside PLT MzScheme contains information about writing MzScheme extensions. An extension can
only be loaded once during a MzScheme session, although the extension-writer can provide functionality to handle
extra calls to load-extension for a single extension.

As with load, the current load-relative directory (the value of the current-load-relative-directory
parameter; see §7.9.1.6) is set while the extension is loaded. The load-relative-extension procedure is like
load-extension, but it loads an extension with a path that is relative to the current load-relative directory
instead of the current directory.

The load-extension procedure actually just dispatches to the current load extension handler (see §7.9.1.6).
The result of calling load-extension is determined by the extension. If the extension cannot be loaded, the
exn:fail:filesystem exception is raised, and if the load fails because the extension has the wrong version,
more specifically the exn:fail:filesystem:version exception is raised.

182

15. System Utilities

15.1 Time

15.1.1 Real Time and Date

(current-seconds) returns the current time in seconds. This time is always an exact integer based on a platform-
specific starting date (with a platform-specific minimum and maximum value).

The value of (current-seconds) increases as time passes (increasing by 1 for each second that passes). The
current time in seconds can be compared with a time returned by file-or-directory-modify-seconds (see
§11.3.3).

(seconds->date secs-n) takes secs-n, a platform-specific time in seconds (an exact integer) returned by
current-seconds or file-or-directory-modify-seconds, and returns an instance of the date struc-
ture type, as described below. If secs-n is too small or large, the exn:fail exception is raised.

The value returned by current-seconds or file-or-directory-modify-seconds is not portable among
platforms. Convert a time in seconds using seconds->date when portability is needed.

The date structure type has the following fields:

• second : 0 to 61 (60 and 61 are for unusual leap-seconds)
• minute : 0 to 59
• hour : 0 to 23
• day : 1 to 31
• month : 1 to 12
• year : e.g., 1996
• week-day : 0 (Sunday) to 6 (Saturday)
• year-day : 0 to 365 (364 in non-leap years)
• dst? : #t (daylight savings time) or #f
• time-zone-offset : the number of seconds east of GMT for this time zone (e.g., Pacific Standard Time is
−28800), an exact integer 1

The date structure type is transparent to all inspectors (see §4.5).

See also Chapter 16 of PLT MzLib: Libraries Manual for additional date utilities.

15.1.2 Machine Time

(current-milliseconds) returns the current “time” in fixnum milliseconds (possibly negative). This time is
based on a platform-specific starting date or on the machine’s startup time. Since the result is a fixnum, the value
increases only over a limited (though reasonably long) time.

1The value produced for the time-zone-offset field tends to be sensitive to the value of the "TZ" environment variable, especially on
Unix platforms. Consult the system documentation (usually under tzset) for details.

183

15.2. Operating System Processes 15. System Utilities

(current-inexact-milliseconds) returns the current “time” in positive milliseconds, not necessarily an
integer. This time is based on a platform-specific starting date or on the machine’s startup time, but it never decreases
(until the machine is turned off).

(current-process-milliseconds) returns the amount of processor time in fixnum milliseconds that has
been consumed by the MzScheme process on the underlying operating system. (Under Unix and Mac OS X, this
includes both user and system time.) The precision of the result is platform-specific, and since the result is a fixnum,
the value increases only over a limited (though reasonably long) time.

(current-gc-milliseconds) returns the amount of processor time in fixnum milliseconds that has
been consumed by MzScheme’s garbage collection so far. This time is a portion of the time reported by
(current-process-milliseconds).

15.1.3 Timing Execution

The time-apply procedure collects timing information for a procedure application:

• (time-apply proc arg-list) invokes the procedure proc with the arguments in arg-list. Four
values are returned: a list containing the result(s) of applying proc, the number of milliseconds of CPU time
required to obtain this result, the number of “real” milliseconds required for the result, and the number of
milliseconds of CPU time (included in the first result) spent on garbage collection.

The reliability of the timing numbers depends on the platform; see §15.1.2 for more information on time accounting.
If multiple MzScheme threads are running, then the reported time may include work performed by other threads.

The time syntactic form reports timing information directly to the current output port:

• (time expr) times the evaluation of expr, printing timing information to the current output port. The result
of the time expression is the result of expr.

15.2 Operating System Processes

(subprocess stdout-output-port stdin-input-port stderr-output-port command-path
arg-string · · ·) creates a new process in the underlying operating system to execute command-path asyn-
chronously. The command-path argument is a path to a program executable, and the arg-strings are command-
line arguments for the program. Under Unix and Mac OS X, command-line arguments are passed as byte strings using
the current locale’s encoding (see §1.2.3).

Under Windows, the first arg-string can be ’exact, which triggers a Windows-specific hack: the second
arg-string is used exactly as the command-line for the subprocess, and no additional arg-strings can be sup-
plied. Otherwise, a command-line string is constructed from command-path and arg-string so that a typical
Windows console application can parse it back to an array of arguments.2 If ’exact is provided on a non-Windows
platform, the exn:fail:contract exception is raised.

Unless it is #f, stdout-output-port is used for the launched process’s standard output, stdin-input-port
is used for the process’s standard input, and stderr-output-port is used for the process’s standard error. All
provided ports must be file-stream ports. Any of the ports can be #f, in which case a system pipe is created and
returned by subprocess. For each port that is provided, no pipe is created and the corresponding returned value is
#f.

The subprocess procedure returns four values:
2For information on the Windows command-line conventions, search for “command line parsing” at http://msdn.microsoft.com/.

184

15. System Utilities 15.3. Windows Actions

• a subprocess value representing the created process;
• an input port piped from the process’s standard output, or #f if stdout-output-port was a port;
• an output port piped to the process standard input, or #f if stdin-input-port was a port;
• an input port piped from the process’s standard error, or #f if stderr-output-port was a port.

Important: All ports returned from subprocess must be explicitly closed with close-input-port and
close-output-port.

The returned ports are file-stream ports (see §11.1.6), and they are placed into the management of the current custodian
(see §9.2). The exn:fail exception is raised when a low-level error prevents the spawning of a process or the
creation of operating system pipes for process communication.

A subprocess value can be used to obtain further information about the process:

• (subprocess-wait subprocess) blocks until the process terminates, then returns void.

• (subprocess-status subprocess) returns ’running if the process is still running, or its exit code
otherwise. The exit code is an exact integer, and 0 typically indicates success. If the process terminated due to
a fault or signal, the exit code is non-zero.

• (subprocess-kill subprocess force?) terminates the subprocess if force? is true and if the
process still running, then returns void. If an error occurs during termination, the exn:fail exception is
raised.

If force? is #f under Unix and Mac OS X, the subprocess is sent an interrupt signal instead of a kill signal
(and the subprocess might handle the signal without terminating). Under Windows, no action is taken when
force? is #f.

• (subprocess-pid subprocess) returns the operating system’s numerical ID for the process (if any),
valid only as long as the process is running. The ID is an exact integer.

• (subprocess? v) returns #t if v is a subprocess value, #f otherwise.

MzLib provides procedures for executing shell commands (as opposed to directly executing a program); see Chapter 38
of PLT MzLib: Libraries Manual for details.

15.3 Windows Actions

(shell-execute verb-string target-string parameters-string dir-path show-mode-symbol)
performs the action specified by verb-string on target-string in Windows. For example,

(shell-execute #f "http://www.plt-scheme.org" "" (current-directory) ’sw shownormal)

opens the PLT Scheme home page in a browser window. For platforms other than Windows, the
exn:fail:unsupported exception is raised.

The verb-string can be #f, in which case the operating system will use a default verb. Common verbs include
"open", "edit", "find", "explore", and "print".

The target-string is the target for the action, usually a filename path. The file could be executable, or it could
be a file with a recognized extension that can be handled by an installed application.

The parameters-string argument is passed on to the system to perform the action. For example, in the case of
opening an executable, the parameters-string is used as the command line (after the executable name).

185

15.4. Operating System Environment Variables 15. System Utilities

The dir-path is used as the current directory when performing the action.

The show-mode-symbol sets the display mode for a Window affected by the action. It must be one of the following
symbols; the description of each symbol’s meaning is taken from the Windows API documentation.

• ’sw hide or ’SW HIDE — Hides the window and activates another window.

• ’sw maximize or ’SW MAXIMIZE — Maximizes the window.

• ’sw minimize or ’SW MINIMIZE — Minimizes the window and activates the next top-level window in the
z-order.

• ’sw restore or ’SW RESTORE — Activates and displays the window. If the window is minimized or maxi-
mized, Windows restores it to its original size and position.

• ’sw show or ’SW SHOW — Activates the window and displays it in its current size and position.

• ’sw showdefault or ’SW SHOWDEFAULT — Uses a default.

• ’sw showmaximized or ’SW SHOWMAXIMIZED — Activates the window and displays it as a maximized
window.

• ’sw showminimized or ’SW SHOWMINIMIZED — Activates the window and displays it as a minimized
window.

• ’sw showminnoactive or ’SW SHOWMINNOACTIVE — Displays the window as a minimized window.
The active window remains active.

• ’sw showna or ’SW SHOWNA — Displays the window in its current state. The active window remains active.

• ’sw shownoactivate or ’SW SHOWNOACTIVATE — Displays a window in its most recent size and posi-
tion. The active window remains active.

• ’sw shownormal or ’SW SHOWNORMAL — Activates and displays a window. If the window is minimized
or maximized, Windows restores it to its original size and position.

If the action fails, the exn:fail exception is raised. If the action succeeds, the result is #f. In future versions of
MzScheme, the result may be a subprocess value (see §15.2) if the operating system did returns a process handle (but
if a subprocess value is returned, its process ID will be 0 instead of the real process ID).

15.4 Operating System Environment Variables

(getenv name-string) gets the value of an operating system environment variable. The name-string argu-
ment cannot contain a null character; if an environment variable named by name-string exists, its value is returned
(as a string); otherwise, #f is returned.

(putenv name-string value-string) sets the value of an operating system environment variable. The
name-string and value-string arguments are strings that cannot contain a null character; the environment
variable named by name-string is set to value-string. The return value is #t if the assignment succeeds, #f
otherwise.

15.5 Runtime Information

(system-type [mode]) returns information about the operating system, build mode, or machine for a running
MzScheme. The mode argument must be either ’os (the default), ’gc, ’link, ’so-suffix, or ’machine. In
’os mode, the possible symbol results are:

186

15. System Utilities 15.5. Runtime Information

• ’unix
• ’windows
• ’macosx

In ’gc mode, the possible symbol results are:

• ’cgc
• ’3m

In ’link mode, the possible symbol results are:

• ’static (Unix)
• ’shared (Unix)
• ’dll (Windows)
• ’framework (Mac OS X)

(Future ports of MzScheme may expand the list of ’os, ’gc, and ’link results.)

In ’so-suffix mode, then the result is a byte string that represents the file extension used for shared ob-
jects on the current platform. The byte string starts with a period, so it is suitable as a second argument to
path-replace-suffix.

In ’machine mode, then the result is a string, which contains further details about the current machine in a platform-
specific format.

(system-language+country) returns a string to identify the current user’s language and country. Under Unix
and Mac OS X, the string is five characters: two lowercase ASCII letters for the language, an underscore, and two
uppercase ASCII letters for the country. Under Windows, the string can be arbitrarily long, but the language and
country are in English (all ASCII letters or spaces) separated by an underscore. Under Unix, the result is determined
by checking the LC ALL, LC TYPE, and LANG environment variables, in that order (and the result is used if the
environment variable’s value starts with two lowercase ASCII letters, an underscore, and two uppercase ASCII letters,
followed by either nothing or a period). Under Windows and Mac OS X, the result is determined by system calls.

(system-library-subpath [gc-symbol-or-false]) returns a relative directory path string. This string
can be used to build paths to system-specific files. For example, when MzScheme is running under Solaris on a Sparc
architecture, the subpath starts "sparc-solaris", while the subpath for Windows on an i386 architecture starts
"win32\\i386". The optional gc-symbol-or-false argument specifies the relevant garbage-collection vari-
ant, which one of the possible results of (system-type ’gc): ’cgc or ’3m. The gc-symbol-or-false
argument defaults to the result of (system-type ’gc), but it can also be #f, in which case the result is indepen-
dent of the garbage-collection variant.

(version) returns an immutable string indicating the currently executing version of MzScheme.

(banner) returns an immutable string for MzScheme’s start-up banner text (or the banner text for an embedding
program, such as MrEd). The banner string ends with a newline.

(vector-set-performance-stats! mutable-vector [thread]) sets elements in mutable-vector
to report current performance statistics. If thread is specified, a particular set of thread-specific statistics are re-
ported, otherwise a different set of global statics are reported.

For global statistics, up to 8 elements are set in the vector, starting from the beginning. (In future versions of
MzScheme, additional elements will be set.) If mutable-vector has n elements where n < 8, then the n ele-
ments are set to the first n performance-statistics values. The reported statistics values are as follows, in the order that
they are set within mutable-vector:

187

15.5. Runtime Information 15. System Utilities

• 0: The same value as returned by current-process-milliseconds (see §15.1.2).

• 1: The same value as returned by current-milliseconds (see §15.1.2).

• 2: The same value as returned by current-gc-milliseconds (see §15.1.2).

• 3: The number of garbage collections performed since start-up.

• 4: The number of thread context switches performed since start-up.

• 5: The number of internal stack overflows handled since start-up.

• 6: The number of threads currently scheduled for execution (i.e., threads that are running, not suspended, and
not unscheduled due to a synchronization).

• 7: The number of syntax objects read from compiled code since start-up.

• 8: The number of hash-table searches performed.

• 9: The number of additional hash slots searched to complete hash searches (using double hashing).

For thread-specific statistics, up to 4 elements are set in the vector:

• 0: #t if the thread is running, #f otherwise (same result as thread-running?).

• 1: #t if the thread has terminated, #f otherwise (same result as thread-dead?).

• 2: #t if the thread is currently blocked on a synchronizable event (or sleeping for some number of milliseconds),
#f otherwise.

• 3: The number of bytes currently in use for the thread’s continuation.

188

16. Library Collections and MzLib

A library is module declaration for use by multiple programs. MzScheme provides a mechanism for grouping
libraries into collections that can be easily distributed and easily added to a local MzScheme installation. A collection
is normally installed into a directory named collects that is in the same directory as the MzScheme executable.1 Each
installed collection is represented as a subdirectory within the collects directory.

Client programs incorporate a library by using a module path of the form (lib library-file-path
collection · · ·). For example, the following module uses the match.ss library module from the default mzlib
collection, the getinfo.ss library module from the setup collection, and the cards.ss library module from the games
collection’s cards subcollection:

(module my-game mzscheme
(require (lib "match.ss")

(lib "getinfo.ss" "setup")
(lib "cards.ss" "games" "cards"))

....)

In general,(lib library-file-path collection ···) accesses the module in the file library-file-path
in the collection named by the first collection, where both library-file-path and collection are literal
strings that will be used as elements in a path. If additional collection strings are provided, they are used to form
a path into a subcollection. If the collection arguments are omitted, the library is accessed in the mzlib collection.

The info.ss library in a collection is special by convention. This library is used to provide information about the
collection to mzc (the MzScheme compiler) or MrEd. For more information see PLT mzc: MzScheme Compiler
Manual and PLT MrEd: Graphical Toolbox Manual.

There is usually one standard collects directory, but MzScheme supports any number of directories containing collec-
tions. The search path for collections is determined by the current-library-collection-paths parameter
(see §7.9.1.6). The list of paths in current-library-collection-paths is searched from first to last to lo-
cate a collection. To find a sub-collection, the enclosing collection is first found; if the sub-collection is not present in
the found enclosing collection, then the search continues by looking for another instance of the enclosing collection,
and so on. In other words, the directory tree for each element in the search path is spliced together with the directory
trees of other path elements. (The “splicing” of tress applies only to directories; a file within a collection is found only
within the first instance of the collection.)

The value of the current-library-collection-paths parameter is initialized by the stand-alone version of
MzScheme to the result of (find-library-collection-paths).2 The find-library-collection-paths
procedure produces a list of paths as follows:

• The path produced by (build-path (find-system-path ’addon-dir) (version) "collects")
is the first element of the default collection path list, unless the value of the use-user-specific-search-paths
parameter is #f.

1In the PLT distribution of MzScheme for Unix, the collects directory is in the top-level plt directory, rather than with the platform-specific
binary in plt/bin.

2MrEd initializes the current-library-collection-paths parameter in the same way.

189

16. Library Collections and MzLib

• If the executable embeds a list of search paths, they are included (in order) after the first element in the default
collection path list. Embedded relative paths are included only when the corresponding directory exists relative
to the executable.

• If the directory specified by (find-system-path ’collects-dir) is absolute, or if it is relative (to
the executable) and it exists, then it is added to the end of the default collection path list.

• If the PLTCOLLECTS environment variable is defined, it is combined with the default list using
path-list-string->path-list (see §11.3.2). If it is not defined, the default collection path list (as
constructed by the first three bullets above) is used directly.

The path produced by (find-system-path ’collects-dir) is normally embedded in an executable; in
stand-alone MzScheme (or MrEd), it can be overridden via a --collects or -X command-line flag.

(collection-path collection · · ·1) returns the path containing the libraries of collection; if the col-
lection is not found, the exn:fail:filesystem exception is raised.

MzScheme is distributed with a standard collection of utility libraries with MzLib as the representative library. The
name of this collection is mzlib, so the libraries are distributed in a mzlib subdirectory of the collects library collection
directory. MzLib is described in PLT MzLib: Libraries Manual.

190

17. Running MzScheme

The stand-alone version of MzScheme accepts a number of command-line options.

MzScheme accepts the following options:

• Startup file and expression options:
◦ -e expr or --eval expr : Evaluates expr after MzScheme starts.
◦ -f file or --load file : Loads file after MzScheme starts.
◦ -d file or --load-cd file : Uses load/cd to load file after MzScheme starts.
◦ -t file or --require file : Requires file after MzScheme starts.
◦ -F or --Load : Loads each remaining argument as a file after MzScheme starts.
◦ -D or --Load-cd : Loads each remaining argument as a file using load/cd after MzScheme starts.
◦ -T or --Require : Requires each remaining argument as a file after MzScheme starts.
◦ -l file or --mzlib file: Requires the MzLib library file after MzScheme starts.
◦ -L file collect : Requires the library file in the collection collect after MzScheme starts.
◦ -M collect : Requires the library collect.ss in the collection collect after MzScheme starts.
◦ -p file user package : Requires a PLaneT library whose module path is (planet file (user
package)).

◦ -P name user : Requires a PLaneT library, a shorthand for -p name.ss user name.plt.
◦ -r file or --script file : Use this option for MzScheme-based scripts. It mutes the startup banner

printout, suppresses the read-eval-print loop, and loads file after MzScheme starts. No argument
after file is treated as a switch. The -r or --script switch is a shorthand for -fmv-.

◦ -i file or --script-cd file : Same as -r file or --script file, except that the current
directory is changed to file’s directory before it is loaded. The -i or --script-cd switch is a
shorthand for -dmv-.

◦ -u file or --require-script file : Same as -r file or --script file, except that file
is required instead of loaded. The -u or --require-script switch is a shorthand for -tmv-.

◦ -w or --awk : Loads the awk.ss library after MzScheme starts.
◦ -k n m : Loads code embedded in the executable from file position n to m after MzScheme starts. This

option is useful for creating a stand-alone binary by appending code to the normal MzScheme executable.
See PLT mzc: MzScheme Compiler Manual for more details.

◦ -C or --main : Like -r, then calls the function bound to main in the top-level environment.
The argument to main is a list of immutable strings; the first string is the path of the file that
was loaded, and the rest of the list contains leftover command-line arguments (the ones installed in
current-command-line-arguments). The main function is called only if no previous evalua-
tions or loads resulted in an uncaught exception.

• Initialization options:
◦ -X dir or --collects dir : Sets dir as the path to the main collection of libraries (and makes
(find-system-path ’collects-dir) produce dir).

◦ -S dir or --search dir : Adds dir to the library collection search path (after a user-specific direc-
tory, if any, and before the main collection directory).

◦ -U or --no-user-path : Omits paths in the search for collections, C libraries, etc. More specifically,
this option initializes the use-user-specific-search-paths parameter to #f.

191

17.1. Command-Line Conventions 17. Running MzScheme

◦ -x or --no-lib-path : Suppresses the initialization of current-library-collection-paths
(as described in Chapter 16).

◦ -N file or --name file : sets the name of the executable as reported by (find-system-path
’run-file) to file. Also, program is initially defined as file.

◦ -q or --no-init-file : Suppresses loading the user’s initialization file, as described below.
◦ -A or --no-argv : Suppresses the definition of argv and program, as described below.
◦ -j or --no-jit : Disables the native-code just-in-time compiler, setting the eval-jit-enabled

parameter to #f.

• Language setting options:
◦ -Q or --prim : Initializes the top-level environment with (require mzscheme), which improves

performance of non-module programs by allowing top-level bindings to be recognized. In this mode,
primitive names can be re-defined in the top-level environment, but re-definition affects only expressions
compiled after the re-definition.

◦ -g or --case-sens : Makes the reader initially case-sensitive (the default).
◦ -G or --case-insens : Makes the reader initially case-insensitive.
◦ -s or --set-undef : Creates an initial namespace where set! will successfully mutate an undefined

global variable (implicitly defining it).

• Miscellaneous options:
◦ -- : No argument following this switch is used as a switch.
◦ -m or --mute-banner : Suppresses the startup banner text produced by -v.
◦ -v or --version : Suppresses the read-eval-print loop.
◦ -h or --help : Shows information about MzScheme’s command-line options and then exits, ignoring

other options.
◦ --persistent : Catches the SIGDANGER (low page space) signal and ignores it (AIX only).

17.1 Command-Line Conventions

Extra arguments following the last option are available from the current-command-line-arguments parame-
ter (see §7.9.1.6) as an immutable vector of immutable strings. The name used to start MzScheme is available from the
find-system-path procedure (see §11.3.2) using ’exec-file. In addition, unless -A is specified, the argu-
ment vector is put into the global variable argv, and the name used to start MzScheme is put into the global variable
program as a path.

Multiple single-letter switches (the ones preceded by a single dash) can be collapsed into a single switch by concate-
nating the letters, as long as the first switch is not --. The arguments for each switch are placed after the collapsed
switches (in the order of the switches). For example,

-vfme file expr

and

-v -f file -m -e expr

are equivalent. If a collapsed -- appears before other collapsed switches in the same collapsed set, it is implicitly
moved to the end of the collapsed set.

17.2 Executable Name

If the MzScheme executable is given a name of the form scheme-dialect, then the command line is effectively
prefixed with

192

17. Running MzScheme 17.3. Initialization

-qAeC ’(require (lib "init.ss" "script-lang" "dialect"))’

The first actual command-line argument thus serves as a file to load. The file is loaded into a namespace that is initial-
ized by the dialect-specific init.ss library. The loaded file should define main, which is called with command-line
arguments—starting with the loaded file name—as a list of immutable strings.

17.3 Initialization

The current-library-collection-paths parameter is initialized (as described in Chapter 16) before any
expression or file is evaluated or loaded, unless the -x or --no-lib-path option is specified.

Unless the -q or --no-init-file option is specified, a user initialization file is loaded after
current-library-collection-paths parameter is initialized and before any other expression or file is eval-
uated or loaded. The path to the user initialization file is obtained from MzScheme’s find-system-path procedure
using ’init-file.

Expressions and files are evaluated and loaded in order that they are provided on the command line, including calls
to main implied by --main, embeddings loaded by -k, and so on. If an uncaught exception occurs, the remaining
expressions and files are skipped. The thread that loads the files and evaluates the expressions is the main thread.
When the main thread terminates (or is killed), the MzScheme process exits.

After the command-line files and expressions are loaded and evaluated, the main thread calls read-eval-print-loop,
unless the -v, --version, -r, --script, -i, or --script-cd option is specified.

The exit status for the MzScheme process indicates an error if an error occurs evaluating or loading a command-line
expression or file and read-eval-print-loop is not called afterwards, or if the default exit handler is called
with an exact integer between 1 and 255.

193

18. Writing and Running Scripts

Under Unix, a Scheme file can be turned into an executable script using the shell’s #! convention. The first two
characters of the file must be #!, and the remainder of the first line must be a command to execute the script. For
some platforms, the total length of the first line is restricted to 32 characters.

The simplest script format uses an absolute path to a mzscheme executable, followed by -qr. For example, if
mzscheme is installed in /usr/plt/bin, then a file containing the following text acts as a “hello world” script:

#! /usr/plt/bin/mzscheme -qr
(display "Hello, world!")
(newline)

In particular, if the above is put into a file hello and the file is made executable (e.g., with chmod a+x hello), then
typing ./hello at the shell prompt will produce the output “Hello, world!”.

Instead of specifying a complete path to the mzscheme executable, an alternative is to require that mzscheme is in
the user’s command path, and then “trampoline” with /bin/sh:

#! /bin/sh
#|
exec mzscheme -qr "$0" ${1+"$@"}
|#
(display "Hello, world!")
(newline)

The effect is the same, because # starts a one-line comment to /bin/sh, but #| starts a block comment to MzScheme.
Finally, calling mzscheme with exec causes the MzScheme process to replace the /bin/sh process.

To implement a script inside module, use -qu instead of -qr:
#! /usr/plt/bin/mzscheme -qu
(module hello mzscheme

(display "Hello, world!")
(newline))

The -qr command-line flag to MzScheme is an abbreviation for the -q flag followed by the -r flag. As detailed in
Chapter 17, -q skips the loading of ∼/.mzschemerc, while -r suppresses MzScheme’s startup banner, suppresses the
read-eval-print loop, and loads the specified file. In the first example above, the file for -r is supplied by the shell’s
#! handling: it automatically puts the name of the executed script at the end of the #! line. In the second example,
the script file name is supplied explicitly with "$0". The -qu flag is similarly an abbreviation for -q followed by
-u, which acts like -r except that it requires the script file instead of loading it.

If command-line arguments are supplied to a shell script, the shell attaches them as extra arguments to the script
command. Among its other jobs, the -r or -u flag ensures that the extra arguments are not interpreted by MzScheme,
but instead put into the current-command-line-arguments parameter as a vector of strings. For example,
the following mock script prints each command-line argument back on its own line:

#! /usr/plt/bin/mzscheme -qu

194

18. Writing and Running Scripts

(module mock mzscheme
(for-each (lambda (arg)

(display arg)
(newline))

(vector->list (current-command-line-arguments))))

Thus, mock a b c would print “a”, “b”, and “c”, each on its own line. The /bin/sh version is similar:
#! /bin/sh
#|
exec mzscheme -qu "$0" ${1+"$@"}
|#
(module mock mzscheme

(for-each (lambda (arg)
(display arg)
(newline))

(vector->list (current-command-line-arguments))))

The ${1+"$@"} part of the mzscheme command line copies all shell script arguments to MzScheme for
current-command-line-arguments.

For high-quality scripts, use the cmdline MzLib library to parse command-line arguments (see Chapter 10 of PLT
MzLib: Libraries Manual). The following hello2 script accepts a --chinese flag to produce Chinese pinyin output.
Due to the built-in functionality of the command-line form, the script also accepts a --help or -h flag that
produces detailed help on the available command-line options:

#! /bin/sh
#|
exec mzscheme -qu "$0" ${1+"$@"}
|#
(module hello2 mzscheme

(require (lib "cmdline.ss"))

(define chinese? #f)

(command-line
"hello2"
(current-command-line-arguments)
(once-each
[("--chinese") "Chinese output"
(set! chinese? #t)]))

(display (if chinese?
"Nihao, shijie!"
"Hello, world!"))

(newline))

195

19. Honu

Honu is a family of languages built on top of MzScheme. Honu syntax resembles Java, instead of Scheme. Like
Scheme, however, Honu has no fixed syntax. Honu supports extensibility through macros and a base syntax of H-
expressions, which are analogous to S-expressions.

The MzScheme reader incorporates an H-expression reader, and MzScheme’s printer also supports printing values in
Honu syntax. The reader can be put into H-expression mode either by including #hx or #honu in the input stream,
or by calling read-honu or read-honu-syntax instead of read or read-syntax:

• (read-honu [input-port]) is the same as calling read with the same arguments, but with #hx implic-
itly in the stream at the start of the read.

• (read-honu-syntax [source-name-v input-port]) is the same as calling read-syntax with
the same arguments, but with #hx implicitly in the stream at the start of the read.

Similarly, print1 produces Honu output when the print-honu parameter is set to #t.

When the reader encounters #hx, it reads a single H-expression, and it produces an S-expression that encodes the
H-expression. Except for atomic H-expressions, evaluating this S-expression as Scheme is unlikely to succeed. In
other words, H-expressions are not intended as a replacement for S-expressions to represent Scheme code.

When the reader encounters #honu, it reads H-expressions repeatedly until an end-of-file is encountered. The col-
lected H-expression results are wrapped with (module id (lib "honu-module.ss" "honu-module")
....), where id is generated as described below. The honu-module.ss module defines #%module-begin to
parse S-expressions that encode H-expressions; expanding the module produces a Scheme program that corresponds
to the H-expression-based Honu program in the original input stream. Thus, a file that starts with #honu can define a
module to be required in a Scheme module or another Honu module.

In the module wrapper for #honu, the id is derived from the read port’s name: if the port’s name is a symbol, then
it is used as id; if the port’s name is a path, then the last element of the path is converted to a symbol and used as id;
otherwise, ’unknown is used.

The honu-module.ss module and Honu language dialects are documented elsewhere. In principle, MzScheme’s
parsing and printing of H-expressions is independent of the Honu language, so it is currently documented here.

19.1 Honu Input Parsing

Ignoring whitespace, an H-expression is either

• a number (see §19.1.1);

• an identifier (see §19.1.2);

1More precisely, the default print handler.

196

19. Honu 19.1. Honu Input Parsing

• a string (see §19.1.3);

• a character (see §19.1.4);

• a sequence of H-expressions between parentheses (see §19.1.5);

• a sequence of H-expressions between square brackets (see §19.1.5);

• a sequence of H-expressions between curly braces (see §19.1.5);

• a comment followed by an H-expression (see §19.1.6);

• #; followed by two H-expressions (see §19.1.6);

• #hx followed by an H-expression;

• #sx followed by an S-expression (see §11.2.4).

Within a sequence of H-expressions, a sub-sequence between angle brackets is represented specially (see §19.1.5).

Whitespace for H-expressions is as in Scheme: any character for which char-whitespace? returns true counts as
a whitespace.

19.1.1 Numbers

The syntax for Honu numbers is the same as for Java. The S-expression encoding of a particular H-expression number
is the obvious Scheme number.

19.1.2 Identifiers

The syntax for Honu identifiers is the union of Java identifiers plus semicolon (;), comma (,), and a set of operator
identifiers. An operator identifier is any combination of the following characters:

+ - = ? : < > . ! % ˆ & * / ∼ |

The S-expression encoding of an H-expression identifier is the obvious Scheme symbol.

Input is parsed to form maximally long identifiers. For example, the input int->int; is parsed as four H-
expressions: int, ->, int, and ;.

19.1.3 Strings

The syntax for an H-expression string is exactly the same as for an S-expression string, and an H-expression string is
represented by the obvious Scheme string.

19.1.4 Characters

The syntax for an H-expression character is the same as for an H-expression string that has a single content character,
except that a single quote (’) surrounds the character instead of double quotes ("). The S-expression representation
of an H-expression character is the obvious Scheme character.

197

19.2. Honu Output Printing 19. Honu

19.1.5 Parentheses, Brackets, and Braces

A parenthesized (), bracketed [], or braced {} H-expression sequence is represented by a Scheme list. The first element
of the list is ’#%parens for a parenthesized sequence, ’#%brackets for a brackets sequence, or ’#%braces for
a braced sequence. The remaining elements are the Scheme representation for the parenthesized, bracketed, or braced
H-expressions in order.

In an H-expression sequence, when a less-than sign (<) is followed by a greater-than sign (>), and when nothing
between the less-than and greater-than signs is an immediate symbol containing an equal sign (=), ampersand (&),
or vertical bar (|), then the sub-sequence is represented by a Scheme list that starts with ’#%angles and continues
with the elements of the sub-sequence between the less-than and greater-than signs (exclusive). This reprsentation
is applied recursively, so that angle brackets can be nested. An angle-bracketed sequence by itself is not a single
H-expression, since the less-than sign by itself is a single H-expression; the angle-bracket conversion is performed
only when representing sequences of H-expressions. Also, symbols with an equal sign, ampersand, or vertical bar
prevent angle-bracket formation, because they correspond to operators that normally have lower or equal precedence
compared to less-than and greater-than.

19.1.6 Comments

An H-expression comment starts with either // or /*. In the former case, the comment runs until a linefeed or return.
In the second case, the comment runs until */, but /* */ comments can be nested. Comments are treated
like whitespace.

A #; starts an H-expression comment, as in Scheme. It is followed by an H-expression to be treated as whitespace.
Note that #; is equivalent to #sx#;#hx.

19.2 Honu Output Printing

Some Scheme values have a standard H-expression representation. For values with no H-expression representation
but with a readable S-expression form, the MzScheme printer produces an S-expression prefixed with #sx. For
values with neither an H-expression form nor a readable S-expression form, then printer produces output of the form
#<...>, as in Scheme mode. The print-honu parameter (see §7.9.1.4) controls whether Mzscheme’s printer
produces Scheme or Honu output.

The values with H-expression forms are as follows:

• Every real number has an H-expression form, although the representation for an exact, non-integer rational
number is actually three H-expressions, where the middle H-expression is /.

• Every character string is represented the same in H-expression form as its S-expression form.

• Every character is represented like a single-character string, but (1) using a single quote as the delimiter instead
of double quotes, and (2) protecting a single-quote character content a backslash instead of protecting double-
quote character content.

• A list is represented with the H-expression sequence list(v, · · ·), where each v is the representation of
each element of the list.

• A pair that is not a list is represented with the H-expression sequence cons(v1, v2), where v1 and v2 are
the representations of the pair elements.

• A vector’s representation depends on the value of the print-vector-length parameter (see §7.9.1.4). If it
is true, the vector is represented with the H-expression sequence vectorN(n, v, · · ·), where n is the length
of the vector and each v is the representation of each element of the vector, and multiple instances of the same

198

19. Honu 19.2. Honu Output Printing

value at the end of the vector are represented by a single v . If print-vector-length is set to false, the
vector is represented with the H-expression sequence vector(v, · · ·), where each v is the representation of
each element of the vector.

• The empty list is represented as the H-expression null.

• True is represented as the H-expression true.

• False is represented as the H-expression false.

199

20. Platform-Specific Path Conventions

20.1 Unix and Mac OS X Path Conventions

In Unix and Mac OS X paths, a forward slash (“/”) seperates elements of the path, a period (“.”) as a path element
always means the directory indicated by preceding path, and two periods (“..”) as a path element always means the
parent of the directory indicated by the preceding path. A path that starts with a tilde (“∼”) indicates a user’s home
directory; the username follows the tilde (before a slash or the end of the path), where a tilde by itself indicates the
home directory of the current user. No other character or byte has a special meaning within a path. Multiple adjacent
slashes (“/”) are equivalent to a single slash (i.e., they act as a single path separator).

A path root is either / or a home-directory specification starting with tilde (“∼”). A relative path whose first element
starts with a tilde (“∼”) is encoded by prefixing the path with period–slash (“./”).

Any pathname that ends with a slash (“/”) syntactically refers to a directory, as does any path whose last element is a
single period (“.”) or double period (“..”), or any path that contains only a root.

A Unix and Mac OS X path is expanded by replacing a home-directory specification (starting ∼) with an absolute
path, and by replacing multiple adjacent slashes with a single slash.

For (bytes->path-element bytes), bytes can start with a tilde (“∼”), and it is encoded as a literal part of
the path element using a period–slash (“./”) prefix. The bytes argument must not contain a slash (“/”), otherwise the
exn:fail:contract exception is raised.

For (path-element->bytes path) or (path-element->string path), if the bytes form of path
starts with a period, slash, and tilde (“./∼”), the period–slash (“./”) prefix is not included in the result.

For (build-path base-path sub-path · · ·), when a sub-path starts with a period, slash, and tilde
(“./∼”), the period and slash are removed before adding the path. This conversion is performed because an initial
sequence period–slash–tilde (“./∼”) is the canonical way of representing relative paths whose first element’s name
starts with a tilde.

For (simplify-path path use-filesystem?), if path starts period–slash–tilde (“./∼”), the leading pe-
riod is the only indicator, and there are no redundant slashes, then path is returned.

For (split-path path) producing base, name, and must-be-dir?, the result name can start with period–
slash–tilde (“./∼”) if the result would otherwise start with tilde (“∼”) and it is not the start of path. Furthermore,
if path starts with period–slashes–tilde (“./∼”, with any non-zero number of “/”), then the period and slash are kept
with the following element (i.e., they are not split separately).

Under Mac OS X, Finder aliases are zero-length files.

20.2 Windows Path Conventions

In general, a Windows pathname consists of an optional drive specifier and a drive-specific path. As noted in §11.3, a
Windows path can be absolute but still relative to the current drive; such paths start with a forward slash or backslash

200

20. Platform-Specific Path Conventions 20.2. Windows Path Conventions

separator and are not UNC paths or paths that start with \\?\.

A path that starts with a drive specification is complete. Roughly, a drive specification is either a Roman letter
followed by a colon, a UNC path of the form \\machine\volume, or a \\?\ form followed by something other than
REL\element or RED\element . (Variants of \\?\ paths are described further below.)

MzScheme fails to implement the usual Windows path syntax in one way. Outside of MzScheme, a pathname
C:rant.txt can be a drive-specific relative path. That is, it names a file rant.txt on drive C:, but the complete path
to the file is determined by the current working directory for drive C:. MzScheme does not support drive-specific
working directories (only a working directory across all drives, as reflected by the current-directory parame-
ter; see §7.9.1.1). Consequently, MzScheme implicitly converts a path like C:rant.txt into C:\rant.txt.

• MzScheme-specific: Whenever a path starts with a drive specifier letter : that is not followed by a forward slash
or backslash, a backslash is inserted as the path is expanded.

Otherwise, MzScheme follows standard Windows path conventions, but also adds \\?\REL and \\?\RED conventions
to deal with paths inexpressible in the standard conventsion, plus conventions to deal with excessive backslashes in
\\?\ paths.

In the following, letter stands for a Roman letter (case does not matter), machine stands for any sequence of characters
that does not include backslashes or forward slashes and is not ?, volume stands for any sequence of characters that
does not include backslashes or forward slashes, and element stands for any sequence of characters that does not
include backslashes.

• Trailing spaces and periods in a path element are ignored when the element is the last one in the path, unless the
path starts with \\?\ or the element consists of only spaces and periods.

• The following special “files”, which access devices, exist in all directories, case-insensitively, and with all
possible endings after a period or colon, except in pathnames that start with \\?\: NUL, CON, PRN, AUX,
COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6,
LPT7, LPT8, LPT9.

• Except for \\?\ paths, forward slashes are equivalent to backslashes. Except for \\?\ paths and the start of
UNC paths, multiple adjacent slashes and backslashes count as a single backslash. In a path that starts \\?\
paths, elements can be separated by either a single or double backslash.

• A directory can be accessed with or without a trailing separator. In the case of a non-\\?\ path, the trailing
separator can be any number of forward slashes and backslashes; in the case of a \\?\ path, a trailing separator
must be a single backslash, except that two backslashes can follow \\?\letter :.

• Except for \\?\ paths, a single period (.) as a path element means “the current directory”, and a double period
(..) as a path element means “the parent directory.” Up-directory path elements (i.e., ..) immediately after a
drive are ignored.

• A pathname that starts \\machine\volume (where a forward slash can replace any backslash) is a UNC path,
and the starting \\machine\volume counts as the drive specifier.

• Normally, a path element cannot contain any of the following characters:

< > : " / \ |

Except for backslash, path elements containing these characters can be accessed using a \\?\ path (assuming
that the underlying filesystem allows the characters).

201

20.2. Windows Path Conventions 20. Platform-Specific Path Conventions

• In a pathname that starts \\?\letter :\, the \\?\letter :\ prefix counts as the path’s drive, as long as the path does
not both contain non-drive elements and end with two consecutive backslashes, and as long as the path contains
no sequence of three or more backslashes. Two backslashes can appear in place of the backslash before letter .
Forward slashes cannot be used in place of backslashes (but forward slashes can be used in element names,
though the result generally does not name an actual directory or file).

• In a pathname that starts \\?\UNC\machine\volume, the \\?\UNC\machine\volume prefix counts as the
path’s drive, as long as the path does not end with two consecutive backslashes, and as long as the path contains
no sequence of three or more backslashes. Two backslashes can appear in place of the backslash before UNC,
the backslash after UNC, and/or the backslash after machine. The letters in the UNC part can be uppercase
or lowercase, and forward slashes cannot be used in place of backslashes (but forward slashes can be used in
element names).

• MzScheme-specific: A pathname that starts \\?\REL\element or \\?\REL\\element is a relative path, as
long as the path does not end with two consecutive backslashes, and as long as the path contains no sequence
of three or more backslashes. This MzScheme-specific path form supports relative paths with elements that are
not normally expressible in Windows paths (e.g., a final element that ends in a space). The REL part must be
exactly the three uppercase letters, and forward slashes cannot be used in place of backslashes. If the path starts
\\?\REL\.. then for as long as the path continues with reptitions of \.., each element counts as an up-directory
element; a single backslash must be used to seperate the up-directory elements. As soon as a second backslash
is used to separate the elements, or as soon as a non-.. element is encountered, the remaining elements are all
literals (never up-directory elements). When a \\?\REL path value is converted to a string (or when the path
value is written or displayed), the string does not contain the starting \\?\REL or the immediately following
backslashes; converting a path value to a byte string preserves the \\?\REL prefix.

• MzScheme-specific: A pathname that starts \\?\RED\element or \\?\RED\\element is a drive-relative path,
as long as the path does not end with two consecutive backslashes, and as long as the path contains no sequence
of three or more backslashes. This MzScheme-specific path form supports drive-relative paths (i.e., absolute
given a drive) with elements that are not normally expressible in Windows paths. The RED part must be exactly
the three uppercase letters, and forward slashes cannot be used in place of backslashes. Unlike \\?\REL paths,
a .. element is always a literal path element. When a \\?\RED path value is converted to a string (or when
the path value is written or displayed), the string does not contain the starting \\?\RED and it contains a single
starting backslash; converting a path value to a byte string preserves the \\?\RED prefix.

Three additional MzScheme-specific rules provide meanings to character sequences that are otherwise ill-formed as
Windows paths:

• MzScheme-specific: In a pathname of the form \\?\any\\ where any is any non-empty sequence of characters
other than letter : or \letter :, the entire path counts as the path’s (non-existent) drive.

• MzScheme-specific: In a pathname of the form \\?\any\\\elements, where any is any non-empty sequence of
characters and elements is any sequence that does not start with a backslash, does not end with two backslashes,
and does not contain a sequence of three backslashes, then \\?\any\\ counts as the path’s (non-existent) drive.

• MzScheme-specific: In a pathname that starts \\?\ and does not match any of the patterns from the preceding
bullets, \\?\ counts as the path’s (non-existent) drive.

Outside of MzScheme, except for \\?\ paths, pathnames are typically limited to 259 characters. MzScheme internally
converts pathnames to \\?\ form as needed to avoid this limit. The operating system cannot access files through \\?\
paths that are longer than 32,000 characters or so.

Where the above descriptions says “character,” substitute “byte” for interpreting byte strings as paths. The encoding
of Windows paths into bytes preserves ASCII characters, and all special characters mentioned above are ASCII, so all
of the rules are the same.

202

20. Platform-Specific Path Conventions 20.2. Windows Path Conventions

Beware that the backslash path separator is an escape character in MzScheme strings. Thus, the path \\?\REL\..\\..
as a string must be written "\\\\?\\REL\\..\\\\..".

A path that ends with a directory separator syntactically refers to a directory. In addition, a path syntactcially refers to
a directory if its last element is a same-directory or up-directory indicator (not quoted by a \\?\ form), or if it refers
to a root.

Windows paths are expanded as follows: In paths that start \\?\, redundant backslashes are removed, an extra back-
slash is added in a \\?\REL if an extra one is not already present to separate up-directory indicators from literal path
elements, and an extra backslash is similarly added after \\?\RED if an extra one is not already present. When \\?\
acts as the root and the path contains, to additional slashes (which might otherwise be redundant) are included after
the root. For other paths, multiple slashes are converted to single slashes (except at the beginning of a shared folder
name), a slash is inserted after the colon in a drive specification if it is missing.

For (bytes->path-element bytes), forward slashes, colons, trailing dots, trailing whitespace, and special
device names (e.g., “aux”) in bytes are encoded as a literal part of the path element by using a \\?\REL prefix. The
bytes argument must not contain a backslash (“\”), otherwise the exn:fail:contract exception is raised.

For (path-element->bytes path) or (path-element->string path), if the byte-string form of
path starts with a \\?\REL, the prefix is not included in the result.

For (build-path base-path sub-path · · ·), trailing spaces and periods are removed from the last element
of base-path and all but the last sub-path (unless the element consists of only spaces and peroids), except for
those that start with \\?\. If base-path starts \\?\, then after each non-\\?\REL\ and non-\\?\RED\ sub-path
is added, all slashes in the addition are converted to backslashes, multiple consecutive backslashes are converted to a
single backslash, added . elements are removed, and added .. elements are removed along with the preceding element;
these conversions are not performed on the original base-path part of the result or on any \\?\REL\ or \\?\RED\
or sub-path. If a \\?\REL\ or \\?\RED\ sub-path is added to a non-\\?\ base-path, the the base-path
(with any additions up to the \\?\REL\ or \\?\RED\ sub-path) is simplified and converted to a \\?\ path. In
other cases, a backslash may be added or removed before combining paths to avoid changing the root meaning of the
path (e.g., combining //x and y produces /x/y, because //x/y would be a UNC path instead of a drive-relative path).

For (simplify-path path use-filesystem?), path is expanded, and if path does not start with \\?\,
trailing spaces and periods are removed, a slash is inserted after the colon in a drive specification if it is missing, and
a backslash is inserted after \\?\ as a root if there are elements and no extra backslash already. Otherwise, if no
indicators or redundant separators are in path, then path is returned.

For (split-path path) producing base, name, and must-be-dir?, splitting a path that does not start
with \\?\ can produce parts that start with \\?\. For example, splitting C:/x /aux/ produces \\?\C:\x \ and
\\?\REL\\aux; the \\?\ is needed in these cases to preserve a trailing space after x and to avoid referring to the
AUX device instead of an aux file.

203

License

GNU Library General Public License

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries

204

20. Platform-Specific Path Conventions 20.2. Windows Path Conventions

themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the
library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute
such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,

other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

205

20.2. Windows Path Conventions 20. Platform-Specific Path Conventions

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.
If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked
with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.
However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.
When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work
containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.
For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing
the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.
It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

206

20. Platform-Specific Path Conventions 20.2. Windows Path Conventions

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

207

Index

+inf.0, 13
+nan.0, 13
,, 120
,@, 120
--, 192
--Load, 191
--Load-cd, 191
--Require, 191
--awk, 191
--case-insens, 192
--case-sens, 192
--collects, 191
--eval, 191
--help, 192
--load, 191
--load-cd, 191
--main, 191
--mute-banner, 192
--mzlib, 191
--name, 192
--no-argv, 192
--no-init-file, 192
--no-jit, 192
--no-lib-path, 192
--no-user-path, 191
--persistent, 192
--prim, 192
--require, 191
--require-script, 191
--script, 191
--script-cd, 191
--search, 191
--set-undef, 192
--version, 192
-A, 192
-C, 191
-D, 191
-F, 191
-G, 192
-L, 191
-M, 191
-N, 192
-P, 191
-Q, 192
-S, 191
-T, 191
-U, 191
-X, 191
-d, 191

-e, 191
-f, 191
-g, 192
-h, 192
-i, 191
-inf.0, 13
-j, 192
-k, 191
-l, 191
-m, 192
-nan.0, 13
-p, 191
-q, 192
-r, 191
-s, 192
-t, 191
-u, 191
-v, 192
-w, 191
-x, 192
., 120
..., 145
.mzschemerc, 137
:, 121
=>, 5
[], 71
#!, 121, 194
#", 119
#’, 118
#,, 118
#,@, 118
#\backspace, 118
#\linefeed, 118
#\newline, 118
#\nul, 118
#\null, 118
#\page, 118
#\return, 118
#\rubout, 118
#\space, 118
#\tab, 118
#\vtab, 118
#;, 121
#<<, 119
#<undefined>, 12
#<void>, 12
#%, 121
#%app, 161
#%datum, 161

208

INDEX

#%expression, 11
#%module-begin, 162
#%top, 161
#%top-interaction, 161
#%variable-reference, 11
#&, 118
#n=, 121, 123
#n#, 121, 123
#‘, 118
#ci, 121
#cs, 121
#hash, 121
#hasheq, 121
#honu, 121
#hx, 121
#k+, 121
#k-, 121
#px, 121
#px#, 121
#reader, 122
#rx, 121
#rx#, 121
#sx, 121
#∼, 121
\, 120
\’, 119
\Uh, 119
\Uhh, 119
\Uhhh, 119
\Uhhhh, 119
\Uhhhhh, 119
\Uhhhhhh, 119
\Uhhhhhhh, 119
\Uhhhhhhhh, 119
\a, 119
\b, 119
\e, 119
\f, 119
\n, 119
\o, 119
\ooo, 119
\oo, 119
\r, 119
\t, 119
\uh, 119
\uhh, 119
\uhhh, 119
\uhhhh, 119
\v, 119
\xhh, 119
\xh, 119
loader.dll, 181
loader.dylib, 181

loader.so, 181
{ }, 72
‘, 120
’3m, 187

abort-current-continuation, 54
’aborts, 22
absolute-path?, 134
add1, 13
’addon-dir, 137
alarm-evt, 65
alarms, 65
all-defined, 40
all-defined-except, 40
all-except, 39
all-from, 40
all-from-except, 40
and, 6
andmap, 12
’any, 112
’any-one, 112
’append, 96
append!, 24
argv, 75, 192
arithmetic-shift, 14
arity, 26
arity-at-least, 25
arity-at-least-value, 25
arity-at-least?, 25
assoc, 24
assq, 24
assv, 24
AUX, 201

banner, 187
begin, 6, 9
begin-for-syntax, 155
begin0, 6
bignum, 13
’binary, 96
bitwise operators, 14
bitwise-and, 14
bitwise-ior, 14
bitwise-not, 14
bitwise-xor, 14
’block, 98
bound-identifier=?, 154
box, 24
box-immutable, 25
box?, 25
boxes, 24, 72, 118

printing, 72, 122
break-enabled, 58
break-thread, 58, 63

209

INDEX

breaks, see threads, breaking
Bruggeman, Carl, 145
build-path, 134
build-path/convention-type, 134
byte codes, 181
byte strings, 19, 119

as ports, 97
printing, 123
reading to and writing from, 97

byte-pregexp, 89
byte-pregexp?, 90
byte-regexp, 89
byte-regexp?, 90
byte?, 19
bytes, 19
bytes, 19
bytes->immutable-bytes, 19
bytes->list, 19
bytes->path, 133
bytes->path-element, 133
bytes->string/latin-1, 20
bytes->string/locale, 20
bytes->string/utf-8, 20
bytes-append, 19
bytes-close-converter, 22
bytes-convert, 22
bytes-convert-end, 22
bytes-converter?, 23
bytes-copy, 19
bytes-copy!, 19
bytes-fill!, 19
bytes-length, 19
bytes-open-converter, 21
bytes-ref, 19
bytes-set!, 19
bytes-utf-8-index, 21
bytes-utf-8-length, 21
bytes-utf-8-ref, 21
bytes<?, 19
bytes=?, 19
bytes>?, 19
bytes?, 19

call-in-nested-thread, 63
call-with-break-parameterization, 58
call-with-composable-continuation, 55
call-with-continuation-barrier, 52
call-with-continuation-prompt, 54
call-with-current-continuation, 52
call-with-escape-continuation, 52
call-with-exception-handler, 47
call-with-input-file, 96
call-with-output-file, 96
call-with-parameterization, 77

call-with-semaphore, 64
call-with-semaphore/enable-break, 64
call/cc, 52
call/ec, 52
case sensitivity, 71
case-lambda, 10
’cc, 16
certificates

syntax, 170
’certify-mode, 173
’cf, 16
’cgc, 187
channel-get, 64
channel-put, 64
channel-put-evt, 65
channel-try-get, 64
channel?, 64
char->integer, 15
char-alphabetic?, 16
char-blank?, 16
char-ci<=?, 16
char-ci<?, 16
char-ci=?, 16
char-ci>=?, 16
char-ci>?, 16
char-downcase, 16
char-foldcase, 17
char-general-category, 16
char-graphic?, 16
char-iso-control?, 16
char-lower-case?, 16
char-numeric?, 16
char-punctuation?, 16
char-symbolic?, 16
char-title-case?, 16
char-titlecase, 17
char-upcase, 16
char-upper-case?, 16
char-utf-8-length, 17
char-whitespace?, 16
char<=?, 16
char<?, 16
char=?, 16
char>=?, 16
char>?, 16
characters, 2, 15

constants, 118
printing, 122

Check Syntax, 166, 170
check-duplicate-identifier, 154
choice-evt, 67
’client, 83
’cn, 16

210

INDEX

’co, 16
code points, 2
collect-garbage, 179
collection-path, 190
collections, 189
’collects-dir, 137
column numbers, 115
COM1, 201
COM2, 201
COM3, 201
COM4, 201
COM5, 201
COM6, 201
COM7, 201
COM8, 201
COM9, 201
command-line arguments, 74, 191
comments, 121

comments
S-expression, 121

communication, 63, 64
communications, 139
compilation handler, 73
compile, 73, 181
compile-allow-set!-undefined, 73
compile-enforce-module-constants, 73
compile-syntax, 182
compiled code, 72
compiled-expression?, 182
compiled-module-expression?, 176
compiling, 181
’complete, 22, 23
complete-path?, 134
complex, 13
CON, 201
concatenate strings, 24
cons-immutable, 24
context, 55
continuation-mark-set->context, 57
continuation-mark-set->list, 56
continuation-mark-set->list*, 57
continuation-mark-set-first, 57
continuation-mark-set?, 57
continuation-marks, 56
continuation-prompt-available?, 55
continuations, 52

barrier crossings, 52
barriers, 52
escape, 52

’continues, 22, 23
control flow, 52
copy-file, 139
’cs, 16

curly braces, 71
current namespace, 73
current-break-parameterization, 58
current-code-inspector, 76
current-command-line-arguments, 75, 192
current-compile, 73
current-continuation-marks, 49, 56
current-custodian, 76, 83
current-directory, 71, 139
current-drive, 139
current-error-port, 71
current-eval, 73
current-evt-pseudo-random-generator, 76
current-gc-milliseconds, 184
current-inexact-milliseconds, 183
current-input-port, 71, 95
current-inspector, 76
current-library-collection-paths, 74, 189,

192, 193
current-load, 74
current-load-extension, 74
current-load-relative-directory, 74, 180,

182
current-load/use-compiled, 74
current-locale, 76
current-memory-use, 179
current-milliseconds, 14, 183
current-module-name-prefix, 76
current-module-name-resolver, 76
current-namespace, 73
current-output-port, 71, 95
current-parameterization, 77
current-preserved-thread-cell-values, 68
current-print, 73
current-process-milliseconds, 184
current-prompt-read, 73
current-pseudo-random-generator, 14, 76
current-reader-guard, 72
current-readtable, 72
current-seconds, 183
current-security-guard, 76, 82
current-thread, 63
current-thread-group, 76
current-thread-initial-stack-size, 77
current-write-relative-directory, 74
custodian-box-value, 85
custodian-box?, 85
custodian-limit-memory, 85
custodian-managed-list, 84
custodian-memory-accounting-available?,

84
custodian-require-memory, 85
custodian-shutdown-all, 84

211

INDEX

custodian?, 84
custodians, 76, 83
cycles, 124

date, 183
date, 183
date-day, 183
date-dst?, 183
date-hour, 183
date-minute, 183
date-month, 183
date-second, 183
date-time-zone-offset, 183
date-week-day, 183
date-year, 183
date-year-day, 183
date?, 183
datum->syntax-object, 152
decimal input, 13
default-continuation-prompt-tag, 55
define, 7
define

internal, 9
define-for-syntax, 155
define-struct, 29
define-syntax, 149
define-syntaxes, 160
define-values, 7
define-values-for-syntaxes, 155
’delete, 83
delete-directory, 139
delete-file, 138
’desk-dir, 137
directories

contents, 139
creating, 139
current, 71, 139
dates, 139
deleting, 139
moving, 139
of currently loading file, 74, 180, 182
paths, see paths
permissions, 139
renaming, 139
root, 139
testing, 139

directory-exists?, 139
directory-list, 139
’disappeared-binding, 166, 170
’disappeared-use, 166, 170
’dispatch-macro, 126
display, 124
display extensions, 122
division by inexact zero, 13

’dll, 187
’doc-dir, 137
dump-memory-stats, 179
Dybvig, Kent, 47, 145
dynamic-require, 44
dynamic-require-for-syntax, 44
dynamic-wind, 53

else, 5
’empty, 80
’enclosing-module-name, 162
environments

top-level, 145, 155
eof, 95
eof-object?, 95
ephemeron-value, 177
ephemeron?, 177
ephemerons, 177
eq-hash-code, 27
eq?, 16, 37
’equal, 27
equal-hash-code, 27
equal?, 12, 25, 37
eqv?, 12, 13, 37
’error, 22, 96
error, 50
error display handler, 75
error escape handlers, 59, 61
error value conversion handler, 75
error-display-handler, 75
error-escape-handler, 59, 75
error-print-context-length, 75
error-print-source-location, 75
error-print-width, 75
error-value->string-handler, 75
errors, 48, 50, 75

arity, 50
mismatch, 50
syntax, 51
type, 50

eval, 73, 180
eval-jit-enabled, 73
eval-syntax, 180
evaluation handler, 73
evaluation order, 5
even?, 13
evt?, 68
’exact, 184
exception handlers, 61
exceptions, 47, 75

primitive hierarchy, 48
’exec-file, 137
’execute, 82, 138
’exists, 83

212

INDEX

exit, 76, 181
exit handler, 76
exit-handler, 76
exiting, 76
exn, 48, 49
exn:break, 48, 58, 64, 67, 113, 116, 141, 143
exn:fail, 46, 50, 63, 83, 93, 98, 99, 152, 183, 185, 186
exn:fail:contract, 12, 13, 15, 17, 20, 24, 25, 27,

31, 33, 34, 36, 44, 45, 49, 50, 56, 61–63, 65, 81,
84, 96, 98, 100, 102, 108, 109, 112–114, 116–
118, 123, 132–136, 142, 143, 164, 184, 200,
203

exn:fail:contract:arity, 5, 11, 25, 50, 166
exn:fail:contract:continuation, 52, 54, 55
exn:fail:contract:variable, 80
exn:fail:filesystem, 96, 99, 135, 138, 139, 182,

190
exn:fail:filesystem:version, 182
exn:fail:network, 140–144
exn:fail:out-of-memory, 85
exn:fail:read, 20, 49, 118, 119, 121, 124
exn:fail:read:non-char, 122
exn:fail:syntax, 49, 51, 80, 148, 150, 163, 166
exn:fail:unsupported, 85, 139, 185
exn?, 48
expand, 167
expand-once, 167
expand-path, 135
expand-syntax, 167
expand-syntax-once, 167
expand-syntax-to-top-form, 168
expand-to-top-form, 167
expansion-time value, 164
exponential input, 13
expressions

shared structure, 123

fields, 29
file, 42
file-exists?, 138
file-or-directory-modify-seconds, 138, 139,

183
file-or-directory-permissions, 138, 139
file-position, 98
file-size, 139
file-stream-buffer-mode, 98
file-stream-port?, 95
files, 98

copying, 139
deleting, 138
loading, 180
modification dates, 138
moving, 138
paths, see paths

permissions, 138
renaming, 138
sizes, 139
testing, 138

filesystem-root-list, 139
finalization, see will executors
find-executable-path, 137
find-library-collection-paths, 189
find-system-path, 136, 192, 193
fixnum, 13
floating-point-bytes->real, 15
flonum, 13
fluid-let, 9
flush-output, 98
force, 26
formals, 7
format, 117
fprintf, 117
fraction, 13
’framework, 187
free-identifier=?, 154
Friedman, Dan, 47

Gasbichler, Martin, 71
’gc, 186
generate-temporaries, 153
gensym, 23
get-output-bytes, 97
get-output-string, 97
getenv, 186
global port print handler, 71
global-port-print-handler, 71, 117, 125
glyphs, 2
graphs, 121, 123

printing, 123
guard-evt, 67
guardians, see will executors

handle-evt, 67
handle-evt?, 68
hash tables, 26

constants, 121
printing, 72, 123

hash-table-copy, 27
hash-table-count, 27
hash-table-for-each, 27
hash-table-get, 27
hash-table-map, 27
hash-table-put!, 27
hash-table-remove!, 27
hash-table?, 27
Haynes, Chris, 47
header, 7
here strings, 119

213

INDEX

Hieb, Rob, 145
HOME, 136
’home-dir, 136
HOMEDRIVE, 136
HOMEPATH, 136
Honu, 196

iconv, 22
iconv.dll, 22
identifier macro, 146, 163
identifier-binding, 154
identifier-binding-export-position, 155
identifier-template-binding, 155
identifier-transformer-binding, 154
identifier-transformer-binding-export-position,

155
identifier?, 153
immutable?, 24
’inferred-name, 51
infinity, 13
infix, 120
info.ss, 189
’init-dir, 137
’init-file, 137
’initial, 80
inode, 99
input ports

pattern matching, 87
inspector?, 34
inspectors, 33, 76
integer->char, 15
integer->integer-bytes, 15
integer-bytes->integer, 15
integer-length, 14
integer-sqrt, 14
integer-sqrt/remainder, 14

keyword->string, 23
keyword?, 23
keywords, 23, 121

printing, 122
kill-thread, 62

Latin-1, 3
let, 8
let∗, 8
let∗-values, 8
let-struct, 30
let-syntaxes, 160
let-values, 8
let/cc, 52
let/ec, 52
let/ec, 52
letrec, 8

letrec-syntaxes, 160
letrec-syntaxes+values, 160
letrec-values, 8, 12
’lexical, 154
lib, 42
libiconv.dll, 22
libraries, 189
’line, 98
line numbers, 115
’linefeed, 112
’link, 186
link-exists?, 138
links

creating, 139
testing, 138

list, 24
list*, 24
list*-immutable, 24
list->bytes, 19
list-immutable, 24
list-ref, 24
list-tail, 24
’ll, 16
’lm, 16
’lo, 16
load, 74, 121, 180
load extension handler, 74
load handler, 74
load-extension, 74, 182
load-relative, 74, 180
load-relative-extension, 74, 182
load/cd, 74, 181
load/use-compiled, 74, 180
load/use-compiled handler, 74
load/used-compiled, 74
local-expand, 165
local-expand/capture-lifts, 166
local-transformer-expand, 166
local-transformer-expand/capture-lifts,

166
locale-string-encoding, 23
locales, 76
logical operators, see bitwise operators
LOGNAME, 136
LPT1, 201
LPT2, 201
LPT3, 201
LPT4, 201
LPT5, 201
LPT6, 201
LPT7, 201
LPT8, 201
LPT9, 201

214

INDEX

’lt, 16
’lu, 16

’machine, 186
’macosx, 187
macros, see syntax
make-bytes, 19
make-channel, 64
make-continuation-prompt-tag, 55
make-custodian, 84
make-custodian-box, 85
make-date, 183
make-directory, 139
make-ephemeron, 177
make-file-or-directory-link, 139
make-hash-table, 26
make-immutable-hash-table, 27
make-input-port, 99
make-inspector, 34
make-known-char-range-list, 17
make-namespace, 79
make-output-port, 107
make-parameter, 77
make-pipe, 97
make-pseudo-random-generator, 14
make-readtable, 125
make-rename-transformer, 163
make-security-guard, 82
make-semaphore, 63
make-set!-transformer, 163
make-special-comment, 130
make-string, 17
make-struct-field-accessor, 31
make-struct-field-mutator, 32
make-struct-type, 31
make-struct-type-property, 32
make-syntax-introducer, 166
make-thread-cell, 68
make-thread-group, 85
make-weak-box, 177
make-will-executor, 178
’mc, 16
’me, 16
member, 24
memq, 24
memv, 24
’method-arity-error, 25
’mn, 16
module, 38
module name resolver, 42
module path index, 44
module registry, 78
module->namespace, 81
module-compiled-exports, 176

module-compiled-imports, 176
module-compiled-name, 176
’module-direct-for-syntax-requires, 175
’module-direct-for-template-requires, 175
’module-direct-requires, 175
module-identifier=?, 154
’module-indirect-provides, 175
’module-kernel-reprovide-hint, 175
module-path-index-join, 44
module-path-index-resolve, 44
module-path-index-split, 44
module-path-index?, 44
module-provide-protected?, 81
’module-self-path-index, 176
’module-syntax-provides, 175
module-template-identifier=?, 154
module-transformer-identifier=?, 154
’module-variable-provides, 175
modules, 38

body, 39
built-in, 45
compiling, 43
dynamic imports, 44
execution, 38
expansion, 38
exports, 39
for-syntax imports, 156
imports, 39
in files, 42
libraries, 42
macros, 41, 156
paths, 42
pre-defined, 45
predefined, 45
re-declaring, 45
re-defining, 45
redeclaring, 45
redefining, 45
syntax, 41

msvcrt.dll, 22
multiple return values, 5
MzLib library, 190
MzScheme

stand-alone, 1, 191
mzscheme, 38
MzScheme3m, 1
MzSchemeCGC, 1
mzschemerc.ss, 137

nack-guard-evt, 67
namespace-attach-module, 43, 81
namespace-mapped-symbols, 80
namespace-module-registry, 81
namespace-require, 80

215

INDEX

namespace-require/copy, 80
namespace-require/expansion-time, 80
namespace-set-variable-value!, 80
namespace-symbol->identifier, 80
namespace-syntax-introduce, 81
namespace-transformer-require, 80
namespace-undefine-variable!, 80
namespace-unprotect-module, 81
namespace-variable-value, 80
namespace?, 80
namespaces, 78

initial, 79
initial environment, 79
initial transformer environment, 155

’nd, 16
networking, 139
’nl, 16
’no, 16
’non-terminating-macro, 126
’none, 98
normal-case-path, 135
not-a-number, 13
NUL, 201
null, 24
null-environment, 78
number->string, 13
numbers, 13, 119

big-endian, 15
converting, 15
floating-point, 15
little-endian, 15
machine representations, 15

object-name, 51
odd?, 13
only, 39
’opaque, 173
open-input-bytes, 97
open-input-file, 96
open-input-output-file, 96
open-input-string, 97
open-output-bytes, 97
open-output-file, 96
open-output-string, 97
or, 6
’orig-dir, 137
’origin, 169
ormap, 12
’os, 186

packages, 38
parameter procedure, 69
parameter-procedure=?, 77
parameter?, 77

parameterization, 69
parameterization?, 77
parameterize, 69
parameterize∗, 70
parameterize-break, 58
parameters, 69

built-in, 71
’paren-shape, 169
parsing, 71
PATH, 138
path->bytes, 133
path->complete-path, 135
path->directory-path, 135
path->string, 133
path-convention-type, 133
path-element->bytes, 133
path-element->string, 133
path-for-some-system?, 132
path-list-string->path-list, 137
path-replace-suffix, 136
path-string?, 132
path?, 132
pathnames, see paths
paths, 132

expansion, 132
printing, 123

pattern matching, 87
’pc, 16
’pd, 16
’pe, 16
peek-byte, 114
peek-byte-or-special, 114
peek-bytes, 113
peek-bytes!, 113
peek-bytes-avail!, 113
peek-bytes-avail!*, 114
peek-bytes-avail!/enable-break, 114
peek-char, 114
peek-char-or-special, 114
peek-string, 113
peek-string!, 113
’pf, 16
’pi, 16
pipe-content-length, 97
planet, 42
platform, 136, 186
PLTCOLLECTS, 190
PLTNOMZJIT, 74
’po, 16
poll, see sync
poll-guard-evt, 67
port display handler, 124
port positions, 115

216

INDEX

port print handler, 124
port read handler, 124
port write handler, 124
port-closed?, 95
port-commit-peeked, 114
port-count-lines!, 115
port-count-lines-enabled, 71
port-display-handler, 124, 125
port-file-identity, 99
port-next-location, 115
port-print-handler, 125
port-progress-evt, 114
port-provides-progress-evts?, 114
port-read-handler, 124
port-write-handler, 125
port-writes-atomic?, 117
port-writes-special?, 117
port?, 95
ports, 61, 71, 95

byte string, 97
custom, 99
file, 98
flushing, 98
string, 97

’pref-dir, 136
’pref-file, 136
prefix, 39
prefix-all-defined, 40
prefix-all-defined-except, 40
pregexp, 89
pregexp?, 89
primitive procedure, 26
primitive-closure?, 26
primitive-result-arity, 26
primitive?, 26
print, 117, 124
print handler, 73
print-box, 72, 122
print-graph, 72, 124
print-hash-table, 72
print-honu, 72
print-struct, 72, 122
print-unreadable, 72
print-vector-length, 72, 122
printf, 117
printing sharing, 72
PRN, 201
procedure-arity, 25
procedure-arity-includes?, 25
procedure-closure-contents-eq?, 26
procedure-struct-type?, 36
procedure?, 11, 35
processes, 184

program, 137, 192
promise?, 26
promises, 26
prompt read handler, 73
prop:exn:srclocs, 49
prop:procedure, 31
protect, 40
’protected, 170
provide, 40
’ps, 16
pseudo-random-generator->vector, 14
pseudo-random-generator?, 15
putenv, 186

quasiquote, 6
quasisyntax, 150
quasisyntax/loc, 151
quote-syntax, 147
quotient/remainder, 13

raise, 47
raise-arity-error, 50
raise-mismatch-error, 50
raise-syntax-error, 51
raise-type-error, 50
raise-user-error, 50
random, 14, 76
random numbers, 76
random-seed, 14, 76
’read, 82, 138
read, 49
read extensions, 118
read-accept-bar-quote, 72, 120, 122
read-accept-box, 72, 118
read-accept-compiled, 72, 182
read-accept-dot, 72, 120
read-accept-graph, 72, 124
read-accept-quasiquote, 72, 120
read-accept-reader, 72
read-byte, 114
read-byte-or-special, 114
read-bytes, 112
read-bytes!, 112
read-bytes-avail!, 113
read-bytes-avail!*, 113
read-bytes-avail!/enable-break, 113
read-bytes-line, 112
read-case-sensitive, 71, 121, 122
read-char-or-special, 114
read-curly-brace-as-paren, 72, 118, 121
read-decimal-as-inexact, 72, 120
read-eval-print loop, 73

read-eval-print loop
customized, 181

217

INDEX

read-eval-print loop, 181
read-eval-print-loop, 181, 193
read-honu, 196
read-honu-syntax, 170, 196
read-line, 112
read-square-bracket-as-paren, 71, 118, 121
read-string, 112
read-string!, 112
read-syntax, 147, 170
read-syntax/recursive, 130
read/recursive, 130
reader macros, 126
readtable-mapping, 126
readtables, 125
real->floating-point-bytes, 15
regexp, 89
regexp-match, 90, 91
regexp-match-peek, 92
regexp-match-peek-immediate, 92
regexp-match-peek-positions, 92
regexp-match-peek-positions-immediate, 92
regexp-match-positions, 92
regexp-match?, 92
regexp-replace, 92, 93
regexp-replace*, 93
regexp?, 89
regexps, see regular expressions
regular expressions, 87

constants, 121
printing, 123

’relative, 136
relative-path?, 134
rename, 40
rename-file-or-directory, 138, 139
rename-transformer-target, 164
rename-transformer?, 163
repl, see read-eval-print loop
’replace, 96
require, 39, 74
require-for-syntax, 156, 157
require-for-template, 157
resolve-path, 135
’return, 112
’return-linefeed, 112
reverse!, 24
’run-file, 137
run-time hierarchy, 158
’running, 185

’same, 134, 136
’sc, 16
scheme-report-environment, 78
scripts, 194
Scsh, 71

seconds->date, 183
security guards, 76, 82
security-guard?, 83
select, see sync
semaphore-peek-evt, 64
semaphore-post, 63
semaphore-try-wait?, 64
semaphore-wait, 64
semaphore-wait/enable-break, 64
semaphore?, 63
semaphores, 63
’server, 83
set!, 9
set!, 192
set!-transformer-procedure, 163
set!-transformer?, 163
set!-values, 9
set-arity-at-least-value!, 25
set-box!, 25
set-date-day!, 183
set-date-dst?!, 183
set-date-hour!, 183
set-date-minute!, 183
set-date-month!, 183
set-date-second!, 183
set-date-time-zone-offset!, 183
set-date-week-day!, 183
set-date-year!, 183
set-date-year-day!, 183
’shared, 187
shell scripts, 194
shell-execute, 185
ShellExecute, 185
simplify-path, 135
’sk, 16
sleep, 63
’sm, 16
’so, 16
’so-suffix, 186
sockets, 139
special-comment-value, 130
special-comment?, 130
Sperber, Michael, 71
split-path, 135
square brackets, 71
srcloc, 115
stack trace, 55

length, 75
’static, 187
string converters, 21
string->bytes/latin-1, 20
string->bytes/locale, 20
string->bytes/utf-8, 20

218

INDEX

string->immutable-string, 17
string->keyword, 23
string->number, 13
string->path, 132
string->path-element, 133
string->symbol, 23
string->uninterned-symbol, 23
string-ci<=?, 17
string-ci<?, 17
string-ci=?, 17
string-ci>=?, 17
string-ci>?, 17
string-copy!, 17
string-downcase, 18
string-foldcase, 18
string-locale-ci<?, 18
string-locale-ci=?, 18
string-locale-ci>?, 18
string-locale-downcase, 18
string-locale-upcase, 18
string-locale<?, 18
string-locale=?, 18
string-locale>?, 18
string-normalize-nfc, 19
string-normalize-nfd, 19
string-normalize-nfkc, 19
string-normalize-nfkd, 19
string-titlecase, 18
string-upcase, 18
string-utf-8-length, 20
string<=?, 17
string<?, 17
string=?, 17
string>=?, 17
string>?, 17
strings, 119

as ports, 97
immutable, 17
pattern matching, 87
printing, 123
reading to and writing from, 97

struct, 40
struct->vector, 37
struct-accessor-procedure?, 37
struct-constructor-procedure?, 37
struct-info, 34
struct-mutator-procedure?, 37
struct-predicate-procedure?, 37
struct-type-info, 34
struct-type-make-constructor, 34
struct-type-make-predicate, 34
struct-type-property?, 33
struct-type?, 37

struct:date, 183
struct?, 37
structs

printing, 72
structure subtypes, 30
structure type descriptors, 29
structure type properties, 32
structure types, 29

predicates, 37
structures, 29

equality, 37
printing, 122

sub1, 13
subbytes, 19
subprocess, 184
subprocess-kill, 185
subprocess-pid, 185
subprocess-status, 185
subprocess-wait, 185
subprocess?, 185
subprocesses, 184
substring, 17
’SW HIDE, 186
’sw hide, 186
’SW MAXIMIZE, 186
’sw maximize, 186
’SW MINIMIZE, 186
’sw minimize, 186
’SW RESTORE, 186
’sw restore, 186
’SW SHOW, 186
’sw show, 186
’SW SHOWDEFAULT, 186
’sw showdefault, 186
’SW SHOWMAXIMIZED, 186
’sw showmaximized, 186
’SW SHOWMINIMIZED, 186
’sw showminimized, 186
’SW SHOWMINNOACTIVE, 186
’sw showminnoactive, 186
’SW SHOWNA, 186
’sw showna, 186
’SW SHOWNOACTIVATE, 186
’sw shownoactivate, 186
’SW SHOWNORMAL, 186
’sw shownormal, 186
symbols, 120

case sensitivity, 120
generating, 23
printing, 122
unique, 23

sync, 65, 76
sync/enable-break, 67, 76

219

INDEX

sync/timeout, 65
sync/timeout/enable-break, 67
synchronous channels, 64
syntax, 145

expanding, 167
macro calls, 163
modules, 156
partial expansion, 165

syntax, 148
syntax objects, 147

comparisons, 154
identifier, 153
operations, 151
pattern-matching, 148
properties, 169, 182
source location, 151, 182
source module, 151

syntax pair, 152
syntax->list, 152
syntax-case, 148
syntax-case∗, 149
syntax-column, 151
syntax-e, 151
syntax-graph?, 153
syntax-id-rules, 146
syntax-line, 151
syntax-local-bind-syntaxes, 166
syntax-local-certifier, 165
syntax-local-context, 164
syntax-local-expand-expression, 166
syntax-local-get-shadower, 165
syntax-local-introduce, 166
syntax-local-lift-expression, 164
syntax-local-lift-module-end-declaration,

164
syntax-local-make-definition-context, 166
syntax-local-name, 164
syntax-local-value, 164
syntax-object->datum, 152
syntax-original?, 151
syntax-position, 151
syntax-property, 169
syntax-property-symbol-keys, 169
syntax-recertify, 174
syntax-rules, 145
syntax-source, 151
syntax-source-module, 151
syntax-span, 151
syntax-track-origin, 169
syntax-transforming?, 165
syntax/loc, 151
syntax?, 151
’sys-dir, 137

system-big-endian?, 15
system-idle-evt, 68
system-language+country, 187
system-library-subpath, 187
system-path-convention-type, 134
system-type, 186

tcp-abandon-port, 141
tcp-accept, 141
tcp-accept-evt, 141
tcp-accept-ready?, 141
tcp-accept/enable-break, 141
tcp-addresses, 142
tcp-close, 141
tcp-connect, 140
tcp-connect/enable-break, 141
tcp-listen, 140
tcp-listener?, 141
tcp-port?, 142
TCP/IP, 140
’temp-dir, 137
terminal-port?, 95
’terminating-macro, 126
’text, 96
thread

groups, see thread groups
thread, 61
thread cells, 68
thread descriptor, 61
thread groups, 76, 85
thread-cell-ref, 68
thread-cell-set!, 68
thread-cell?, 68
thread-dead-evt, 62
thread-dead?, 63
thread-group?, 85
thread-resume, 61
thread-resume-evt, 62
thread-running?, 63
thread-suspend, 61
thread-suspend-evt, 62
thread-wait, 62
thread/suspend-to-kill, 62
thread?, 63
threads, 61

breaking, 58, 63
communication, 63, 64
killing, 62
nesting, 63
resuming, 61
run state, 63
stack size, 77
suspending, 61
synchronization, 63, 64

220

INDEX

time, 183
machine, 183

time, 184
time-apply, 184
TMPDIR, 137
top-level environment, see namespaces
transformer environments, 145

in modules, 156
transformers, 145

application, 163
’transparent, 173
’transparent-binding, 173
’truncate, 96
’truncate/replace, 96

UDP, 142
udp-bind!, 142
udp-bound?, 144
udp-close, 143
udp-connect!, 142
udp-connected?, 144
udp-open-socket, 142
udp-receive!, 143
udp-receive!*, 143
udp-receive!-evt, 144
udp-receive!/enable-break, 143
udp-receive-ready-evt, 144
udp-send, 143
udp-send*, 143
udp-send-evt, 144
udp-send-ready-evt, 144
udp-send-to, 143
udp-send-to*, 143
udp-send-to-evt, 144
udp-send-to/enable-break, 143
udp-send/enable-break, 143
udp?, 144
unbox, 25
uncaught-exception-handler, 75
uncertified context, 170
undefined values, 12
Unicode, 2
uninterned symbol, 23
’unix, 134, 187
unless, 6
unquote, 7
unquote-splicing, 7
unreadable

printing, 72, 123
unsyntax, 150
unsyntax-splicing, 150
’up, 134, 136
’update, 96
use-compiled-file-paths, 74

use-user-specific-search-paths, 74
USER, 136
USERPROFILE, 136
UTF-8, 3
UTF-8-permissive, 21

vector->immutable-vector, 24
vector->pseudo-random-generator, 14
vector-immutable, 24
vector-set-performance-stats!, 187
vectors, 118

printing, 72, 122
version, 187
vertical bar, 72
void, 12
void?, 12

’weak, 27
weak boxes, 177
weak references, 177
weak-box-value, 177
weak-box?, 177
when, 6
will executors, 178
will-execute, 178
will-executor?, 178
will-register, 178
will-try-execute, 178
’windows, 134, 187
Windows pathname syntax, 200
with-continuation-mark, 56
with-handlers, 47
with-handlers∗, 48
with-input-from-file, 96
with-output-to-file, 96
with-syntax, 149
wrap-evt, 67
’write, 82, 138
write, 124
write extensions, 122
write-byte, 116
write-bytes, 116
write-bytes-avail, 116
write-bytes-avail*, 116
write-bytes-avail-evt, 116
write-bytes-avail/enable-break, 116
write-special, 116
write-special-avail*, 116
write-special-evt, 116
write-string, 116

’zl, 16
’zp, 16
’zs, 16

221

	1 Introduction
	1.1 MrEd, DrScheme, and mzc
	1.2 Unicode, Locales, Strings, and Ports
	1.2.1 Unicode
	1.2.2 Locale
	1.2.3 Encodings and Ports

	1.3 Notation

	2 Basic Syntax Extensions
	2.1 Evaluation Order
	2.2 Multiple Return Values
	2.3 Cond and Case
	2.4 When and Unless
	2.5 And and Or
	2.6 Sequences
	2.7 Quote and Quasiquote
	2.8 Binding Forms
	2.8.1 Definitions
	2.8.2 Local Bindings
	2.8.3 Assignments
	2.8.4 Fluid-Let
	2.8.5 Syntax Expansion and Internal Definitions

	2.9 Case-Lambda
	2.10 Procedure Application
	2.11 Variable Reference
	2.12 Forcing Expression Parsing

	3 Basic Data Extensions
	3.1 Void and Undefined
	3.2 Booleans
	3.3 Numbers
	3.4 Characters
	3.5 Strings
	3.6 Byte Strings
	3.7 Symbols
	3.8 Keywords
	3.9 Vectors
	3.10 Lists
	3.11 Boxes
	3.12 Procedures
	3.12.1 Arity
	3.12.2 Primitives
	3.12.3 Procedure Names
	3.12.4 Closure Equality

	3.13 Promises
	3.14 Hash Tables

	4 Structures
	4.1 Defining Structure Types
	4.2 Creating Subtypes
	4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties
	4.4 Structure Type Properties
	4.5 Structure Inspectors
	4.6 Structures as Procedures
	4.7 Structures as Synchronizable Events
	4.8 Structures as Ports
	4.9 Structure Utilities

	5 Modules
	5.1 Module Expansion and Execution
	5.2 Module Bodies
	5.3 Modules and Macros
	5.4 Module Paths
	5.4.1 Module Name Resolver
	5.4.2 Module Names and Compilation

	5.5 Dynamic Module Access
	5.6 Re-declaring Modules
	5.7 Built-in Modules
	5.8 Modules and Load Handlers

	6 Exceptions and Control Flow
	6.1 Exceptions
	6.1.1 Primitive Exceptions

	6.2 Errors
	6.2.1 Application Errors
	6.2.2 Syntax Errors
	6.2.3 Inferred Value Names

	6.3 Continuations
	6.4 Dynamic Wind
	6.5 Prompts and Composable Continuations
	6.6 Continuation Marks
	6.7 Breaks
	6.8 Error Escape Handler

	7 Threads
	7.1 Suspending, Resuming, and Killing Threads
	7.2 Synchronizing Thread State
	7.3 Additional Thread Utilities
	7.4 Semaphores
	7.5 Channels
	7.6 Alarms
	7.7 Synchronizing Events
	7.8 Thread-Local Storage Cells
	7.9 Parameters
	7.9.1 Built-in Parameters
	7.9.2 Parameter Utilities

	8 Namespaces
	8.1 Identifier Resolution in Namespaces
	8.2 Initial Namespace
	8.3 Namespace Utilities

	9 Security
	9.1 Security Guards
	9.2 Custodians
	9.3 Thread Groups
	9.4 Inspectors and Modules

	10 Regular Expressions
	11 Input and Output
	11.1 Ports
	11.1.1 End-of-File Constant
	11.1.2 Current Ports
	11.1.3 Opening File Ports
	11.1.4 Pipes
	11.1.5 String Ports
	11.1.6 File-Stream Ports
	11.1.7 Custom Ports

	11.2 Reading and Writing
	11.2.1 Reading Bytes, Characters, and Strings
	11.2.2 Writing Bytes, Characters, and Strings
	11.2.3 Writing Structured Data
	11.2.4 Default Reader
	11.2.5 Default Printer
	11.2.6 Replacing the Reader
	11.2.7 Replacing the Printer
	11.2.8 Customizing the Reader through Readtables
	11.2.9 Reader-Extension Procedures
	11.2.10 Customizing the Printer through Custom-Write Procedures

	11.3 Filesystem Utilities
	11.3.1 Paths
	11.3.2 Locating Paths
	11.3.3 Files
	11.3.4 Directories

	11.4 Networking
	11.4.1 TCP
	11.4.2 UDP

	12 Syntax and Macros
	12.1 syntax-rules Extensions
	12.2 Syntax Objects
	12.2.1 Syntax Patterns
	12.2.2 Syntax Object Content

	12.3 Syntax and Lexical Scope
	12.3.1 Syntax Object Comparisons
	12.3.2 Syntax Object Bindings
	12.3.3 Transformer Environments
	12.3.4 Module Environments
	12.3.5 Macro-Generated Top-Level and Module Definitions

	12.4 Binding Multiple Syntax Identifiers
	12.5 Special Syntax Identifiers
	12.6 Macro Expansion
	12.6.1 Expanding Expressions to Primitive Syntax
	12.6.2 Syntax Object Properties
	12.6.3 Certificates for Protected References
	12.6.4 Information on Structure Types
	12.6.5 Information on Expanded and Compiled Modules

	13 Memory Management
	13.1 Weak Boxes
	13.2 Ephemerons
	13.3 Will Executors
	13.4 Garbage Collection

	14 Evaluation and Compilation
	14.1 Eval and Load
	14.2 Exiting
	14.3 Compilation
	14.4 Dynamic Extensions

	15 System Utilities
	15.1 Time
	15.1.1 Real Time and Date
	15.1.2 Machine Time
	15.1.3 Timing Execution

	15.2 Operating System Processes
	15.3 Windows Actions
	15.4 Operating System Environment Variables
	15.5 Runtime Information

	16 Library Collections and MzLib
	17 Running MzScheme
	17.1 Command-Line Conventions
	17.2 Executable Name
	17.3 Initialization

	18 Writing and Running Scripts
	19 Honu
	19.1 Honu Input Parsing
	19.1.1 Numbers
	19.1.2 Identifiers
	19.1.3 Strings
	19.1.4 Characters
	19.1.5 Parentheses, Brackets, and Braces
	19.1.6 Comments

	19.2 Honu Output Printing

	20 Platform-Specific Path Conventions
	20.1 Unix and Mac OS X Path Conventions
	20.2 Windows Path Conventions

	License
	Index

