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1. INTRODUCTION

Since the invention of LALR(1) grammars by DeRemer [9], LALR grammar
analysis and parsing techniques have been popular as a component of translator
writing systems and compiler-compilers. However, DeRemer did not describe
how to compute the needed look-ahead sets. Instead, LaLonde was the first to
present an algorithm [20]. Since then, LaLonde’s algorithm has been published
by Anderson et al. [6, pp. 21-22], who also presented their own algorithm [6, p.
21); Aho and Ullman [3, p. 238] have published the one used in YACC [16].
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Kristensen and Madsen [19] have improved LaLonde’s algorithm, extending the
results to LALR(%).

Various others have tried their hand at designing such an algorithm, often with
the result of implementing a particular subset of LALR(1) that we dub “not
quite” LALR(1) or NQLALR(1) [7, 11, 23, 25]. Subsequently, Watt attempted to
repair his original approach [24], as did Chaney with DeRemer’s approach [5].
Neither of these later attempts was correct, although both were more complex
and worked in more cases than did the NQLALR method.

None of the correct LALR(1) algorithms, except the one developed by Kristen-
sen and Madsen [19, Sec. 6.2], have been nearly as efficient as their NQLALR(1)
counterparts. Later we describe the oversimplification that results in the simple,
efficient algorithms that are not quite right. The purpose of the current paper is
to provide an algorithm that efficiently exploits the essential structure of the
problem.

1.1 Preview

When a grammar is not LR(0), one or more of the LR(0) parser’s states must be
“Inconsistent”, having either a “read-reduce” or a “reduce-reduce” conflict, or
both. In the former case the parser cannot decide whether to read the next
symbol of the input or to reduce a phrase on the stack. In the latter case the
confusion is between distinet reductions. Looking ahead at the first symbol of the
input may resolve the conflict, and DeRemer defined a grammar to be LALR(1)
when each inconsistent state g can be augmented with look-ahead sets that
resolve the conflict and result in a correct, deterministic or “consistent” parser
f91.

More precisely, for each inconsistent state ¢ and possible reduction A — w in
g, let the “look-ahead set for A — w in ¢” be denoted by LA(g, A — ). When the
parser is in state g and the symbol at the head of the input is in LA(q, A — w),
« must be reduced to A. Thus the look-ahead sets in ¢ must be mutually disjoint
and not contain any of the symbols that could be read from g.

Watt [24] has defined LA(g, A — w) as {t € T'| S =" a Atz and aw accesses q},
where T is the set of terminals in the grammar. Intuitively, when the parser is in
state g and aw is on the stack, reduction of w to A is appropriate exactly when the
input begins with some terminal ¢ that can follow aA in a rightmost sentential
form. Our purpose here is to investigate the underlying structure in this definition
and to show how to compute LA efficiently.

The problem can be decomposed into four separate computations. In reverse
order of computation they are as follows: LA is computed from “Follow” sets of
nonterminal transitions; Follow sets are computed from “Read” sets of nonter-
minal transitions; Read sets are computed from “Direct Read” sets; and Direct
Read sets are computed by inspecting the LR(0) parser.

A relation includes on nonterminal transitions relating the Follow sets is
defined, along with a relation reads relating the Read sets. The Read sets are
initialized to the Direct Read sets by inspection of the parser. Then their values
are completed by a graph traversal algorithm for finding “strongly connected
components” (SCCs), adapted to compute unions of the sets appropriately as it
searches the digraph induced by the reads relation. If a nontrivial SCC is found,
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the grammar in question is not LR(k) for any k. Next the Read sets are used as
initial values for the Follow sets, which are completed by the SCC algorithm
applied to the digraph of the includes relation. Again, if a nontrivial SCC is
encountered having a nonempty Read set in it, (we conjecture that) the grammar
is not LR(%) for any k. In any case, the LALR(1) look-ahead sets are simply
unions of appropriate Follow sets.

We now define terminology, define LALR(1), give theorems relating to look-
ahead set computation, present the algorithm, discuss oversimplifications, give
statistics for some practical grammars, show how to generate debugging diagnos-
tics for grammars that are not LALR(1), and present conclusions.

2. TERMINOLOGY

The notions of symbol and string of symbols are assumed here. A vocabulary V
is a set of symbols. V* denotes the set of all strings of symbols from V. V*
denotes V* — {¢}, where € is the empty string. The length of any string « is
denoted by | «|. The first symbol of a nonempty string « is denoted by First a;
the string following is denoted by Rest «; the last symbol is denoted by Last a. As
just illustrated, arguments to functions are not parenthesized when the intent is
clear.

If R is a relation, R* denotes the reflexive, transitive closure of R, and R*
denotes the transitive closure. We write X = F(X) to mean that X is the smallest
set satisfying X = F(X). U{Sy, ..., S.}, where the S; are sets, denotes S; U - - -
U S,.

2.1 CFGs

A context-free grammar (CFG) is a quadruple G = (T, N, S, P), where T is a
finite set of terminal symbols, N is a finite set of nonterminal symbols such that
TN N =@, S€& N is the start symbol, and P is a finite subset of N X V*, where
V =T U N and each member (4, w) is called a production, written A — w. A is
called the left part and w the right part. We require a production S — S’L for
some S’ € N and L € T such that 1 and S appear in no other production.

The following (usual) conventions hold in this paper:

S,A,B,C,..€N

X ev
t,a bec ... €T
e X Y, 2 eT*
o By, ... ev*

The relation =, is pronounced “directly (right) produces” and is defined on V*
such that a Ay =, awy for all « € V*, y € T*, and A — w € P. The r subscript is
dropped hereafter since we always mean right produces. Both =* and =" are
pronounced “produces”. A nullable nonterminal is one that produces e. If S =*
a, then « is called a sentential form; if « € T*, then it is called a sentence. The
language L(G) generated by G is the set of sentences, that is, {x € T*|S =" x}.
All grammars here are assumed to be reduced, that is, S="* a Af and A =* y for
allA € Nand somea, BE€ V*and y € T*.
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Let G be a CFG and & = 0. G is LR(k) iff S =* a Ay = awy implies that,
if §$=* y = awy’, then y = aAy’ for all a, y € V* and y, ¥’ € T* such that
First.(y’) = Firstx(y) [17]. Here First.(y) is the prefix of y of length %, or just y
if|y| <k

2.2 LR parsers

Next we introduce a formalization of an LR parser, that is, any one-symbol look-
ahead parser, such as an SLR(1), LALR(1), or LR(1) parser [1]. The generaliza-
tion to multisymbol look-ahead is easy, but not relevant here. Given some tabular
representation of the “LR automaton” defined below and the general LR parsing
algorithm to interpret those tables, we have an “LR parser”. The particular
states, transitions, and look-ahead sets are determined by the grammar in
question and by the construction technique. For example, the LALR(1) technique
produces an “LALR(1) automaton”.

An LR automaton for a CFG G = (T, N, S, P) is a sextuple LRA(G) = (X, V,
P, Start, Next, Reduce), where K is a finite set of states, V and P are as in G,
Start € K is the start state, Next: K X V — K is called the transition function,
and Reduce: K X T — 27 is called the reduce function. Next may be a partial
function. Nondeterministic or “inconsistent” LR automata are allowed; the
LALR(1) condition of Section 3 excludes such cases. A transition is a member of
K x V; it is a terminal transition if it is in K X T and a nonterminal transition

if it is in K X N. The transition (g, X) is represented by qi» p, where p =

Next(q, X), or by ¢ X, when p is irrelevant, and we define Accessing_symbol
P = X; each state has a unique accessing symbol, except Start, which has none.

In the diagrams in text, LR automata are represented by state diagrams in
which states are connected by transitions. For each state ¢ in which Reduce
indicates possible reductions, the productions are listed.

A path H is a sequence of states qo, . . ., g, such that
%—XL) gi——> Qn—li‘) qn.

We say that H spells a = X, --- X,, and define Spelling H = « and Top H = gx.
H is denoted by go— -%- — q.,,, pronounced “qgo goes to g, under o”. An alternative
notation for H is [qo: o], given the automaton or its state diagram. The concate-
nation of [¢:a] and [¢’: a’], where Top [q:a] = ¢, is written [g: a][q’:a’] and
denotes [g: aa’]. [Start:a] can be abbreviated [a]; thus [ ] denotes Start alone.
We say that a accesses q if Top [a] = q.

A configuration is a member of K* X T*; its first part is called the state stack
and its second the input. The relation - on configurations is pronounced “directly
moves to” and is the union of F..q and Ha_,,, for all A — © € P. e is
pronounced “reads to”: [q:a]tz breaa [q:at]z if Next(Top [q:a], t) is defined.
F4-., is pronounced “reduces w to A in moving to”: [q : aw]tz Fa_., [q: aAltz if A
— w € Reduce(Top [¢g:aw], t) (and if [g:aA] is a path; but this additional
constraint will always hold in the LR automata considered here). —* and — are
pronounced “moves to”. The language L(ILRA(G)) parsed by LRA(G) must be
identically L(G) and is {z € T* |[ Jz+—*[S’] 1}.
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A triple (A, a, B) € N X V* X V* is called an item, written A — a-B if A — af8
is a production; if 8 = ¢, it is a final item. A set of items is called a (parse) table.
The set of LR(0) parse tables PT(G) for a CFG G is

PT(G) =, {Closure {S— -S’ L} } U
{Closure IS | IS € Successors IS’ for IS’ € PT(G)}

where

Closure IS =ISU{A—> -.w|B> a-ABEISand A » w € P}
Successors IS = {Nucleus(IS, X)| X € V}
Nucleus(IS, X) = {A - aX-B|A —> a-XB € IS}.

An LR(0) automaton for a CFG G is an LR automaton LRA(G) such that
there exists a bijective function F': K — PT(G) — {J} where

Start = F*(Closure {S — -S’ 1})
andforallte T, Xe€ V,

Next(g, X) = F*(Closure(Nucleus(F g, X)))

Reduce(g, t) = {A > w|A > w- E Fg}.

F simply establishes a one-to-one correspondence between tables (except &, the
“trap table”) and states and thus is an isomorphism between the parse tables and
the parser. Hence, hereafter we elide all occurrences of ¥ and F™!, since con-
text always determines whether ¢ denotes a state or its corresponding parse
table. The “LR(0)-ness” of the automaton is evident in that the definition of
Reduce(q, t) is independent of £. Hereafter, “parser” is often used rather than
automaton.

It is well known that the LR(0) automaton A is a correct parser for G, that
is, L(A) = L(G); however, in general it is nondeterministic, due to the existence
of “inconsistent” states. A state g is inconsistent iff there exists a t € T
such that Next(q, ¢) is defined and Reduce(q, t) # & (read-reduce conflict), or
| Reduce(q, t)| > 1 (reduce-reduce conflict), or both.

A shorthand notation is useful for a certain sequence of moves:

[a]]lyz=*[a|B)z iff (Top [a], y2) —* ([Top [a]:B], 2).

This captures the notion that the parser reads y and reduces it to 8, possibly
including reductions on the empty string preceding y. The vertical bar is needed
because [a] yz +* [aB]z does not necessarily imply that y was reduced to . For
example, consider [yA}txz bread [YAE)x2 Fasa: [YA]xz H* [YAB ]z, where tx was
not reduced to B8 (here y = tx and a = yA).

2.3 Graphs

A directed graph or digraph is a pair (V’, E) where V' is a set of vertices and E
is a subset of V' X V', each member of which is called an edge. In this paper V'
is always finite. A digraph-path, or simply a path when the context is clear, is a
sequence of vertices vy, ..., U,, n > 1, such that (v;, vi) EEfor1 <i<n; we
say there is a path from v, to v,.. A root is a vertex having no paths to it. A
directed acyclic graph (DAG) is a digraph in which there is no path from any
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vertex back to itself. A forest is a DAG in which there is at most one path to each
vertex from a given vertex. A free is a forest having exactly one root.

3. LALR LOOK-AHEAD SETS

“LALR(1) parser” can be defined by refining the definition of Reduce for an
LR(0) parser. Intuitively, Reduce(q, ) should contain A — w only if there exist
sentential a Atz and awtz such that aw accesses g. The definition of LALR(1)
parser is given after the definition of “look-ahead symbols” (LA):

Definition. For an LR(0) parser,
LA(g,A—> w) = {tE€T|[aw]tz a, [€aAltz—* [S’ L], and aw access g}. []

Definition. An LALR (1) parser for a CFG G is like G’s LR(0) parser, except
that

Reduce(q, ) = {A > w |t € LA(q, A — w)}. O

Definition. A CFG is LALR(1) iff its LALR(1) parser has no inconsistent
states. [1

The latter defines LALR(1) grammar in terms of LALR(1) parser; a grammar
is LALR(1) iff its LALR(1) parser is deterministic. It is desirable to have a
definition of LALR(1) grammar that does not involve the parser, but we know of
no reasonable way to do this. We do, however, come a little closer in the following
theorem, which Watt gave as a definition [24].

THEOREM. LA(g, A - w) = {t € T| S =" a Atz and aw access q}.

The proof depends essentially on the correctness of the LR(0) parser, that is,
that the moves faithfully reflect the derivation; we do not prove this here.

The primary goal here is to show how to compute the LA sets. To do so we
focus attention on nonterminal transitions and define “follow sets” for them.

Definition. For an LR(O)tpa.rser with nonterminal transition (p, A),
Follow(p, A) = {t ET | [aA)tz =* [S’1] and « accesses p}. O

These are just the terminal symbols that can follow A in a sentential form
whose prefix a, preceding A, accesses state p, given the correctness of the LR(0)
parser. Stated in terms of derivations, Follow(p, A) = {t € T'|S =" aA#z and «
accesses p}. Thus it is easy to see that each LA set is just the union of some
related Follow sets.

THEOREM UNION

LA(g, A — w) = U{Follow(p, A) | (p, A) is a transition and p— -%- — q}.

(Proof is given in the Appendix.) That is, the LA set for production A — w in
state g is the union of the Follow sets for the A-transitions whose source state p
has a path spelling « that terminates at ¢g. Intuitively, when the parser reduces
w to A in state g, each such p is a possible top state after « is popped; then the
parser must read A in p, all with some terminal ¢, the first of the input.
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A Follow(p,, A)
eee ‘ oo is contained in
W

\ LA(g, A > w)
/@ which contains
w
L]
L ]
L ]
eee eoe Follow(p,, A)

The parser should reduce A — w when in state ¢ if the next input symbol ¢ is in’
any of the Follow(p;, A) (1 < i < n), that is, if £ can follow A in any of the left
contexts “remembered” by states p; through p,. The transitions (p;, A) of concern
can be captured via the following relation:

Definition [24]. (g, A — w) lookback (p, A) iff p—¥—gq O

Thus LA(g, A — ) = U{Follow(p, 4) | (¢, A — ) lookback (p, A)}.
The follow sets are, in turn, related to each other. In particular,

TueoreM. Follow(p’, B) C Follow(p, A) if

Diagrammatically,

B— BAy, y=*¢ and p’—-’l-;-—>p.

Diagrammatically,
s e @ B coe Follow(p’, B)

is contained in

\ Follow(p, A)

XX ooo—»OB-» BAY

Y =>*€e

This is easy to see since, given some string a accessing p’, we have af accessing
p, and in an appropriate right context, aBA can be reduced first to aBAy via y
=* ¢ and then to aB. Thus those symbols that can follow B in the left context
remembered by p’ can also follow A in the left context remembered by p. The
above inclusion can be captured via a relation on nonterminal transitions.

Definition. (p, A) includes (p’, B) iff
B BAy, y=*¢ and p'—-B. 5 p. O
Thus, Follow(p’, B) C Follow(p, A) if (p, A) includes (p’, B).
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Next, observe that the symbols labeling terminal transitions “following” a
nonterminal transition (p, A) are obviously in Follow(p, a).

THEOREM. Read(p, A) C Follow(p, A).
where

Definition. For an LR(0) parser with nonterminal transition (p, A),

Read(p, A) = {t € T | a accesses p and [aA |]¢z
H* [aA | Y}tz Fread [@Ayt]z —* [S'L]}. O
Diagrammatically,

Read(p, A) is the set of terminals that can be read before any phrase including A
isreduced. The definition is complicated by the possibility of numerous reductions
of the empty string and nonterminals generating it, namely, y =* ¢, before the
read move finally occurs. Read(p, A) is just the “direct read symbols” (DR,
below) from ry, if y = € in the above diagram (i.e., n = 0).

All contributions to the Follow sets have now been considered, and the results
may be summarized in the following theorem, of which the previous two theorems
are corollaries:

THEOREM Up
Follow (p, A) =; Read (p, A) U U{Follow(p’, B) | (p, A) includes (p’, B)}.

(Proof is given in the Appendix.) That is, Follow(p, A) is exactly (1) the set of
terminals that can be read, via the first read, after reducing a phrase to A in the
left context “remembered” by p, before any phrase including A is reduced,
together with (2) the Follow sets of the nonterminals to which some phrase
containing A, followed at most by some nullable nonterminals, can be reduced
before reading another symbol, each such nonterminal in the appropriate left
context, of course. Diagrammatically, for n such nonterminals, B; through B,,

B4
LA X ] @ XX}
X
° 1\\ .
° \mcludes
N\
: \A :\:1'
/ ®e
. g / Yn
2" “includes
7
:Vd
LK N J W o000

(B;, B;; Bi, Bj; vi, v/ are not necessarily distinct.) The dashed arrows indicate the
includes relation. In a similar manner the Read sets can be decomposed.
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THEOREM ACROSS
Read(p, A) =; DR (p, A) U U{Read (r, C) |(p, A) reads (r, C)}.
(Proof is given in the Appendix.)
where
Definition. For an LR(0) parser with nonterminal transition (p, A),

DR(p,A) = {teT|p—2— r—t ). O

Definition. (p, A) reads (r, C) ift p—A— r—C s and C=* . O

The “direct read symbols” (DR) are simply those that label terminal transitions
of the successor state r of the (p, A) transition. “Indirect read symbols” arise
when nullable nonterminals can follow. Diagrammatically,

reads reads
/—\ / [ X N ] ~

(:) A/. ‘C1/ coo \Cn () t

C1:>'€ soe Co>"E

Here, (p, A) reads (ro, C1) reads ... reads (r.—;, C); thus, DR(r,-1, C.) C
Read(p, A) so that ¢t € Read(p, A).

In summary, to compute the LA sets, the Follow sets are needed, for which the
Read sets are needed, for which the DR sets are needed. The Follow sets are
interrelated as described by the includes relation, as are the Read sets by the
reads relation. In the next section the computation of these sets is described by
carrying information along the edges of the graphs induced by the reads and
includes relations. A graph traversal algorithm is used to determine an optimum
order for doing so, and simultaneously, to compute the sets.

4. GRAPH ALGORITHMS FOR LALR COMPUTATION

Theorems Up and Across relate Follow, Read, and DR in such a way that an
appropriate graph traversal algorithm can be applied first to compute Read from
DR, and then to compute Follow from Read. Note that DR is already directly
available in the LR(0) parser. The two graphs of interest are those induced by
the relations reads and includes, respectively. However, let us consider a more
general problem first and then return to this specific LALR application.

4.1 General Case
Let R be a relation on a set X. Let F be a set-valued function such that for all
x€eX,

Fx=F xUU{Fy| xRy} 4.1)

where F’ x is given for all x € X. Let G = (X, R) be the digraph induced by R,
that is, G has vertex set X and (x, y) is an edge iff xRy. Then F x can be efficiently
computed from F’ x by traversing G appropriately, as we shall consider first when
G is a forest, then a DAG, and finally a general digraph.
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Suppose G is a forest, such as

“n A

Each leaf x has no y such that xRy; thus F x is simply F’ x. Each nonleaf x is a
parent of one or more children; a child of x is a vertex y such that xRy, and F x
in this case is F’ x unioned with the F-values of the children of x. Thus, a
standard, recursive, tree-traversal algorithm T can be used to compute F in this
case by carrying information from the leaves to the roots.

Now consider a DAG, such as

(&) O CP

® O O

Vertices a and ¢ “share” the child b. Algorithm T correctly computes F for all
vertices, but it traverses b and its subtrees twice, once as a subtask of computing
F a and again as a subtask of F' ¢. An algorithm D, based on T, can avoid such
recomputation by marking each vertex on first encounter and never retraversing
marked vertices.

Finally, consider the general case of a digraph with cycles and possibly no roots,

for example,
(3)
: /\ “.2)
A © O O

If algorithm D were to start its traversal at vertex a, it would visit @ then b then
¢, incorrectly computing F ¢ = F’ ¢ U F’ a, although it would correctly compute
F a and F b. Worse yet, algorithm T would loop forever. Note that by the
definitionof F, FaC FbCFcCFa,soFa=Fb=Fc=F aUF bUF c
A second trip around the cycle would solve the problem for simple loops such as
the above, but in the general case there might be loops inside loops or shortcut
paths between loops, so that a “second trip” is not so easy to define.
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The generalization of such cycles is a strongly connected component (SCC), a
maximal subset V” of the vertices of a graph G = (V’, E) such that for all distinct
v;, U € V”, there is a path from v; to v; (thus, vice versa). Call an SCC trivial iff
it is a single vertex with no path to itself (recall that digraph paths must be of
length one or more). This notion has importance in later theorems.

It is easy to see, as illustrated above, that if V” = {x,, ..., x,,} then F x, =
... = F x,, and this common value contains F’ x; U --- U F’ x,.. Thus, each SCC
could be collapsed to a single vertex x” with F' x” = F' x; U -.. U F’ x,, to form
a new digraph G’. Then algorithm D could be applied and the results could be
distributed from G’ to G, for example, F x; = ... F x, = F x”. It is well known
that if all such SCCs were collapsed, G’ would have no cycles, that is, it would be
a DAG. Thus, algorithm D will work correctly on G’

Note that each vertex v in G not involved in any cycle will be the only member
of a trivial SCC and will thus appear unchanged in G’. For example, the digraph

@ G e reduces to the DAG

0, @)

In practice the collapsed graph G’ need not actually be constructed. Rather
the computation of F can be effected while finding the SCCs. The following
algorithm, Digraph, is an adaptation of one given by Eve and Kurki-Suonio
[14]. We first modified the exposition of the algorithm to improve its readability
and understandability. Then we added the three statements set off to the right to
compute F. Further explication is given below the algorithm.
algorithm Digraph:

input R, a relation on X, and F”, a function from X to sets.

output F, a function from X to sets, such that F x satisfies (4.1).

let S be an initially empty stack of elements of X

let N be an array of zeros indexed by elements of X

for x € X such that N x = 0 do call Traverse x od

where recursive Traverse x = # | Vertices |

call PushxonS
con d:Depth of S

assigh Nx «—d ;s Fx«—F'«x
for y€X such that xRy # | Edges |
do if N y = 0 then call Traverse y fi
assign N x «— Min(N x, N y) i Fxe<FxUFy
od
if Nx=d
then repeat assign N(Top of S) « Infinity ; F(TopofS)« Fx
until (Pop of S) = x # | Vertices |
fi
end Traverse
end Digraph
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The array N serves three purposes: (1) recording unmarked vertices (N x = 0),
(2) associating a positive integer value with vertices that are under active
consideration (0 < N x < Infinity), and (3) marking with Infinity vertices whose
SCCs have already been found. Each unmarked vertex is Traversed. Traverse
pushes its argument on the stack S, marks it (via N) with its depth on S, and
Traverses its “subtrees”. If ever an edge is encountered from some descendent D
to an ancestor A already on the stack (see diagram (4.3) below), then there exists
a path from A to D to A and hence at least A and D and the intervening nodes on
the stack belong to an SCC. The N-value of D is minimized to that of A to
prevent D from being popped as the recursion unwinds. (In diagram (4.3) there
is also an edge from A to B; thus A and B are in the same SCC.)

Finally, when all of the “subtrees” of some node B have been traversed and
the N-value of B has not been reduced, B is recognized as the root of an SCC
({B, A, D} in diagram (4.3)). As the SCC’s members are popped, they are marked
with Infinity. This prevents their interference in the discovery of other SCCs, for
example, {Y, Z}. If, regarding diagram (4.3), N A were not set to Infinity, N Z
would have been set to 2 and the algorithm would have incorrectly declared
{X, Y, Z} an SCC.

4.3)

THEOREM. Algorithm Digraph correctly determines SCCs.

For a proof the reader is referred to that given by Eve and Kurki-Suonio [14],
since Digraph is but a slight modification of their algorithm.

THEOREM LINEARITY. Algorithm Digraph is order | Vertices| + | Edges| of
the digraph induced by relation R, that is, linear in the “size” of R.

Proor. Traverse is called once for each vertex v, due to the immediate marking
and the avoidance of retraversing marked vertices. Inside Traverse, v is pushed
on the stack once, and the for-loop body is executed once for each edge from v.
The repeat loop executes only intermittently, when an SCC is determined, and
simply pops vertices off the stack; ultimately | Vertices | are popped since that
many were pushed. Thus, each vertex is pushed once and popped once, and each
edge from it is traversed once. [

COROLLARY. Algorithm Digraph performs one set union per edge of relation
R, thatis, Fx — FxUFy.

In fact, it is possible to reduce the number of such unions inside each nontrivial
SCC from the number of edges to the number of vertices in the SCC [14]. This
improvement would become important in “highly connected” SCCs in a grammar
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with many terminal symbols, that is, in which set unions become expensive. We
did not include the improvement here (nor in our own implementation [12])
because it would obscure the essential algorithm. In addition, nontrivial SCCs
are infrequent in practice.

THEOREM. Algorithm Digraph correctly computes F.

ProoF. The theorem is based on the following facts. First, if F' x satisfies (4.1),
then F x = U{F’ y|xR*y}; this is due to Theorem Equivalent, below. Second,
Digraph implicitly computes R* [14]. In fact, if F' x = {x}, for all x € X, then
F x = {y € X|xR*y}, the set of all vertices reachable from x in the digraph
induced by R.

THEOREM EQUIVALENT. Suppose F and F' are functions on X X 2% and R is
arelationon X X X. IfVxEX:Fx=,F x UU{F y|xRy}, then Vx€EX:F x =
U{F’ y|xR*y}.

(Proof is given in the Appendix.)

4.2 Application to LALR

Let the set X in algorithm Digraph be the set of nonterminal transitions of an
LR(0) parser. First, let F’ be DR and R be reads. Then the resulting F will be
Read, that is, according to Theorem Across, the computed result will be

Read(p, A) = DR(p, A) UU{Read(r, C) | (p, A) reads (r, C)}.

Second, let F” be Read and R be includes. Then the resulting F will be Follow,
that is, according to Theorem Up,

Follow(p, A) = Read(p, A) UU{Follow(p’, B)|(p, A) includes (p’, B)}.
Finally, compute
LA(q, A - w) = U{Follow(p, A) | (g, A = «) lookback (p, A)}

according to Theorem Union. Thus, the desired LALR(1) look-ahead sets result
from two applications of algorithm Digraph and a final series of set unions.

From a relational point of view, ¢t € LA(g, A — ) iff (9, A — w) lookback
(p, A) includes* (p’, B) reads (r, C) directly-reads ¢, where

Definition. (r, C) directly-reads t iff t € DR(r, C). O

Watt proposed this formulation, although he (erroneously) omitted the reads
relation altogether [24]. Watt’s proposed bit matrix representations of the sparse
relations reads and includes would be wasteful of space and time; for example,
for a particular Ada grammar [13], each matrix contains almost five million bits
(see Table I in Section 6.1). We have effectively provided an efficient way to
compute R = reads* - directly-reads (Read), then I = includes*-R (Follow),
and finally lookback -7 (LA).

4.3 Need for Digraph

Finally, we demonstrate that the generality of algorithm Digraph is needed
because both the digraphs induced by includes and reads can, in general, be
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non-DAGs. In each case the existence of a nontrivial SCC implies that the
grammar is not LR(%) for any %2 and may or may not be ambiguous.

4.3.1 SCCs in the includes Relation
Consider the LR(0) parser with the following state diagram:

Start A L S+AL
\»\\
b \\ /’-_—_\\
A+bB N
~
~
\\
B=cC |

~ e {4.4)
N Vs
d > “\A)Q }C-»dA

A->a

\..

. a

The dashed lines indicate the edges of the digraph induced by the includes
relation. The digraph is not a DAG, since there is a cycle, and the corresponding
grammar is not only LALR(1) but LR(0). (Adding the production A — b would
make it non-LR(0), but stili LALR(1).)

The above example, is, however, “dangerously close to being non-LR”, in the
sense that, if the Read set were nonempty for any of the A-, B-, or C-transitions
involved in the loop, then the grammar would not be LR(k) for any k. It is our
belief that the following generalization of this statement holds:

Conjecture Includes-SCC.' Let (p, A) be a nonterminal transition that is in a
nontrivial SCC of the digraph induced by the includes relation. Then the
corresponding grammar is not LR (%) for any & if Read(p, A} # @. O

Such a problem can be illustrated in the above parser by adding the production
B — ¢Cf. This changes state Cy to the following:

@ B>cC

f OB+ch

' A related, but simpler, result is proved by Pager [22, p. 41]. Unfortunately, Pager’s result does not
seem to help in proving this conjecture.
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Thus fis in DR, Read, and Follow of the C-transition; thus it is in the Follow set
of the A-transition in the loop; thus it is in Follow for the B -transition; thus it is
in LA(Co, B — ¢C); and hence there is a read-reduce conflict, since f can also be
read from state Co. (The symbol L is the only other symbol in each of these
Follow =ets, due to the A-transition from the start state.)

The grammar is not only non-LR but is also ambiguous. The ambiguity is
evident in that B =* ¢dbB and distinctly B =* cdbB f. This is essentially the
classical “dangling else problem”, where f is the else clause and cdb is the if-
then clause: B =* cdbB =* cdbcdbBf and distinctly B =* cdbB f=* cdbcdbBf.

This example can be made arbitrarily more subtle and complex by adding
strings of nullable nonterminals to the ends of the various productions and prior
to the fin the added production. Additionally, changing B — ¢C to B — cCX, for
example, where X — ¢, still produces a read-reduce conflict on symbol £, but now
the production involved is X — e in state Cy. If instead B — ¢Cf is changed to B
— ¢CXf, then a reduce-reduce conflict results on symbol f in state Co, since
LA(Co, B— ¢C) = {f, 1L} and LA(Co, X — ¢) = {f}.

4.3.2 SCCs in the reads relation
Now consider the LR(0) parser whose state diagram is

( Start) B>«

QQ——%OS-»A.L

(4.5)

4
\ e

\_ a

Here the dashed lines represent the edges of the reads relation. DR for the two
B-transitions and the C-transition is empty, but for the D-transition it is {a}.
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Thus Read for each is {a} because the B’s read C-, C- reads D-, and D- reads
(the lower) B-transition. Hence a read-reduce conflict results on symbol a in
state Dy, since LA(Do, B — ¢€) contains Follow of the lower B-, which contains
Read of the lower B-, which contains a.

In this particular case the grammar is ambiguous, since the empty string can
be reduced to BCD many times prior to reducing to A, the only a in the only
string in the language. However, by changing production A — BCDA to A —
BCDA f the ambiguity is eliminated, while retaining the conflict. Now the gram-
mar is unambiguous, since the number of f’s fixes the number of reductions of
empty to BCD, but it is still not LR(%) for any &, since the BCDs must be reduced
before a is reduced to A, but the f’s follow the a. In general,

THEOREM READS-SCC. If the digraph induced by the reads relation contains
a nontrivial SCC, then the corresponding grammar is not LR(k) for any k.

5. OVERSIMPLIFICATIONS

Two “clever ideas” come to mind, each of which is shown below to be inadequate.

5.1 NQLALR(1) Parsers

The most notable one, an oversimplification of the computation of LALR(1) look-
ahead sets, has been invented independently by several researchers [7, 11, 23, 25]
and continues to be reinvented. It involves defining another relation receives
that is closely related to the union of includes and reads and leads to what we
call ‘“not quite LALR(1)” or NQLALR(1) parsers. The basic idea is to relate
states rather than transitions. The reasoning is that LA(g, A — w) must include
all symbols that can be looked-ahead-at or read from any “restart” state s such
that there is a “look-back” state r with an A-transition to s and path spelling
to q:

\\Iookback’
\

ooo—»@ A~>w

If w is reduced to A in g, r may be the top state after popping | w| states. Then A
is read and s entered, so any symbol looked-ahead-at or read by s would be in
LA(g, A - w), or really NQLA(q, A — w). Any state s’ reachable from s by
reductions also contributes:

| receives

I
oX-.—»—@ B>Y
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If we reduce vy to B in s, then we may enter state s’, and any symbol valid to s’ is
in NQLA(g, A — ). Formally,

Definition. (g, A — w) lookback’ s iff there is an r € K such that

r—A s and r—.9.>gq, where A— w-Eq. ]

Definition. s receives s’ iff (s, p) lookback’ s’ for some production p. [

Definition

NQLA(g, A — w) = U{NQFollow(s)|(g, A — w) lookback’ s}. O
Definition

NQFollow(s) =, NQDR(s) U U{NQFollow(s’) | s receives s’}. O

Definition. NQDR(s) = {t € T | Next(s, t) is defined}, that is, the same as DR
except defined for states rather than transitions. O

THEOREM. NQFollow(s) = U{NQDR(s’} | s receives* s'}.
COROLLARY
NQLA(q, A — w) = U{NQDR(s)|(q, A = w) lookback’ - receives* s}.

The theorem follows from applying Theorem Equivalent to the definition of
NQFollow, and the corollary follows from back-substitution into the definition of
NQLA.

Note that the nullable nonterminals cause no problem here. For example,

/
e D (d)
Orves

\
\

\
o%’o—»@ A>w

The dashed arrow from s to s’ comes directly from the definition of receives and
obviously serves a purpose similar to the edges of reads. Thus, NQLA(g, A —
w) is just the union for all the NQDRs of the states reachable via
lookback’ e receives*. Our old IBM 360 implementation [11] just computes
lookback’ e receives* via bit matrix techniques, then unions the related read
sets (NQDR) to get the NQLAs.

The inadequacy of NQLALR arises from the fact that inappropriate “paths of
reductions” are traced through the parser, in effect, first reducing w to A and
landing in state s, but then reducing in s, say B — xA, without requiring that the
same A-transition that led into state s be involved when leaving via reduction.
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The following LR(0) parser illustrates this point:

lookback’

S'>agd S'+bgc

The relevant receives and lookback’ edges are indicated by dashed arrows.

In this case both NQLA(go, B — g) and NQLA(g,, B — g) contain {c, d},
because the receives relation connects state B, with both states Ao and A,, which
can read ¢ and d, respectively. Hence the grammar is not NQLALR(1) because
we have read-reduce conflicts in both states g and g;. The grammar is, however,
LALR(1) and our correct approach (and our new implementation [12] results in
LA(go, B— g) = {c} and LA(g,, B — g) = {d}, which are the correct LALR(1)
sets. It would be instructive for the reader to draw in the two lookback and the
two includes edges and observe how the two halves of the parser remain
separated.

It is easy to see that LA(q, A - w) C NQLA(qg, A — ); this is because (g, A
— w) lookback (p, A) only if (g, A —> w) lookback’ Next(p, A), and (p, A)
includes (p’, B) only if p receives Next(p’, B). NQLALR look-ahead sets are
only “slightly larger” than LALR look-ahead sets. In practice, we have encoun-
tered only a few programming language grammars that are LALR but not
NQLALR. NQLALR is a large improvement over SLR, however. In summary,
SLR-LA(g, A - w) D NQLA(q, A - w) D LA(gq, A — w).

5.2 Combining includes and reads

The second oversimplification consists of unioning includes and reads and
running the Digraph algorithm only once. It implies that instead of computing

Follow(p, A) = U{DR(r, C) | (p, A) includes* creads*(r, C)}

as described above (this formula can be obtained by applying Theorem Equivalent
to rewrite the expressions for Follow and Read (see Theorems Up and Across)
and back-substituting the rewritten Read in the rewritten Follow), we instead
compute

Follow(p, A) = U{DR(r, C) | (p, A) (includes U reads)*(r, C)}.

The two equations are not equivalent in general, as indicated by the following
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counterexample:

\ lookback

q—»‘)ﬁ» d OS’->cd

C=>c

LA(co, C — c¢) contains Follow of the C-transition which reads the D-, which
reads the E-, which includes the upper B-transition, whose DR set contains d,
so a read-reduce conflict results in ¢,. On the other hand, with the correct
approach the relevant LA set contains g only. We have seen no one make this
oversimplification, but it occurred to us when we tried to reduce the number of
applications of Digraph from two to one.

6. LALR IMPLEMENTATION

A complete procedure to compute LALR(1) look-ahead sets from an LR(0)
automaton is as follows:

. Compute which nonterminals are nullable.

. Initialize Read to DR: one set (bit vector of length the number of terminals) for each

nonterminal transition, by inspection of the transition’s successor state.
. Compute reads: one list of nonterminal transitions per nonterminal transition, by
inspection of the successor state of the latter transition.
. Apply algorithm Digraph to reads to compute Read; if a cycle is detected, announce
that the grammar is not LR(k) for any 4.
. Compute includes and lookback: one list of nonterminal transitions per nonterminal
transition and reduction, respectively, by inspection of each nonterminal transition and
associated production right parts, and by considering nuilable nonterminals appropri-
ately.
F. Apply algorithm Digraph to includes to compute Follow: use the same sets as
initialized in part B and completed in part D, both as initial values and as workspace.
If a cycle is detected in which a Read set is nonempty, announce that (as we conjecture)
the grammar is not LR(k) for any k.

G. Union the Follow sets to form the LA sets according to the lookback links computed
in part F.

H. Check for conflicts; if none, announce that the grammar is LALR(1)—we have a parser.

m U Q Wpe

6.1 Efficiency

The number of bit vectors needed and the number of relation edges traversed
may be minimized by following the strategy given below.
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First, the assignment F(Top of S) « F x in algorithm Digraph should only be
done if x # Top of S. This saves the expense of the set copy for trivial (singleton)
SCCs, which in fact are in the majority. (Avoiding all set copy expense in
nontrivial SCCs by doing the assignments by reference, that is, by having F(Top
of S) and F x point to the same bit vector, will not work; the scheme described
here uses the same bit vector to represent the Read set and the Follow set of
each nonterminal transition. Since the SCCs of the reads and includes relations
are different, this would imply different “sharing” and would in fact invalidate
the algorithm.) _

Next compute the includes and lookback relations as described in step E
above. Initially, allocate no sets to the nonterminal transitions. If the grammar
contains any nullable nonterminals, then only for each nonterminal transition
(p, A) involved in the reads relation, apply Digraph (with R = reads) to compute
Read(p, A). Afterward, the only transitions having sets allocated to them will be
those involved in the reads relation (typically, few or none at all). For each such
transition (p, A), the set will be equal to Read(p, A).

Rather than specially detecting the transitions involved in the reads relation,
the latter application of Digraph can be achieved by applying it to all nonterminal
transitions where Digraph has been modified as follows: delete the assignment
F x « F’ x; insert code to detect either fetching (F, x) or storing (F x « ---)
Read(p, A) when (p, A) has not had a set allocated to it. In such a case Digraph
should allocate a set to (p, A) and initialize it with DR(p, A) (F” x).

Finally, note that the reads relation need not be precomputed (step C above)
since it can be easily retrieved from the LR(0) automaton as Digraph needs it.

For each inconsistent state g and final item A — w- in g, follow each lookback
edge to a nonterminal transition (p, A). Invoke Digraph on (p, 4) (with R =
includes) to compute Follow(p, A). Take the union of all the Follow sets
indicated by lookback to obtain LA(g, A — ). With the modifications made to
Digraph and the Read set computation as described above, any transition (p, A)
inspected by Digraph when computing Follow will either have a set allocated to
it that contains Read(p, A), or Digraph will allocate a set to it and initialize it to
DR(p, A), which must equal Read(p, A), because no set was allocated. Thus
Read(p, A) will be either already computed or computed when needed by
Digraph.

Due to this strategy, sets are needed only for those transitions involved in the
reads relation or needed for the computation of the look-ahead set of final items
in inconsistent states; in addition each such item needs a set to represent its look-
ahead set. The only relation edges traversed will be the reads edges and that
subset of the includes and lookback edges needed for the look-ahead set
computation. Thus, fewer set unions and less set storage are needed, as described
in Table 1.

Table I lists the total number of unions performed by our implementation. This
equals the sum of the number of includes, lookback, and reads edges plus a
few more unions that occur when Digraph copies the F value of the root of an
SCC to the values of the other vertices in the SCC (for Pascal, e.g., there were 4
SCCs with a total of 30 vertices, and 841 = 552 + 256 + 7 + (30 — 4)). Under the
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Table I. Relations Sizes, Sets Required, Timing Statistics, and Comparison
with YACC

Edges traversed/
actual edges

Grammar Unions includes lookback reads Sets FI

PAL 1754 1160/1336 571/1565 0 555 25
XPL 660 423/ 613 233/ 978 0 279 26
PASCAL 841 552/ 579 256/1134 7 344 51
SL300 3678 2298/3226 1360/5845 27 1340 152
Ada 4534 3051/4739 1388/6501 69 1376 161
Ada’ 2875 2641/4739 139/6501 69 1236 21

SCC NTX LR(0) LA YACC Reference

PAL 25 590 497 745 9503 [4]
XPL 5 420 3.43 4.09 5292 [21]
PASCAL 30 337 436 5.12 6096 [15]
SL300 23 1886 ? ? ? [8]
Ada 7 2257 ? ? ? [13]
Ada’ 7 2257 ? ? ? [13]

heading Sets in the table is recorded the total number of bit vectors (Read,
Follow, LA) that are required. By subtracting the number of actual look-ahead
sets for final items (FI) in inconsistent states from the Sets column, one may
determine how many sets were allocated solely to nonterminal transitions. The
SCC column records the total number of vertices of the includes relation
involved in nontrivial SCCs. NTX is the number of nonterminal transitions. The
CPU time in seconds for the LR(0) computation and the look-ahead (LA)
computation is for an HP-3000 computer with a 1.5 us memory and includes
checking for the LALR(1) condition. YACC tends to perform five to eight times
as many set unions as does our algorithm (the YACC column).

Both SL300 and Ada were too large to run on YACC. Neither could they be
run on the memory-limited HP 3000, and timing statistics for the machine they
were run on are not available. The Ada grammar referenced is close to the
grammar used to produce the statistics; the latter has not yet been published.
The Ada’ entry is explained in a later section.

A slight time improvement could be made by only traversing necessary reads
edges. Do not apply Digraph separately to compute Read sets. Rather, compute
only the Follow sets. While computing a Follow set, if Digraph discovers a
transition (p, A) for which Read(p, A) has not yet been computed, it calls itself
to compute Read(p, A). To do this requires separate allocation of Read(p, A) and
Follow(p, A); otherwise, the intermixing of the computation of Follow with that
of Reads would be tantamount to the oversimplification described in Section 5.2.
Since there are so few reads edges, the extra space needed is not worth the time
saved.

To reduce storage consumption, an implementation should only store those
lookback edges demanded by look-ahead computation. Lookback edges leading
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from final items in consistent states should be discarded. For Ada, for example,
only 1388 lookback edges were needed, 21 percent of the total. In fact, more
space and time can be saved by using SLR(1) look-ahead sets to resolve incon-
sistencies in as many states as possible. The Ada’ row in the table indicates the
results if this is done; only 21 final items need LALR(1) look-ahead sets, and only
139 lookback edges are useful. Further, fewer includes edges are traversed,
reducing the number of set unions and sets needed. Certainly, if a grammar is
SLR(1) then none of the includes/lookback computation is necessary.

SLR(1) look-ahead sets may be computed from the LR(0) parser and the Read
sets by an application of Digraph. SLR-LA(q, A — «w) = SLR-Follow(A) =
U{Read(p, B)| B =* BAy, y =>* ¢, B € V*, and (p, B) is a nonterminal
transition}. This was first observed by DeRemer [10], with minor errors regarding
nullable nonterminals. Restated, SLR-Follow(A) = F’ A U U{SLR-Follow(B) | A
R B}, where F’ A = {Read(p, A} | (p, A) is a nonterminal transition} and A R B
iff B =* BAy, vy =* ¢, thus casting the SLR definition in a form suitable for
computation by Digraph.

In fact Digraph is generally useful in computing other functions on context-
free grammars, for example, whether a nonterminal can be derived from the start
symbol or whether a nonterminal is both left and right recursive. This is
essentially due to Digraph’s relationship with the transitive-closure problem
[14]. Replacing standard fast bit-matrix techniques by a variant of Digraph
tripled the speed of the grammar-checking phase of the MetaWare™ translator
writing system [12]. For sparse relations, Digraph does a much better JOb of
computing transitive closure than do bit-matrix techniques.

6.2 Linearity

Algorithm Digraph is linear in the size of the relation to which it is applied, as
established by Theorem Linearity of Section 4. For practical grammars, the size
(number of edges) of the includes relation is about two to three times the
number of nonterminal transitions in the parser. Each nonterminal transition
(p, A) has one includes edge to it for each production for A that ends in a
nonterminal B, or By where y =* ¢, that is, usually only two or three at most.
The reads relation is virtually nonexistent in practical cases, so it can be ignored.
Thus, for practical LR(0) parsers, Digraph is about linear in the number of
nonterminal transitions. These statements are substantiated by the statistics
given in Table 1.

In the worst case the size of the includes relation could be proportional
to the square of the number of nonterminal transitions, since the relation
could be nearly complete, that is, x includes y for all nonterminal transitions x
and y. This worst case is illustrated by the grammar whose productions are
{S—= 84,8 - S;,Si— t|1 <t j=< n). Ignoring the path [S, 1], the LR(0)
parser for this grammar has n nonterminal transitions, one for each S;, 1 <i<n,
and each has n includes edges to it; that is, each nonterminal transition has an
edge to it from each of the others and from itself! Of course, this example is
contrived, highly ambiguous, and has no redeeming virtue from a practical
viewpoint.
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6.3 Comparison with Other Algorithms

Both the algorithms of Aho and Ullman [3] and Anderson et al. [6] work by
“propagating” look-ahead sets across the edges of an implicit (virtual) graph.
When propagation causes the look-ahead information at a vertex to be increased,
the vertex is queued up so that it may in turn cause propagation of the new
information to other vertices. This process is iterated until the queue becomes
empty. The order of propagation may not be optimal, in the sense that each edge
is traversed only once. This causes the YACC algorithm to perform considerably
more poorly than ours, as indicated by Table 1. (YACC in fact does not even use
a queue, but repeatedly scans all vertices until propagation ceases [3]. The author
of YACC thought it might perform better on ambiguous grammars, which it
accepts, but in fact it is even worse for them than for unambiguous grammars.)

LaLonde’s algorithm [20] is essentially algorithm D of Section 4, but to avoid
incorrect computation of look-ahead sets (see digram (4.2)), no information is
retained at the vertices between the computation of the look-ahead sets for
distinct reductions. Thus, edges may need to be traversed repeatedly as different
look-ahead sets are computed.

In contrast to the abovementioned algorithms, ours traverses each edge exactly
once.

Kristensen and Madsen [19] have improved LaLonde’s algorithm so that
intermediate results exactly analogous to our Follow sets are retained and used
for future computation. To accomplish this, Kristensen and Madsen’s algorithm
detects SCCs by occasionally adding certain vertices to the sets F x being
computed. After traversing the successors of a vertex x, either F' x contains no
vertices, or it contains exactly one vertex v. In the former case x is the root of a
trivial SCC; in the latter, if v = x, then x is the root of a nontrivial SCC, and all
occurrences of x in sets F'y are replaced by F x — {x}. The technique is clever but
somewhat clumsy (all details have not been given here), and in fact the UNION-
FIND algorithm [2] is necessary to keep the complexity of Kristensen and
Madsen’s algorithm to (very close to, but not exactly) linear in the size of the
relation traversed. We believe that their algorithm incurs greater overhead than
ours.

Kristensen and Madsen effectively use relations item-includes and item-
lookback that are similar to includes and lookback but are defined on items
instead of nonterminal transitions. Thus the vertices of the graph traversed are
items. Since each nonterminal transition (p, A) in the parser in general is the
result of one or more items B — §- Ay in p, Kristensen and Madsen’s approach
incurs the cost of additional F sets. Since Kristensen and Madsen present no
empirical data, it is difficult to determine the practicality of their algorithm.

In contrast, our algorithm nowhere uses the concept of item; thus all LR items
may be discarded before look-ahead set computation beings. As a consequence,
our algorithm may work on other than LR automata. For example, it may be
possible to define an automaton using a precedence technique such that, if our
algorithm is applied, it will compute some “precedence look-ahead sets” and thus
determine whether the grammar is, say, simple precedence. We leave the explo-
ration of such ideas for future research.
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LR items are necessary, however, to produce the diagnostic debugging traces
described in the next section.

7. DEBUGGING GRAMMARS THAT ARE NOT LALR(1)

As a pleasant by-product of our research into the area of look-ahead set compu-
tation, we found that the edges of the includes and lookback relations are just
what are needed to produce helpful debugging information for grammars that are
not LALR(1). These edges link back through the automaton from look-ahead
sets, in particular those involved in conflicts, to the sources of the conflict symbols
(CSs). This is exactly the trace through the grammar that the user usually has to
find manually. For example, the MetaWare™ translator writing system [12] prints
roughly the following trace for the conflict in state Co of a parser like that of
diagram (4.4), to which the production B — ¢Cf has been added to introduce the
conflict:
Al
bB
c Cf
|
dA (7.1)
b B
¢ Creduce B—cC-{f}?
read B—ocC.f ?

The diagram indicates that after the parser has read bedbcC and sees an f, it
has two courses of action:

(1) reduce cC to B, reduce bB to A, reduce dA to C, read f; or
(2) read f.

Item B — ¢C - f in state Top [bcC] contributes an f to LA(Co, B — cC) by virtue
of the productions C — dA, A — bB, and B — ¢C that trace a path from p’ =
Top [bc] to Co. The trace consists of two derivations, and each right part in a
derivation is positioned vertically beneath the nonterminal that derives it. The
derivation above the line consisting of the single vertical line shows how the start
state traces a path to p’. Immediately above the vertical line is the item that
contributes the look-ahead symbol . Below the vertical line is the derivation from
the (nonterminal C in the) contributing item to the inconsistent state, ending in
the final item with the conflict. The latter derivation induced the lookback and
includes edges that relate (Co, B — ¢C) to transition (p’, C), whose Read set
contains f. Item B — ¢C-f in C, causes f to be a read symbol also; hence the
conflict.

Consider next the parser of diagram (4.5) and the following trace for state Do:

Al
BCDA

| A (7.2)

€ reduce B —¢- {a} ?
read A—-.a ?
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The parser’s two choices of action are

(1) reduce € to B, reduce € to C, reduce ¢ to D, read a (after which a is reduced
to A); or
(2) read a.

Item A — B-CDA in state Top [B] contributes a to LA(Start, B — ¢) by virtue
of the production B — € and the fact that CDA =+ A. This latter derivation is
presented just to the right of the “tower” of vertical lines. Notice how C and D
“vanish” in the derivation because they are nullable; here C — € and D — ¢ are
productions. Were C or D not to directly derive ¢, the additional derivation steps
could be printed; however, we feel this would clutter the trace.

The general form of a trace is as follows:

S i
81 Bl 131
61 B2 vy <« Derivation from the start state
8. B, v,
a B B < to the contributing item.
| B2
| .
. <« How the contributing item

| Bm-i (7.3)
| ¢t P <« contributes £
|
3] A1 Y1

az Az vz <« How the contributing item

as-1 A, 1ys—1 <« relates to the item with the CS.
o reduce A,_; — a,- {t} ?
(list of conflicting items here)

Here, item B, — aB- 8, in Top [61 - -+ 8,aB] contributes ¢ to the look-ahead set
of A1 — o« because B = = ... = {B as shown, and because the chain of
productions below the vertical line causes 4., — a5+ to be related to the B-
transition via lookback o includes*; here each y;=* € (but not necessarily so for
each ;). Each A, and B; and the B produces the right part below it.

Traces are constructed by beginning with a final item A,., — a.,- in an
inconsistent state ¢ and traversing a lookback, then some includes edges until
a nonterminal transition (p’, B) is found whose Read set contains one of the CSs.
There exist one or more items B, — aB - B1in Next(p’, B) such that B, =* tBm
and ¢ is a CS. A trace should be printed for each such item (barring redundant
traces; see below). (Note that we do not inspect the Follow sets during the
traversal from A,_; — a,.. While Follow(p’, B) may contain a CS, there is no
guarantee that Next(p’, B) contains CS-contributing items; Follow(p’, B) could
have inherited its CS from another Follow set. CSs “originate” at Read sets, not
at Follow sets.)
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The trace consists of three components:

(a) the derivation from S’ that gave rise to B, — aB- B in Next(p’, B);

(b) the derivation of ¢8,, from B;; and

(¢) the productions that induced the includes and lookback edges from
(q; As—l - as) to (p,’ B)

For component (c) a breadth-first search should be employed during the
original traversal of the includes edges. This keeps the size of the includes
“chain” to a minimum, giving the “simplest” possible explanation to the reader.
The production inducing an includes edge from (pi, Xi) to (ps2, X2) can be
rediscovered by following the automaton transitions from state p» under the right
parts of productions for X,. Thus, inducing productions need not have been
redundantly stored when the includes edges were originally computed.

For component (b), compute the set

E=, {B,— aB-Bi}
U{A>8X-m |A—>8XnEENX="¢}
U{C—-a |A—>8-Cn€EENC—a€EP}

linking additions to E back to the item that generated them. Items of the form C
— . tBn with t a CS will be in E and can be traced back to B, — aB-f; by
following the links. All derivations of CSs from S can thus be produced.

Component (a) requires two computations. First, find the shortest path [£]
from the start state to Next(p’, B). In our own implementation, this entails
repeatedly asking for the lowest numbered state that has a transition to a given
state, since the states are computed and numbered in a breadth-first manner.
Then compute

E = {(S>-841,1)
U {(C—>-a,)) | (A= 6-Cn,j) EE'ANC— a EP) (7.4)
U{A>8X-nj+1)|(A—>8-Xn))EENX=§NAT=|E])

in a breadth-first fashion, linking additions to E’ back to the pairs that generated
them. Eventually (B, — aB - 81, |£| + 1) will appear in E’, and the computation
may stop: all of E’ need not be computed. The desired production sequence may
be obtained from inspecting the links. The breadth-first search and the fact that
[£] is the shortest path keep the size of the production sequence to a
minimum. [£] also serves to limit the size of E’ by constraining the addition of
pairs.

In practical grammars, an item B, — aB-f: may appear in several different
left contexts, and in each may contribute First 8, to the same particular LA set.
Therefore, to prevent redundant trace output, only one trace per contributing
item for an LA set should be printed. Additionally, if (referring to trace (7.3)) Bm—1
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immediately derives more than one string of the form ¢8,, with ¢ a CS, then all of
those strings can be listed on successive lines.
The following informal trace-printing algorithm summarizes the foregoing:

for each inconsistent state ¢
do let Conflict-set = the set of symbols for which ¢ is LALR(1) inconsistent
for A,.,— a,- € g such that LA(q, A,-1 — a,) N Conflict-set # &
do let EI=¢ # EI = Explained items.
for (p’, B) found in a breadth-first manner such that
(g, A1 — a,-) lookbackeincludes* (p’, B) N\ Read(p’, B) N
Conflict-set # &
do let T=9

for I= B,— aB- B € Nucleus(Next(p’, B)) such that I € EI

do for each derivation 8; =* tB, such that ¢t € Conflict-set
do Print trace components (a), (b), and (c) above
assign EI < EIU {(I}; T < T U {¢}
od

od

# See “Read-item traces” below for next three lines:

for I=D, - ¢ ty,Egsuchthatte T
do Print read-item trace for I
od

od
od
od

Read-Item Traces. While the tracing methods presented thus far indicate how
terminals enter into look-ahead sets, they do not show how (conflicting) read-
transitions arise in inconsistent states. Such information would be useful to the
user trying to determine why the parser can either reduce or read in a particular
inconsistent state.

Trace (7.3) indicates why the parser can reduce when the stack contains £ =
8i---8,aa - -as. A read trace corresponding to trace (7.3) should indicate why
the parser can read when the stack contains £ Such a trace appears as follows:

S 1
§1 D, Th
§2 D, n2

gr—l Dr—l Nr-1
&t read D,_; — &7

where &;---§& = £ and each D; produces the right part on the next line. The
constraint on the £&/’s guarantees the correspondence; consequently, the inconsist-
ent state g contains D,_; — &+ 7, the “conflicting” item.

For each conflicting read item I = D,_; — £ f3, in g, the shortest possible trace
can be constructed for I by the computation described in (7.4) above, except
where £ is replaced with &;..-8,.aa:- - -as, and the computation stops when I is
produced in E’.
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For trace (7.1), the MetaWare™ translator writing system produces the follow-
ing read-conflict trace:

Al
b B
¢ C
dA
b B
¢c C-f read B— cC.f?

For trace (7.2), the corresponding trace produced is

Al
‘a read A — -a?

The above traces are simple enough that the reader may not be convinced that
they are generally useful. Consider, however, the following traces produced by
the MetaWare™ translator writing system for an Ada grammar that was not
LALR(1):

Ada-compilation L
Compilation-unit
Program-unit
Subprogram-body
Subprogram-spec is Unit-body
Dclns begin Compound end
Declaration ;
Subprogram-spec is separate
|
procedure (ID) Params
€ reduce Params — ¢- {is} ?
Ada-compilation L
Compilation-unit
Program-unit
Subprogram-body
Subprogram-spec is Unit-body
Dclns begin Compound end
Declaration ;
Subprogram-dcln
procedure (ID).is new Name read... -is...?

Here, after the left context Subprogram-spec is, either another Subprogram-spec
can produce a procedure header with an empty parameter list, or a Subprogram-
dcln can produce a generic instantiation of a procedure. Clearly, the traces
pinpoint the problem.

Reduce-Reduce Conflicts and LALR Versus LR. For read-reduce conflicts,
we have advocated displaying corresponding traces that show how either the
read or the reduction is legal, given a particular left context (parse stack) [£]
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(=261 -0naai- - - in reduce trace (7.3)). However, for a reduce-reduce conflict,
say between productions p; and p., our algorithm does not necessarily print
corresponding traces for p; and p., that is, traces that share the same left context.
Indeed, it is possible that no trace for p; will have the same left context as any
trace for p,.

This can happen in the following two circumstances: (1) the grammar is LR(1)
but not LALR(1);? (2) an “accident” of our algorithm occurs. In either case, the
person debugging the grammar may be confused: since the traces do not show
why two different reduce moves are possible given a single left context, he may
not understand why the conflict exists.

In the first case, when a reduce-reduce conflict exists both in the LALR(1) and
the LR(1) automaton, a trace for each reduction exists (in each automaton) with
the same left context. This is due to the LR(%) definition. But when the conflict
is present in the LALR(1) automaton and not in the LR(1) automaton (call such
a conflict LALR-only), then no such corresponding traces exist. The space-saving
aspect of the LALR construction technique can cause a conflict by “merging”
together two distinct left contexts.

In the second case, because we suggest printing only one reduce trace per
contributing item and printing the shortest path from the start state to the item
(these measures reduce the volume and size of the reduce traces), it is possible to
construct a grammar that has an LALR-only and a distinct LR conflict, but for
which no two printed reduce traces have the same left context. One might then
erroneously guess that the conflict is LALR-only.

One way to avoid such confusion is as follows: when a reduce-reduce conflict
occurs for productions pi, ps, . ..., pr, produce traces for p;; then, for the other
productions, produce only traces that correspond to the traces for p,. If no
corresponding trace can be found, then an LALR-only conflict has been pin-
pointed and should be reported as such (and noncorresponding traces should
then be printed). But again, due to our limited selection of traces for p,, even if
corresponding traces for po, . . . ., p, are found, this does not necessarily mean that
the grammar has no LALR-only conflicts. Some other (nonprinted) trace for p;
might shed light on such a conflict.

However, if the user iteratively removes the traced conflicts from his grammar
and resubmits the grammar to the generator, the omitted trace will eventually
appear. Thus, while the generator does not necessarily indicate all conflicts in a
single run, it will eventually pinpoint all conflicts and indicate whether they are
LR or LALR only. This seems to be an acceptable solution, since users (and we)
can typically only cope with a few conflicts at a time anyway. In practice, we
have never encountered an LR reduce-reduce conflict for which the algorithm,
as presented in the prior subsection, has not yielded corresponding traces. In
addition, we have seen only one practical grammar containing an LALR-only
conflict, and it was indicated by the lack of corresponding traces.

The best solution would be never to produce an automaton with LALR-only
conflicts. The state-splitting approach suggested by Pager [22, p. 38] could be

%It is well known that any read-reduce conflict present in the LALR automaton is also present in the
LR automaton. Thus, corresponding read-item traces may always be produced.
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employed to expand the LALR(1) automaton so that it is locally LR(1) where
reduce-reduce conflicts occur (and thus any LALR-only conflicts are eliminated).
Then, corresponding reduce traces may always be found. LALR is too complicated
a notion for the average translator writing system user to spend time unraveling—
he needs to know what an LR item is, how states are constructed by merging
item sets, etc.; consequently, correcting LALR-only conflicts is usually not easy.

In contrast, the traces presented in this section require no concept of item or
of item-set merging. The user need only know that the parser’s interpretation of
the input text is restricted to one-symbol look-ahead; the traces pinpoint how
two different interpretations of the same text (prefix) can arise. Anyone who can
understand the LR(%) definition can understand the traces (assuming LALR-
only conflicts have been removed by state-splitting and corresponding reduce
traces are provided). The majority of MetaWare™ translator writing system users
know little or nothing of LR automaton construction, and many do not understand
the LR(%) definition; yet they have profitably used the traces. An important
aspect of our traces is that they are well engineered for humans, that is, they
relate to the grammar via derivations, not states or items.

Kristensen and Madsen [18] show how to determine when a grammar is LR(k%)
(versus LALR(%)) by inspecting only the LR(0) automaton. They present diag-
nostic traces that distinguish between LR and LALR-only conflicts. Although
their results are theoretically interesting, the LALR-only traces are not very
useful in practice for the general translator writing system user, as we have
already argued. The example traces they present rely heavily on the reader’s
technical knowledge of LR and LALR automata, and as such are appropriate
only for persons well trained in LR theory.

In summary, from the algorithms presented in this section we may produce
diagnostic debugging traces that pinpoint both LALR-only and LR conflicts in
the grammar. Such traces are easily read by even a novice grammar designer,
and they are an essential component of any well-engineered translator writing
system.

8. CONCLUSION

The two relations includes and reads have been defined to capture the essential
structure of the problem of computing LALR(1) look-ahead sets. The look-ahead
sets may be computed from information obtained by two successive applications
of a graph traversal algorithm, one to each relation. The algorithm is linear in the
size of the relation to which it is applied. Thus, barring minor and constant
improvements in underlying representations, we suspect that this is the best
possible algorithm for this problem. We leave any proof or disproof of this
conjecture for future research.

A conjecture and a theorem relating the appearance of nontrivial SCCs in the
includes and reads relations to properties of the grammar were presented. The
relations were shown to be valuable for printing information to aid the grammar
designer in debugging non-LALR(1) grammars.

Finally, the popular NQLALR algorithm was formalized and proved incorrect.
This should help others avoid the same mistake.
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APPENDIX. PROOFS OF THEOREMS
Proor oF THEOREM UNION
LA(q, A — w)
= {t € T|[aw]tz Fa_,, [aAJtz H* [S'L] A aw accesses g}
= {tE€T|[aA])tzH* [S’L] A aw accesses g} (by Lemma 1, below)
={tET|[aA}MzH*[S’L], aaccessesp Ap—-%.— g}
= U {Follow(p, 4)| (g, A — w)lookback(p, A)}. O

}

LEMMmA 1
{t € T|[aw]tz H* [aw| ]tz Fasey [@AJtzH*[S71]
={teT| [aAltz*[S'L]}.

ProoF. Due to the LR(0) parser construction, if [a#A] is a path, so is [aw] and
[awy] and in fact for every z € T*, [aw]z H* [aw]|y)2 Fas, [ad]z. O

Proor oF THEOREM Up. We prove the following equivalent to Theorem Up
(see Theorem Equivalent): Follow(p, A) = U{Read(p’, B) | (p, A) includes*

(p’, B)}.
Follow(p, A) = {t € T|[aA)tz+* [S'L], « accesses p}
= {t € T|[aA )tz =* [’ ]tz Freaa [a't]2 H* [S’L], « accesses p}.

That is, reductions may occur in configuration [aA ]tz before ¢t is read. These
reductions are specified more fully next:

[aA)tz * [a’ )tz Freaa [a't]2

iff there exist n = 0 and productions B, — BiAy,, B; — B2Biyi, ..., B, —
BnBr_1v» with y; =* € such that

[(XA]tZ = [a1,81A l]tZ —* [a1,81A I 'Yl]tZ l_Pl where P1 = B] - BlA'Yl
[OllBl]tZ = [a2,3231 l ]tZ ~* [a2,82B1 I Yz]tz Fp2 where P2 = B; — BZB]'YQ
[ang]tz = [a3,8333|]tz * [a3B3B2|‘Y3]tZ p3 where P3 = B; — ,8332‘}/3

[a”B’ll]tZ = [aanI Yn+1]tz ’_read [aanYn-f-lt]Z = [a't]z.

That is, possible reductions of € (to the v:) are interspersed between other stack
reductions until finally ¢ is read. Thus,

Follow(p, A)
= Un-0u{t € T|[aAJtz = [ f1A|Jtz+* ... (as above) —* {S’L],
a accesses p,
Bi— BiAy;, B:— B2Ayz, ..., Bu— BuBu-1va,
and y;=*¢}.
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By Lemma 1, the steps [aA ]tz —* [a.B.]tz can be “ignored” since they are all
reductions, obtaining

Follow(p, A)
= Un=0»{t € T|[anBn|tz H=* [anBn| ¥n+11¢2 Fread [0nBnyr+1t]2
F*[S'1],
a accesses P, & = &nfnfBn-1 -+ P,

B, — ,81A'Y1, B; — ,BZBI'Y2, ey B, — Ban—l'Yn,
and vy, =*¢€}.
Finally, observe that

Top[an] — # = Top[an 1] - - Top [a:] — - Top[a] — . Topa]
so that
(Top[ax], Bx) includes ™ (Top[ar-1], Bn-1) - - - includes(Top[a], A).
Set p’ = Top[a.] to obtain
Follow(p, A)
= U0 {t € T|{[anBr|Jtz H* [0nBr| Yn+11t2 Fread [@nBnyn+1t]z H* [S'L],
(p, A) includes” (p’, B,.), an accesses p’}
= Un-o0x U{Read(p’, B,)|(p, A) includes” (p’, B,.)}
= U{Read(p’, B)|(p, A) includes* (p’, B)}. =
Now, to prove Theorem Across below, the following observation is needed:
LEMMA 2

{t (S Tl [a]tz I_read [at]z l_—* [S,J-]}
= {t € T|Next(Topla], t) is defined (= Top[at])}.

This follows from the definition of Fe.q and the construction of the LR(0) parser.

ProoF oF THEOREM AcCROss. We prove the equivalent result: Read(p, 4) =
U{DR(q, C)|(p, A) reads* (g, C)}.

Read(p, A) = {t € T|[aA|Jtz H* [aA|y]t2 Freaa [@Ayt]z H* [S'L], a accesses p}.
Now vy is of the form C; - .. C,, where C; € N and C; =" ¢, so
Read(p, A)

= Upaox{t € T|[aA |tz +* [@A|C: - -+ Crltz Fread [0AC: -+ + Cat]zH* [S'L],
aaccessesp, C;EN, C;=*¢, 1 =i=<n}.

Due to Lemma 1, the steps [aA|Jtz —* [aA|C) --. C.]tz can be eliminated:
Read(p, A)

= Up-0x{t € T|[aAC: -+ Crltz Frreaa [€AC: -+« Crt]z* [S'L],
a accesses p, C;EN, C;=%¢, 1 <i<n).
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Let aAC, --- C,.— access q. Then by Lemma 2,
Read(p, A)

= U,—0«{t € T|Next(Next(g, C.), t) is defined, a accesses p,
aAC,; --- C,—1 accesses g,
C.EN, Ci=*¢, 1 =i=n)}.

The definition of DR combined with the fact that (p, A) reads (Top{aA], C1)
reads (Top[aACi], C;) --- reads (Top[ad - .- Cr-1], Cy) yields
Read(p, A) = Un=0,oc U {DR(Qy Cn) | (p’ A) readsn (q; Cn)}
= U{DR(g, C)|(p, A) reads* (q, C)}. ]

PrOOF oF THEOREM EQUIVALENT. Let G x = U{F’ y|xR*y}. Let P(F) be the
predicate

Vx:Fx=F xUU{Fy|xRy}.
We show that

(1) P(G);
(2) if P(F) holds, then Vx:Gx C F x

thus establishing that Vx: G x =, F' x U U{G y|xRy}.
(a) Vx: Gx=U{F y|xR*y}
=F xUU({F z|xR"z}
=F x U U{U{F’ z|yR*z} | xRy}
= F' x U U{G y|xRy}.
(b) Assume P(F) holds for some F. Thus
Vx: Fx=F xUU(F x:|xRx1}.
We can apply the expression itse}f to F' x, to obtain
Vx: Fx=F xUU{F 21 UU{F 22| x: Rx2} | xRx:1}
=F x U U{F x1|xR%:} U U{F x| xR?xz}.
By repeating the process, for any n = 0 we can show that
Va: Fx = U{F y|xR° "y} U U{F xns1| xR xps1}
where R "= R°U ... U R". Now if z€ U{F’ y|xR*y}, then z € {F’ y|xR"y}

for somen=0.Hence GxC Fx. [

PrOOF oF THEOREM READS-SCC. Let (p1, A1), . . ., (Pn, An) be the vertices of
the SCC. By the definition of reads, without loss of generality, the following loop
exists in the LR (0) automaton:

A n
p1—=5 p2 As e Dn Aépl.
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Let « access p;. Then a(4; --- A,)* is an infinite set of prefixes of rightmost
sentential forms that trace paths from the parser’s start state. As a special case,
[aA, - - A.]is such a path. It indicates that the parser, with p; = Top[a] on the
stack top, can reduce € successively to A,, ..., A, until p1 = Toplad, -.. A,]
again appears on the stack top. But the parser has followed a loop without reading
any input, and therefore will do so forever. Thus the parser is incorrect, so that
the grammar cannot be LR(1). Now all LR(k) parsers for the grammar must
contain a loop, similar to the one above, in which some multiple of A; ... A, can
be read, since a(A4; --- A,)* are all valid prefixes of rightmost sentential forms.
Thus no LR (%) parser can be correct, so the grammar is not LR(%) for any k. [
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