
Programming in Standard ML

(WORKING DRAFT OF APRIL 23, 2007.)

Robert Harper
Carnegie Mellon University

Spring Semester, 2005

Copyright c©2005. All Rights Reserved.

Preface

This book is an introduction to programming with the Standard ML pro-
gramming language. It began life as a set of lecture notes for Computer
Science 15–212: Principles of Programming, the second semester of the in-
troductory sequence in the undergraduate computer science curriculum at
Carnegie Mellon University. It has subsequently been used in many other
courses at Carnegie Mellon, and at a number of universities around the
world. It is intended to supersede my Introduction to Standard ML, which
has been widely circulated over the last ten years.

Standard ML is a formally defined programming language. The Defi-
nition of Standard ML (Revised) is the formal definition of the language. It
is supplemented by the Standard ML Basis Library, which defines a com-
mon basis of types that are shared by all implementations of the language.
Commentary on Standard ML discusses some of the decisions that went into
the design of the first version of the language.

There are several implementations of Standard ML available for a wide
variety of hardware and software platforms. The best-known compilers
are Standard ML of New Jersey, Moscow ML, MLKit, and PolyML. These are
all freely available on the worldwide web. Please refer to The Standard ML
Home Page for up-to-date information on Standard ML and its implemen-
tations.

Readers at Carnegie Mellon are referred to the CMU Local Guide for
information about using Standard ML.

Numerous people have contributed directly and indirectly to this text.
I am especially grateful to the following people for their helpful comments
and suggestions: Marc Bezem, James Bostock, Terrence Brannon, Franck
van Breugel, Matthew William Cox, Karl Crary, Mike Erdmann, Matthias
Felleisen, Andrei Formiga, Stephen Harris, Joel Jones, John Lafferty, Flavio
Lerda, Adrian Moos, Bryce Nichols, Arthur J. O’Dwyer, Frank Pfenning,

http://www.cs.cmu.edu/afs/andrew/course/15/212/www
http://www.cs.cmu.edu/afs/andrew/course/15/212/www
http://www.cs.cmu.edu/~rwh/papers/ml-notes/tr.ps
http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://www.cup.org/ObjectBuilder/ObjectBuilder.iwx?processName=productPage&product_id=0521791421&origin=redirect
http://mitpress.mit.edu/book-home.tcl?isbn=0262132710
http://cm.bell-labs.com/cm/cs/what/smlnj/
http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.itu.dk/research/mlkit
http://www.polyml.org
http://www.standardml.org
http://www.standardml.org
http://www.cs.cmu.edu/afs/cs/local/sml/common/smlguide/index.html

iii

Chris Stone, Dave Swasey, Michael Velten, Johan Wallen, Scott Williams,
and Jeannette Wing. Richard C. Cobbe helped with font selection. I am
also grateful to the many students of 15-212 who used these notes and
sent in their suggestions over the years.

These notes are a work in progress. Corrections, comments and sug-
gestions are most welcome.

APRIL 23, 2007 WORKING DRAFT

Contents

Preface ii

I Overview 1

1 Programming in Standard ML 3
1.1 A Regular Expression Package 3
1.2 Sample Code . 12

II The Core Language 13

2 Types, Values, and Effects 15
2.1 Evaluation and Execution . 15
2.2 The ML Computation Model 16

2.2.1 Type Checking . 17
2.2.2 Evaluation . 19

2.3 Types, Types, Types . 21
2.4 Type Errors . 23
2.5 Sample Code . 23

3 Declarations 24
3.1 Variables . 24
3.2 Basic Bindings . 25

3.2.1 Type Bindings . 25
3.2.2 Value Bindings . 26

3.3 Compound Declarations . 27
3.4 Limiting Scope . 28

iv

CONTENTS v

3.5 Typing and Evaluation . 29
3.6 Sample Code . 32

4 Functions 33
4.1 Functions as Templates . 33
4.2 Functions and Application . 34
4.3 Binding and Scope, Revisited 37
4.4 Sample Code . 39

5 Products and Records 40
5.1 Product Types . 40

5.1.1 Tuples . 40
5.1.2 Tuple Patterns . 42

5.2 Record Types . 45
5.3 Multiple Arguments and Multiple Results 48
5.4 Sample Code . 50

6 Case Analysis 51
6.1 Homogeneous and Heterogeneous Types 51
6.2 Clausal Function Expressions 52
6.3 Booleans and Conditionals, Revisited 53
6.4 Exhaustiveness and Redundancy 54
6.5 Sample Code . 56

7 Recursive Functions 57
7.1 Self-Reference and Recursion 58
7.2 Iteration . 61
7.3 Inductive Reasoning . 62
7.4 Mutual Recursion . 65
7.5 Sample Code . 66

8 Type Inference and Polymorphism 67
8.1 Type Inference . 67
8.2 Polymorphic Definitions . 70
8.3 Overloading . 73
8.4 Sample Code . 76

APRIL 23, 2007 WORKING DRAFT

CONTENTS vi

9 Programming with Lists 77
9.1 List Primitives . 77
9.2 Computing With Lists . 79
9.3 Sample Code . 81

10 Concrete Data Types 82
10.1 Datatype Declarations . 82
10.2 Non-Recursive Datatypes . 83
10.3 Recursive Datatypes . 85
10.4 Heterogeneous Data Structures 88
10.5 Abstract Syntax . 89
10.6 Sample Code . 91

11 Higher-Order Functions 92
11.1 Functions as Values . 92
11.2 Binding and Scope . 93
11.3 Returning Functions . 95
11.4 Patterns of Control . 97
11.5 Staging . 99
11.6 Sample Code . 102

12 Exceptions 103
12.1 Exceptions as Errors . 104

12.1.1 Primitive Exceptions 104
12.1.2 User-Defined Exceptions 105

12.2 Exception Handlers . 107
12.3 Value-Carrying Exceptions . 110
12.4 Sample Code . 112

13 Mutable Storage 113
13.1 Reference Cells . 113
13.2 Reference Patterns . 115
13.3 Identity . 116
13.4 Aliasing . 118
13.5 Programming Well With References 119

13.5.1 Private Storage . 120
13.5.2 Mutable Data Structures 122

13.6 Mutable Arrays . 124

APRIL 23, 2007 WORKING DRAFT

CONTENTS vii

13.7 Sample Code . 126

14 Input/Output 127
14.1 Textual Input/Output . 127
14.2 Sample Code . 129

15 Lazy Data Structures 130
15.1 Lazy Data Types . 132
15.2 Lazy Function Definitions . 133
15.3 Programming with Streams 135
15.4 Sample Code . 137

16 Equality and Equality Types 138
16.1 Sample Code . 138

17 Concurrency 139
17.1 Sample Code . 139

III The Module Language 140

18 Signatures and Structures 142
18.1 Signatures . 142

18.1.1 Basic Signatures . 142
18.1.2 Signature Inheritance 144

18.2 Structures . 146
18.2.1 Basic Structures . 147
18.2.2 Long and Short Identifiers 148

18.3 Sample Code . 150

19 Signature Matching 151
19.1 Principal Signatures . 152
19.2 Matching . 153
19.3 Satisfaction . 157
19.4 Sample Code . 157

20 Signature Ascription 158
20.1 Ascribed Structure Bindings 158
20.2 Opaque Ascription . 160

APRIL 23, 2007 WORKING DRAFT

CONTENTS viii

20.3 Transparent Ascription . 162
20.4 Transparency, Opacity, and Dependency 164
20.5 Sample Code . 165

21 Module Hierarchies 166
21.1 Substructures . 166
21.2 Sample Code . 174

22 Sharing Specifications 175
22.1 Combining Abstractions . 175
22.2 Sample Code . 182

23 Parameterization 183
23.1 Functor Bindings and Applications 183
23.2 Functors and Sharing Specifications 186
23.3 Avoiding Sharing Specifications 188
23.4 Sample Code . 192

IV Programming Techniques 193

24 Specifications and Correctness 195
24.1 Specifications . 195
24.2 Correctness Proofs . 197
24.3 Enforcement and Compliance 200

25 Induction and Recursion 203
25.1 Exponentiation . 203
25.2 The GCD Algorithm . 208
25.3 Sample Code . 212

26 Structural Induction 213
26.1 Natural Numbers . 213
26.2 Lists . 215
26.3 Trees . 216
26.4 Generalizations and Limitations 217
26.5 Abstracting Induction . 218
26.6 Sample Code . 220

APRIL 23, 2007 WORKING DRAFT

CONTENTS ix

27 Proof-Directed Debugging 221
27.1 Regular Expressions and Languages 221
27.2 Specifying the Matcher . 223
27.3 Sample Code . 229

28 Persistent and Ephemeral Data Structures 230
28.1 Persistent Queues . 233
28.2 Amortized Analysis . 236
28.3 Sample Code . 239

29 Options, Exceptions, and Continuations 240
29.1 The n-Queens Problem . 240
29.2 Solution Using Options . 242
29.3 Solution Using Exceptions . 243
29.4 Solution Using Continuations 245
29.5 Sample Code . 247

30 Higher-Order Functions 248
30.1 Infinite Sequences . 249
30.2 Circuit Simulation . 252
30.3 Sample Code . 255

31 Memoization 256
31.1 Cacheing Results . 256
31.2 Laziness . 258
31.3 Lazy Data Types in SML/NJ 260
31.4 Recursive Suspensions . 262
31.5 Sample Code . 263

32 Data Abstraction 264
32.1 Dictionaries . 265
32.2 Binary Search Trees . 265
32.3 Balanced Binary Search Trees 267
32.4 Abstraction vs. Run-Time Checking 271
32.5 Sample Code . 272

33 Representation Independence and ADT Correctness 273
33.1 Sample Code . 273

APRIL 23, 2007 WORKING DRAFT

CONTENTS x

34 Modularity and Reuse 274
34.1 Sample Code . 274

35 Dynamic Typing and Dynamic Dispatch 275
35.1 Sample Code . 275

36 Concurrency 276
36.1 Sample Code . 276

V Appendices 277

The Standard ML Basis Library 278

Compilation Management 279
36.2 Overview of CM . 280
36.3 Building Systems with CM . 280
36.4 Sample Code . 280

Sample Programs 281

APRIL 23, 2007 WORKING DRAFT

Part I

Overview

1

2

Standard ML is a type-safe programming language that embodies many
innovative ideas in programming language design. It is a statically typed
language, with an extensible type system. It supports polymorphic type
inference, which all but eliminates the burden of specifying types of vari-
ables and greatly facilitates code re-use. It provides efficient automatic
storage management for data structures and functions. It encourages func-
tional (effect-free) programming where appropriate, but allows impera-
tive (effect-ful) programming where necessary. It facilitates programming
with recursive and symbolic data structures by supporting the definition
of functions by pattern matching. It features an extensible exception mech-
anism for handling error conditions and effecting non-local transfers of
control. It provides a richly expressive and flexible module system for
structuring large programs, including mechanisms for enforcing abstrac-
tion, imposing hierarchical structure, and building generic modules. It is
portable across platforms and implementations because it has a precise
definition. It provides a portable standard basis library that defines a rich
collection of commonly-used types and routines.

Many implementations go beyond the standard to provide experimen-
tal language features, extensive libraries of commonly-used routines, and
useful program development tools. Details can be found with the doc-
umentation for your compiler, but here’s some of what you may expect.
Most implementations provide an interactive system supporting on-line
program development, including tools for compiling, linking, and analyz-
ing the behavior of programs. A few implementations are “batch compil-
ers” that rely on the ambient operating system to manage the construction
of large programs from compiled parts. Nearly every compiler generates
native machine code, even when used interactively, but some also gen-
erate code for a portable abstract machine. Most implementations sup-
port separate compilation and provide tools for managing large systems
and shared libraries. Some implementations provide tools for tracing and
stepping programs; many provide tools for time and space profiling. Most
implementations supplement the standard basis library with a rich collec-
tion of handy components such as dictionaries, hash tables, or interfaces to
the ambient operating system. Some implementations support language
extensions such as support for concurrent programming (using message-
passing or locking), richer forms of modularity constructs, and support for
“lazy” data structures.

APRIL 23, 2007 WORKING DRAFT

http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://www.cup.org/ObjectBuilder/ObjectBuilder.iwx?processName=productPage&product_id=0521791421&origin=redirect

Chapter 1

Programming in Standard ML

1.1 A Regular Expression Package

To develop a feel for the language and how it is used, let us consider the
implementation of a package for matching strings against regular expres-
sions. We’ll structure the implementation into two modules, an imple-
mentation of regular expressions themselves and an implementation of a
matching algorithm for them.

These two modules are concisely described by the following signatures.

signature REGEXP = sig

datatype regexp =

Zero | One | Char of char |

Plus of regexp * regexp |

Times of regexp * regexp |

Star of regexp

exception SyntaxError of string

val parse : string -> regexp

val format : regexp -> string

end

signature MATCHER = sig

structure RegExp : REGEXP

val match : RegExp.regexp -> string -> bool

end

The signature REGEXP describes a module that implements regular expres-
sions. It consists of a description of the abstract syntax of regular expres-

3

1.1 A Regular Expression Package 4

sions, together with operations for parsing and unparsing them. The sig-
nature MATCHER describes a module that implements a matcher for a given
notion of regular expression. It contains a function match that, when given
a regular expression, returns a function that determines whether or not
a given string matches that expression. Obviously the matcher is depen-
dent on the implementation of regular expressions. This is expressed by a
structure specification that specifies a hierarchical dependence of an imple-
mentation of a matcher on an implementation of regular expressions —
any implementation of the MATCHER signature must include an implemen-
tation of regular expressions as a constituent module. This ensures that
the matcher is self-contained, and does not rely on implicit conventions
for determining which implementation of regular expressions it employs.

The definition of the abstract syntax of regular expressions in the sig-
nature REGEXP takes the form of a datatype declaration that is reminiscent
of a context-free grammar, but which abstracts from matters of lexical pre-
sentation (such as precedences of operators, parenthesization, conventions
for naming the operators, etc..) The abstract syntax consists of six clauses,
corresponding to the regular expressions 0, 1, a, r1 + r2, r1 r2, and r∗.1 The
functions parse and format specify the parser and unparser for regular
expressions. The parser takes a string as argument and yields a regular
expression; if the string is ill-formed, the parser raises the exception Syn-
taxError with an associated string describing the source of the error. The
unparser takes a regular expression and yields a string that parses to that
regular expression. In general there are many strings that parse to the
same regular expressions; the unparser generally tries to choose one that
is easiest to read.

The implementation of the matcher consists of two modules: an imple-
mentation of regular expressions and an implementation of the matcher
itself. An implementation of a signature is called a structure. The imple-
mentation of the matching package consists of two structures, one imple-
menting the signature REGEXP, the other implementing MATCHER. Thus the
overall package is implemented by the following two structure declarations:

structure RegExp :> REGEXP = ...

structure Matcher :> MATCHER = ...

The structure identifier RegExp is bound to an implementation of the REGEXP

1Some authors use ∅ for 0 and ” for 1.

APRIL 23, 2007 WORKING DRAFT

1.1 A Regular Expression Package 5

signature. Conformance with the signature is ensured by the ascription of
the signature REGEXP to the binding of RegExp using the “:>” notation.
Not only does this check that the implementation (which has been elided
here) conforms with the requirements of the signature REGEXP, but it also
ensures that subsequent code cannot rely on any properties of the imple-
mentation other than those explicitly specified in the signature. This helps
to ensure that modules are kept separate, facilitating subsequent changes
to the code.

Similarly, the structure identifier Matcher is bound to a structure that
implements the matching algorithm in terms of the preceding implemen-
tation RegExp of REGEXP. The ascribed signature specifies that the structure
Matcher must conform to the requirements of the signature MATCHER. No-
tice that the structure Matcher refers to the structure RegExp in its imple-
mentation.

Once these structure declarations have been processed, we may use the
package by referring to its components using paths, or long identifiers. The
function Matcher.match has type

Matcher.RegExp.regexp -> string -> bool,

reflecting the fact that it takes a regular expression as implemented within
the package itself and yields a matching function on strings. We may build
a regular expression by applying the parser, Matcher.RegExp.parse, to a
string representing a regular expression, then passing the resulting value
of type Matcher.RegExp.regexp to Matcher.match.2

Here’s an example of the matcher in action:

val regexp =

Matcher.RegExp.parse "(a+b)*"

val matches =

Matcher.match regexp

val ex1 = matches "aabba" (* yields true *)

val ex2 = matches "abac" (* yields false *)

2It might seem that one can apply Matcher.match to the output of RegExp.parse,
since Matcher.RegExp.parse is just RegExp.parse. However, this relationship is not
stated in the interface, so there is a pro forma distinction between the two. See Chapter 22
for more information on the subtle issue of sharing.

APRIL 23, 2007 WORKING DRAFT

1.1 A Regular Expression Package 6

The use of long identifiers can get tedious at times. There are two typi-
cal methods for alleviating the burden. One is to introduce a synonym for
a long package name. Here’s an example:

structure M = Matcher

structure R = M.RegExp

val regexp = R.parse "((a + %).(b + %))*"

val matches = M.match regexp

val ex1 = matches "aabba"

val ex2 = matches "abac"

Another is to “open” the structure, incorporating its bindings into the cur-
rent environment:

open Matcher Matcher.RegExp

val regexp = parse "(a+b)*"

val matches = match regexp

val ex1 = matches "aabba"

val ex2 = matches "abac"

It is advisable to be sparing in the use of open because it is often hard to
anticipate exactly which bindings are incorporated into the environment
by its use.

Now let’s look at the internals of the structures RegExp and Matcher.
Here’s a bird’s eye view of RegExp:

structure RegExp :> REGEXP = struct

datatype regexp =

Zero | One | Char of char |

Plus of regexp * regexp |

Times of regexp * regexp |

Star of regexp
...

fun tokenize s = ...
...

fun parse s =

let

val (r, s’) =

APRIL 23, 2007 WORKING DRAFT

1.1 A Regular Expression Package 7

parse rexp (tokenize (String.explode s))

in

case s’ of

nil => r

| => raise SyntaxError "Bad input."

end

handle LexicalError =>

raise SyntaxError "Bad input."
...

fun format r =

String.implode (format exp r)

end

The elision indicates that portions of the code have been omitted so that
we can get a high-level view of the structure of the implementation.

The structure RegExp is bracketed by the keywords struct and end.
The type regexp is implemented precisely as specified by the datatype

declaration in the signature REGEXP. The parser is implemented by a func-
tion that, when given a string, “explodes” it into a list of characters, trans-
forms the character list into a list of “tokens” (abstract symbols represent-
ing lexical atoms), and finally parses the resulting list of tokens to obtain
its abstract syntax. If there is remaining input after the parse, or if the
tokenizer encountered an illegal token, an appropriate syntax error is sig-
nalled. The formatter is implemented by a function that, when given a
piece of abstract syntax, formats it into a list of characters that are then
“imploded” to form a string. The parser and formatter work with charac-
ter lists, rather than strings, because it is easier to process lists incremen-
tally than it is to process strings.

It is interesting to consider in more detail the structure of the parser
since it exemplifies well the use of pattern matching to define functions.
Let’s start with the tokenizer, which we present here in toto:

datatype token =

AtSign | Percent | Literal of char |

PlusSign | TimesSign |

Asterisk | LParen | RParen

exception LexicalError

fun tokenize nil = nil

APRIL 23, 2007 WORKING DRAFT

1.1 A Regular Expression Package 8

| tokenize (#"+" :: cs) = PlusSign :: tokenize cs

| tokenize (#"." :: cs) = TimesSign :: tokenize cs

| tokenize (#"*" :: cs) = Asterisk :: tokenize cs

| tokenize (#"(" :: cs) = LParen :: tokenize cs

| tokenize (#")" :: cs) = RParen :: tokenize cs

| tokenize (#"@" :: cs) = AtSign :: tokenize cs

| tokenize (#"%" :: cs) = Percent :: tokenize cs

| tokenize (#"\\" :: c :: cs) =

Literal c :: tokenize cs

| tokenize (#"\\" :: nil) = raise LexicalError

| tokenize (#" " :: cs) = tokenize cs

| tokenize (c :: cs) = Literal c :: tokenize cs

The symbol “@” stands for the empty regular expression and the symbol
“%” stands for the regular expression accepting only the null string. Con-
catentation is indicated by “.”, alternation by “+”, and iteration by “*”.

We use a datatype declaration to introduce the type of tokens corre-
sponding to the symbols of the input language. The function tokenize

has type char list -> token list; it transforms a list of characters into
a list of tokens. It is defined by a series of clauses that dispatch on the first
character of the list of characters given as input, yielding a list of tokens.
The correspondence between characters and tokens is relatively straight-
forward, the only non-trivial case being to admit the use of a backslash
to “quote” a reserved symbol as a character of input. (More sophisticated
languages have more sophisticated token structures; for example, words
(consecutive sequences of letters) are often regarded as a single token of
input.) Notice that it is quite natural to “look ahead” in the input stream
in the case of the backslash character, using a pattern that dispatches on
the first two characters (if there are such) of the input, and proceeding ac-
cordingly. (It is a lexical error to have a backslash at the end of the input.)

Let’s turn to the parser. It is a simple recursive-descent parser imple-
menting the precedence conventions for regular expressions given earlier.
These conventions may be formally specified by the following grammar,
which not only enforces precedence conventions, but also allows for the

APRIL 23, 2007 WORKING DRAFT

1.1 A Regular Expression Package 9

use of parenthesization to override them.

rexp ::= rtrm | rtrm+rexp
rtrm ::= rfac | rfac.rtrm
rfac ::= ratm | ratm*

ratm ::= @ | % | a | (rexp)

The implementation of the parser follows this grammar quite closely.
It consists of four mutually recursive functions, parse rexp, parse rtrm,
parse rfac, and parse ratm. These implement what is known as a recur-
sive descent parser that dispatches on the head of the token list to determine
how to proceed.

fun parse rexp ts =

let

val (r, ts’) = parse rtrm ts

in

case ts’

of (PlusSign :: ts’’) =>

let

val (r’, ts’’’) = parse rexp ts’’

in

(Plus (r, r’), ts’’’)

end

| => (r, ts’)

end

and parse rtrm ts = ...

and parse rfac ts =

let

val (r, ts’) = parse ratm ts

in

case ts’

of (Asterisk :: ts’’) => (Star r, ts’’)

| => (r, ts’)

end

and parse ratm nil =

raise SyntaxError ("No atom")

| parse ratm (AtSign :: ts) = (Zero, ts)

| parse ratm (Percent :: ts) = (One, ts)

APRIL 23, 2007 WORKING DRAFT

1.1 A Regular Expression Package 10

| parse ratm ((Literal c) :: ts) = (Char c, ts)

| parse ratm (LParen :: ts) =

let

val (r, ts’) = parse rexp ts

in

case ts’

of (RParen :: ts’’) => (r, ts’’)

| =>

raise SyntaxError "No close paren"

end

Notice that it is quite simple to implement “lookahead” using patterns that
inspect the token list for specified tokens. This parser makes no attempt
to recover from syntax errors, but one could imagine doing so, using stan-
dard techniques.

This completes the implementation of regular expressions. Now for the
matcher. The matcher proceeds by a recursive analysis of the regular ex-
pression. The main difficulty is to account for concatenation — to match a
string against the regular expression r1 r2 we must match some initial seg-
ment against r1, then match the corresponding final segment against r2.
This suggests that we generalize the matcher to one that checks whether
some initial segment of a string matches a given regular expression, then
passes the remaining final segment to a continuation, a function that deter-
mines what to do after the initial segment has been successfully matched.
This facilitates implementation of concatentation, but how do we ensure
that at the outermost call the entire string has been matched? We achieve
this by using an initial continuation that checks whether the final segment
is empty.

Here’s the code, written as a structure implementing the signature MATCHER:

structure Matcher :> MATCHER =

struct

structure RegExp = RegExp

open RegExp

fun match is Zero k = false

| match is One cs k = k cs

| match is (Char c) nil = false

| match is (Char c) (d::cs) k = (c=d) andalso (k cs)

APRIL 23, 2007 WORKING DRAFT

1.1 A Regular Expression Package 11

| match is (Plus (r1, r2)) cs k =

match is r1 cs k orelse match is r2 cs k

| match is (Times (r1, r2)) cs k =

match is r1 cs (fn cs’ => match is r2 cs’ k)

| match is (Star r) cs k =

k cs orelse

match is r cs (fn cs’ => match is (Star r) cs’ k)

fun match regexp string =

match is

regexp

(String.explode string)

(fn nil => true | => false)

end

Note that we incorporate the structure RegExp into the structure Matcher,
in accordance with the requirements of the signature. The function match

explodes the string into a list of characters (to facilitiate sequential pro-
cessing of the input), then calls match is with an initial continuation that
ensures that the remaining input is empty to determine the result. The
type of match is is

RegExp.regexp -> char list ->

(char list -> bool) -> bool.

That is, match is takes in succession a regular expression, a list of char-
acters, and a continuation of type char list -> bool; it yields as result
a value of type bool. This is a fairly complicated type, but notice that
nowhere did we have to write this type in the code! The type inference
mechanism of ML took care of determining what that type must be based
on an analysis of the code itself.

Since match is takes a function as argument, it is said to be a higher-
order function. The simplicity of the matcher is due in large measure to the
ease with which we can manipulate functions in ML. Notice that we create
a new, unnamed function to pass as a continuation in the case of concate-
nation — it is the function that matches the second part of the regular
expression to the characters remaining after matching an initial segment
against the first part. We use a similar technique to implement match-
ing against an iterated regular expression — we attempt to match the null

APRIL 23, 2007 WORKING DRAFT

1.2 Sample Code 12

string, but if this fails, we match against the regular expression being iter-
ated followed by the iteration once again. This neatly captures the “zero
or more times” interpretation of iteration of a regular expression.

Important: the code given above contains a subtle error. Can
you find it? If not, see chapter 27 for further discussion!

This completes our brief overview of Standard ML. The remainder of
these notes are structured into three parts. The first part is a detailed intro-
duction to the core language, the language in which we write programs in
ML. The second part is concerned with the module language, the means
by which we structure large programs in ML. The third is about program-
ming techniques, methods for building reliable and robust programs. I
hope you enjoy it!

1.2 Sample Code

Here is the complete code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/regexp.sml

Part II

The Core Language

13

14

All Standard ML is divided into two parts. The first part, the core
language, comprises the fundamental programming constructs of the lan-
guage — the primitive types and operations, the means of defining and
using functions, mechanisms for definining new types, and so on. The
second part, the module language, comprises the mechanisms for structur-
ing programs into separate units and is described in Part III. Here we
introduce the core language.

APRIL 23, 2007 WORKING DRAFT

Chapter 2

Types, Values, and Effects

2.1 Evaluation and Execution

Most familiar programming languages, such as C or Java, are based on an
imperative model of computation. Programs are thought of as specifying
a sequence of commands that modify the memory of the computer. Each
step of execution examines the current contents of memory, performs a
simple computation, modifies the memory, and continues with the next
instruction. The individual commands are executed for their effect on the
memory (which we may take to include both the internal memory and
registers and the external input/output devices). The progress of the com-
putation is controlled by evaluation of expressions, such as boolean tests
or arithmetic operations, that are executed for their value. Conditional
commands branch according to the value of some expression. Many lan-
guages maintain a distinction between expressions and commands, but
often (in C, for example) expressions may also modify the memory, so that
even expression evaluation has an effect.

Computation in ML is of a somewhat different nature. The emphasis
in ML is on computation by evaluation of expressions, rather than execution
of commands. The idea of computation is as a generalization of your expe-
rience from high school algebra in which you are given a polynomial in a
variable x and are asked to calculate its value at a given value of x. We pro-
ceed by “plugging in” the given value for x, and then, using the rules of
arithmetic, determine the value of the polynomial. The evaluation model
of computation used in ML is based on the same idea, but rather than re-

15

2.2 The ML Computation Model 16

strict ourselves to arithmetic operations on the reals, we admit a richer
variety of values and a richer variety of primitive operations on them.

The evaluation model of computation enjoys several advantages over
the more familiar imperative model. Because of its close relationship to
mathematics, it is much easier to develop mathematical techniques for
reasoning about the behavior of programs. These techniques are impor-
tant tools for helping us to ensure that programs work properly without
having to resort to tedious testing and debugging that can only show the
presence of errors, never their absence. Moreover, they provide important
tools for documenting the reasoning that went into the formulation of a
program, making the code easier to understand and maintain.

What is more, the evaluation model subsumes the imperative model
as a special case. Execution of commands for the effect on memory can be
seen as a special case of evaluation of expressions by introducing primi-
tive operations for allocating, accessing, and modifying memory. Rather
than forcing all aspects of computation into the framework of memory
modification, we instead take expression evaluation as the primary no-
tion. Doing so allows us to support imperative programming without de-
stroying the mathematical elegance of the evaluation model for programs
that don’t use memory. As we will see, it is quite remarkable how seldom
memory modification is required. Nevertheless, the language provides for
storage-based computation for those few times that it is actually necessary.

2.2 The ML Computation Model

Computation in ML consists of evaluation of expressions. Each expression
has three important characteristics:

• It may or may not have a type.

• It may or may not have a value.

• It may or may not engender an effect.

These characteristics are all that you need to know to compute with an
expression.

The type of an expression is a description of the value it yields, should
it yield a value at all. For example, for an expression to have type int is to

APRIL 23, 2007 WORKING DRAFT

2.2 The ML Computation Model 17

say that its value (should it have one) is a number, and for an expression
to have type real is to say that its value (if any) is a floating point number.
In general we can think of the type of an expression as a “prediction” of
the form of the value that it has, should it have one. Every expression is
required to have at least one type; those that do are said to be well-typed.
Those without a type are said to be ill-typed; they are considered ineligible
for evaluation. The type checker determines whether or not an expression
is well-typed, rejecting with an error those that are not.

A well-typed expression is evaluated to determine its value, if indeed
it has one. An expression can fail to have a value because its evaluation
never terminates or because it raises an exception, either because of a run-
time fault such as division by zero or because some programmer-defined
condition is signalled during its evaluation. If an expression has a value,
the form of that value is predicted by its type. For example, if an expres-
sion evaluates to a value v and its type is bool, then v must be either true
or false; it cannot be, say, 17 or 3.14. The soundness of the type system
ensures the accuracy of the predictions made by the type checker.

Evaluation of an expression might also engender an effect. Effects in-
clude such phenomena as raising an exception, modifying memory, per-
forming input or output, or sending a message on the network. It is impor-
tant to note that the type of an expression says nothing about its possible
effects! An expression of type int might well display a message on the
screen before returning an integer value. This possibility is not accounted
for in the type of the expression, which classifies only its value. For this
reason effects are sometimes called side effects, to stress that they happen
“off to the side” during evaluation, and are not part of the value of the
expression. We will ignore effects until chapter 13. For the time being we
will assume that all expressions are effect-free, or pure.

2.2.1 Type Checking

What is a type? What types are there? Generally speaking, a type is de-
fined by specifying three things:

• a name for the type,

• the values of the type, and

• the operations that may be performed on values of the type.

APRIL 23, 2007 WORKING DRAFT

2.2 The ML Computation Model 18

Often the division of labor into values and operations is not completely
clear-cut, but it nevertheless serves as a very useful guideline for describ-
ing types.

Let’s consider first the type of integers. Its name is int. The values
of type int are the numerals 0, 1, ˜1, 2, ˜2, and so on. (Note that neg-
ative numbers are written with a prefix tilde, rather than a minus sign!)
Operations on integers include addition, +, subtraction, -, multiplication,
*, quotient, div, and remainder, mod. Arithmetic expressions are formed
in the familiar manner, for example, 3*2+6, governed by the usual rules
of precedence. Parentheses may be used to override the precedence con-
ventions, just as in ordinary mathematical practice. Thus the preceding
expression may be equivalently written as (3*2)+6, but we may also write
3*(2+6) to override the default precedences.

The formation of expressions is governed by a set of typing rules that
define the types of expressions in terms of the types of their constituent ex-
pressions (if any). The typing rules are generally quite intuitive since they
are consistent with our experience in mathematics and in other program-
ming languages. In their full generality the rules are somewhat involved,
but we will sneak up on them by first considering only a small fragment
of the language, building up additional machinery as we go along.

Here are some simple arithmetic expressions, written using infix no-
tation for the operations (meaning that the operator comes between the
arguments, as is customary in mathematics):

3

3 + 4

4 div 3

4 mod 3

Each of these expressions is well-formed; in fact, they each have type
int. This is indicated by a typing assertion of the form exp : typ, which
states that the expression exp has the type typ. A typing assertion is said to
be valid iff the expression exp does indeed have the type typ. The following
are all valid typing assertions:

3 : int

3 + 4 : int

4 div 3 : int

4 mod 3 : int

APRIL 23, 2007 WORKING DRAFT

2.2 The ML Computation Model 19

Why are these typing assertions valid? In the case of the value 3, it
is an axiom that integer numerals have integer type. What about the ex-
pression 3+4? The addition operation takes two arguments, each of which
must have type int. Since both arguments in fact have type int, it fol-
lows that the entire expression is of type int. For more complex cases we
reason analogously, for example, deducing that (3+4) div (2+3): int by
observing that (3+4): int and (2+3): int.

The reasoning involved in demonstrating the validity of a typing as-
sertion may be summarized by a typing derivation consisting of a nested
sequence of typing assertions, each justified either by an axiom, or a typ-
ing rule for an operation. For example, the validity of the typing assertion
(3+7) div 5 : int is justified by the following derivation:

1. (3+7): int, because

(a) 3 : int because it is an axiom

(b) 7 : int because it is an axiom

(c) the arguments of + must be integers, and the result of + is an
integer

2. 5 : int because it is an axiom

3. the arguments of div must be integers, and the result is an integer

The outermost steps justify the assertion (3+4) div 5 : int by demon-
strating that the arguments each have type int. Recursively, the inner
steps justify that (3+4): int.

2.2.2 Evaluation

Evaluation of expressions is defined by a set of evaluation rules that deter-
mine how the value of a compound expression is determined as a function
of the values of its constituent expressions (if any). Since the value of an
operator is determined by the values of its arguments, ML is sometimes
said to be a call-by-value language. While this may seem like the only sen-
sible way to define evaluation, we will see in chapter 15 that this need not
be the case — some operations may yield a value without evaluating their
arguments. Such operations are sometimes said to be lazy, to distinguish

APRIL 23, 2007 WORKING DRAFT

2.2 The ML Computation Model 20

them from eager operations that require their arguments to be evaluated
before the operation is performed.

An evaluation assertion has the form exp⇓val. This assertion states that
the expression exp has value val. It should be intuitively clear that the
following evaluation assertions are valid.

5 ⇓ 5

2+3 ⇓ 5

(2+3) div (1+4) ⇓ 1

An evaluation assertion may be justified by an evaluation derivation,
which is similar to a typing derivation. For example, we may justify the
assertion (3+7) div 5 ⇓ 2 by the derivation

1. (3+7) ⇓ 10 because

(a) 3 ⇓ 3 because it is an axiom

(b) 7 ⇓ 7 because it is an axiom

(c) Adding 3 to 7 yields 10.

2. 5 ⇓ 5 because it is an axiom

3. Dividing 10 by 5 yields 2.

Note that is an axiom that a numeral evaluates to itself; numerals are fully-
evaluated expressions, or values. Second, the rules of arithmetic are used
to determine that adding 3 and 7 yields 10.

Not every expression has a value. A simple example is the expression
5 div 0, which is undefined. If you attempt to evaluate this expression
it will incur a run-time error, reflecting the erroneous attempt to find the
number n that, when multiplied by 0, yields 5. The error is expressed
in ML by raising an exception; we will have more to say about exceptions
in chapter 12. Another reason that a well-typed expression might not have
a value is that the attempt to evaluate it leads to an infinite loop. We don’t
yet have the machinery in place to define such expressions, but we will
soon see that it is possible for an expression to diverge, or run forever, when
evaluated.

APRIL 23, 2007 WORKING DRAFT

2.3 Types, Types, Types 21

2.3 Types, Types, Types

What types are there besides the integers? Here are a few useful base types
of ML:

• Type name: real

– Values: 3.14, 2.17, 0.1E6, . . .

– Operations: +, -, *, /, =, <, . . .

• Type name: char

– Values: #"a", #"b", . . .

– Operations: ord,chr,=, <, . . .

• Type name: string

– Values: "abc", "1234", . . .

– Operations: ˆ , size, =, <, . . .

• Type name: bool

– Values: true, false

– Operations: if exp then exp1 else exp2

There are many, many (in fact, infinitely many!) others, but these are
enough to get us started. (See V for a complete description of the primitive
types of ML, including the ones given above.)

Notice that some of the arithmetic operations for real numbers are writ-
ten the same way as for the corresponding operation on integers. For ex-
ample, we may write 3.1+2.7 to perform a floating point addition of two
floating point numbers. This is called overloading; the addition operation
is said to be overloaded at the types int and real. In an expression in-
volving addition the type checker tries to resolve which form of addition
(fixed point or floating point) you mean. If the arguments are int’s, then
fixed point addition is used; if the arguments are real’s, then floating ad-
dition is used; otherwise an error is reported.1 Note that ML does not per-
form any implicit conversions between types! For example, the expression

1If the type of the arguments cannot be determined, the type defaults to int.

APRIL 23, 2007 WORKING DRAFT

2.3 Types, Types, Types 22

3+3.14 is rejected as ill-formed! If you intend floating point addition, you
must write instead real(3)+3.14, which converts the integer 3 to its float-
ing point representation before performing the addition. If, on the other
hand, you intend integer addition, you must write 3+round(3.14), which
converts 3.14 to an integer by rounding before performing the addition.

Finally, note that floating point division is a different operation from
integer quotient! Thus we write 3.1/2.7 for the result of dividing 3.1 by
2.7, which results in a floating point number. We reserve the operator div
for integers, and use / for floating point division.

The conditional expression

if exp then exp1 else exp2

is used to discriminate on a Boolean value. It has type typ if exp has type
bool and both exp1 and exp2 have type typ. Notice that both “arms” of the
conditional must have the same type! It is evaluated by first evaluating
exp, then proceeding to evaluate either exp1 or exp2, according to whether
the value of exp is true or false. For example,

if 1<2 then "less" else "greater"

evaluates to "less" since the value of the expression 1<2 is true.
Note that the expression

if 1<2 then 0 else (1 div 0)

evaluates to 0, even though 1 div 0 incurs a run-time error. This is be-
cause evaluation of the conditional proceeds either to the then clause or to
the else clause, depending on the outcome of the boolean test. Whichever
clause is evaluated, the other is simply discarded without further consid-
eration.

Although we may, in fact, test equality of two boolean expressions, it
is rarely useful to do so. Beginners often writen conditionals of the form

if exp = true then exp1 else exp2.

But this is equivalent to the simpler expression

if exp then exp1 else exp2.

Similarly, rather than write

APRIL 23, 2007 WORKING DRAFT

2.4 Type Errors 23

if exp = false then exp1 else exp2,

it is better to write

if not exp then exp1 else exp2

or, better yet, just

if exp then exp2 else exp1.

2.4 Type Errors

Now that we have more than one type, we have enough rope to hang
ourselves by forming ill-typed expressions. For example, the following ex-
pressions are not well-typed:

size 45

#"1" + 1

#"2" ˆ "1"

3.14 + 2

In each case we are “misusing” an operator with arguments of the wrong
type.

This raises a natural question: is the following expression well-typed
or not?

if 1<2 then 0 else ("abc"+4)

Since the boolean test will come out true, the else clause will never be
executed, and hence need not be constrained to be well-typed. While this
reasoning is sensible for such a simple example, in general it is impossible
for the type checker to determine the outcome of the boolean test during
type checking. To be safe the type checker “assumes the worst” and insists
that both clauses of the conditional be well-typed, and in fact have the same
type, to ensure that the conditional expression can be given a type, namely
that of both of its clauses.

2.5 Sample Code

Here is the complete code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/typval.sml

Chapter 3

Declarations

3.1 Variables

Just as in any other programming language, values may be assigned to
variables, which may then be used in expressions to stand for that value.
However, in sharp contrast to most familiar languages, variables in ML do
not vary! A value may be bound to a variable using a construct called a
value binding. Once a variable is bound to a value, it is bound to it for
life; there is no possibility of changing the binding of a variable once it has
been bound. In this respect variables in ML are more akin to variables in
mathematics than to variables in languages such as C.

A type may also be bound to a type constructor using a type binding.
A bound type constructor stands for the type bound to it, and can never
stand for any other type. For this reason a type binding is sometimes called
a type abbreviation — the type constructor stands for the type to which it is
bound.1

A value or type binding introduces a “new” variable or type construc-
tor, distinct from all others of that class, for use within its range of signif-
icance, or scope. Scoping in ML is static, or lexical, meaning that the range
of significance of a variable or type constructor is determined by the pro-
gram text, not by the order of evaluation of its constituent expressions.
(Languages with dynamic scope adopt the opposite convention.) For the
time being variables and type constructors have global scope, meaning that

1By the same token a value binding might also be called a value abbreviation, but for
some reason it never is.

24

3.2 Basic Bindings 25

the range of significance of the variable or type constructor is the “rest”
of the program — the part that lexically follows the binding. However,
we will soon introduce mechanisms for limiting the scopes of variables or
type constructors to a given expression.

3.2 Basic Bindings

3.2.1 Type Bindings

Any type may be given a name using a type binding. At this stage we have
so few types that it is hard to justify binding type names to identifiers, but
we’ll do it anyway because we’ll need it later. Here are some examples of
type bindings:

type float = real

type count = int and average = real

The first type binding introduces the type constructor float, which sub-
sequently is synonymous with real. The second introduces two type con-
structors, count and average, which stand for int and real, respectively.

In general a type binding introduces one or more new type construc-
tors simultaneously in the sense that the definitions of the type constructors
may not involve any of the type constructors being defined. Thus a bind-
ing such as

type float = real and average = float

is nonsensical (in isolation) since the type constructors float and average

are introduced simultaneously, and hence cannot refer to one another.
The syntax for type bindings is

type tycon1 = typ1
and ...

and tyconn = typn

where each tyconi is a type constructor and each typi is a type expression.

APRIL 23, 2007 WORKING DRAFT

3.2 Basic Bindings 26

3.2.2 Value Bindings

A value may be given a name using a value binding. Here are some exam-
ples:

val m : int = 3+2

val pi : real = 3.14 and e : real = 2.17

The first binding introduces the variable m, specifying its type to be int

and its value to be 5. The second introduces two variables, pi and e, si-
multaneously, both having type real, and with pi having value 3.14 and
e having value 2.17. Notice that a value binding specifies both the type
and the value of a variable.

The syntax of value bindings is

val var1 : typ1 = exp1
and ...

and varn : typn = expn,

where each vari is a variable, each typi is a type expression, and each expi
is an expression.

A value binding of the form

val var : typ = exp

is type-checked by ensuring that the expression exp has type typ. If not,
the binding is rejected as ill-formed. If so, the binding is evaluated using
the bind-by-value rule: first exp is evaluated to obtain its value val, then val
is bound to var. If exp does not have a value, then the declaration does not
bind anything to the variable var.

The purpose of a binding is to make a variable available for use within
its scope. In the case of a type binding we may use the type variable intro-
duced by that binding in type expressions occurring within its scope. For
example, in the presence of the type bindings above, we may write

val pi : float = 3.14

since the type constructor float is bound to the type real, the type of the
expression 3.14. Similarly, we may make use of the variable introduced
by a value binding in value expressions occurring within its scope.

Continuing from the preceding binding, we may use the expression

APRIL 23, 2007 WORKING DRAFT

3.3 Compound Declarations 27

sin pi

to stand for 0.0 (approximately), and we may bind this value to a variable
by writing

val x : float = sin pi

As these examples illustrate, type checking and evaluation are context
dependent in the presence of type and value bindings since we must refer
to these bindings to determine the types and values of expressions. For
example, to determine that the above binding for x is well-formed, we
must consult the binding for pi to determine that it has type float, consult
the binding for float to determine that it is synonymous with real, which
is necessary for the binding of x to have type float.

The rough-and-ready rule for both type-checking and evaluation is that
a bound variable or type constructor is implicitly replaced by its binding
prior to type checking and evaluation. This is sometimes called the substi-
tution principle for bindings. For example, to evaluate the expression cos

x in the scope of the above declarations, we first replace the occurrence
of x by its value (approximately 0.0), then compute as before, yielding
(approximately) 1.0. Later on we will have to refine this simple principle
to take account of more sophisticated language features, but it is useful
nonetheless to keep this simple idea in mind.

3.3 Compound Declarations

Bindings may be combined to form declarations. A binding is an atomic
declaration, even though it may introduce many variables simultaneously.
Two declarations may be combined by sequential composition by simply
writing them one after the other, optionally separated by a semicolon.
Thus we may write the declaration

val m : int = 3+2

val n : int = m*m

which binds m to 5 and n to 25. Subsequently, we may evaluate m+n to ob-
tain the value 30. In general a sequential composition of declarations has
the form dec1 . . . decn, where n is at least 2. The scopes of these declarations

APRIL 23, 2007 WORKING DRAFT

3.4 Limiting Scope 28

are nested within one another: the scope of dec1 includes dec2, . . . , decn, the
scope of dec2 includes dec3, . . . , decn, and so on.

One thing to keep in mind is that binding is not assignment. The binding
of a variable never changes; once bound to a value, it is always bound to
that value (within the scope of the binding). However, we may shadow a
binding by introducing a second binding for a variable within the scope
of the first binding. Continuing the above example, we may write

val n : real = 2.17

to introduce a new variable n with both a different type and a different
value than the earlier binding. The new binding eclipses the old one,
which may then be discarded since it is no longer accessible. (Later on, we
will see that in the presence of higher-order functions shadowed bindings
are not always discarded, but are preserved as private data in a closure.
One might say that old bindings never die, they just fade away.)

3.4 Limiting Scope

The scope of a variable or type constructor may be delimited by using let

expressions and local declarations. A let expression has the form

let dec in exp end

where dec is any declaration and exp is any expression. The scope of the
declaration dec is limited to the expression exp. The bindings introduced
by dec are discarded upon completion of evaluation of exp.

Similarly, we may limit the scope of one declaration to another decla-
ration by writing

local dec in dec′ end

The scope of the bindings in dec is limited to the declaration dec′. After
processing dec′, the bindings in dec may be discarded.

The value of a let expression is determined by evaluating the decla-
ration part, then evaluating the expression relative to the bindings intro-
duced by the declaration, yielding this value as the overall value of the
let expression. An example will help clarify the idea:

APRIL 23, 2007 WORKING DRAFT

3.5 Typing and Evaluation 29

let

val m : int = 3

val n : int = m*m

in

m*n

end

This expression has type int and value 27, as you can readily verify by
first calculating the bindings for m and n, then computing the value of m*n
relative to these bindings. The bindings for m and n are local to the expres-
sion m*n, and are not accessible from outside the expression.

If the declaration part of a let expression eclipses earlier bindings, the
ambient bindings are restored upon completion of evaluation of the let

expression. Thus the following expression evaluates to 54:

val m : int = 2

val r : int =

let

val m : int = 3

val n : int = m*m

in

m*n

end * m

The binding of m is temporarily overridden during the evaluation of the
let expression, then restored upon completion of this evaluation.

3.5 Typing and Evaluation

To complete this chapter, let’s consider in more detail the context-sensitivity
of type checking and evaluation in the presence of bindings. The key ideas
are:

• Type checking must take account of the declared type of a variable.

• Evaluation must take account of the declared value of a variable.

This is achieved by maintaining environments for type checking and
evaluation. The type environment records the types of variables; the value

APRIL 23, 2007 WORKING DRAFT

3.5 Typing and Evaluation 30

environment records their values. For example, after processing the com-
pound declaration

val m : int = 0

val x : real = Math.sqrt(2.0)

val c : char = #"a"

the type environment contains the information

val m : int

val x : real

val c : char

and the value environment contains the information

val m = 0

val x = 1.414

val c = #"a"

In a sense the value declarations have been divided in “half”, separating
the type from the value information.

Thus we see that value bindings have significance for both type check-
ing and evaluation. In contrast type bindings have significance only for
type checking, and hence contribute only to the type environment. A type
binding such as

type float = real

is recorded in its entirety in the type environment, and no change is made
to the value environment. Subsequently, whenever we encounter the type
constructor float in a type expression, it is replaced by real in accordance
with the type binding above.

In chapter 2 we said that a typing assertion has the form exp : typ, and
that an evaluation assertion has the form exp ⇓ val. While two-place typing
and evaluation assertions are sufficient for closed expressions (those with-
out variables), we must extend these relations to account for open expres-
sions (those with variables). Each must be equipped with an environment
recording information about type constructors and variables introduced
by declarations.

Typing assertions are generalized to have the form

APRIL 23, 2007 WORKING DRAFT

3.5 Typing and Evaluation 31

typenv ` exp : typ

where typenv is a type environment that records the bindings of type con-
structors and the types of variables that may occur in exp.2 We may think
of typenv as a sequence of specifications of one of the following two forms:

1. type typvar = typ

2. val var : typ

Note that the second form does not include the binding for var, only its
type!

Evaluation assertions are generalized to have the form

valenv ` exp ⇓ val

where valenv is a value environment that records the bindings of the vari-
ables that may occur in exp. We may think of valenv as a sequence of spec-
ifications of the form

val var = val

that bind the value val to the variable var.
Finally, we also need a new assertion, called type equivalence, that de-

termines when two types are equivalent, relative to a type environment.
This is written

typenv ` typ1 ≡ typ2

Two types are equivalent iff they are the same when the type constructors
defined in typenv are replaced by their bindings.

The primary use of a type environment is to record the types of the
value variables that are available for use in a given expression. This is
expressed by the following axiom:

. . .val var : typ . . .` var : typ

2The turnstile symbol, “`”, is simply a punctuation mark separating the type environ-
ment from the expression and its type.

APRIL 23, 2007 WORKING DRAFT

3.6 Sample Code 32

In words, if the specification val var : typ occurs in the type environment,
then we may conclude that the variable var has type typ. This rule glosses
over an important point. In order to account for shadowing we require
that the rightmost specification govern the type of a variable. That way
re-binding of variables with the same name but different types behaves as
expected.

Similarly, the evaluation relation must take account of the value envi-
ronment. Evaluation of variables is governed by the following axiom:

. . .val var = val . . .` var ⇓ val

Here again we assume that the val specification is the rightmost one gov-
erning the variable var to ensure that the scoping rules are respected.

The role of the type equivalence assertion is to ensure that type con-
structors always stand for their bindings. This is expressed by the follow-
ing axiom:

. . .type typvar = typ . . .` typvar ≡ typ

Once again, the rightmost specification for typvar governs the assertion.

3.6 Sample Code

Here is the complete code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/vardec.sml

Chapter 4

Functions

4.1 Functions as Templates

So far we just have the means to calculate the values of expressions, and to
bind these values to variables for future reference. In this chapter we will
introduce the ability to abstract the data from a calculation, leaving behind
the bare pattern of the calculation. This pattern may then be instantiated
as often as you like so that the calculation may be repeated with specified
data values plugged in.

For example, consider the expression 2*(3+4). The data might be taken
to be the values 2, 3, and 4, leaving behind the pattern � * (� + �),
with “holes” where the data used to be. We might equally well take the
data to just be 2 and 3, and leave behind the pattern � * (� + 4). Or
we might even regard * and + as the data, leaving 2 � (3 � 4) as the
pattern! What is important is that a complete expression can be recovered
by filling in the holes with chosen data.

Since a pattern can contain many different holes that can be indepen-
dently instantiated, it is necessary to give names to the holes so that instan-
tiation consists of plugging in a given value for all occurrences of a name
in an expression. These names are, of course, just variables, and instan-
tiation is just the process of substituting a value for all occurrences of a
variable in a given expression. A pattern may therefore be viewed as a
function of the variables that occur within it; the pattern is instantiated by
applying the function to argument values.

This view of functions is similar to our experience from high school

33

4.2 Functions and Application 34

algebra. In algebra we manipulate polynomials such as x2 + 2x + 1 as
a form of expression denoting a real number, with the variable x repre-
senting a fixed, but unknown, quantity. (Indeed, variables in algebra are
sometimes called unknowns, or indeterminates.) It is also possible to think
of a polynomial as a function on the real line: given a real number x, a
polynomial determines a real number y computed by the given combi-
nation of arithmetic operations. Indeed, we sometimes write equations
such as f (x) = x2 + 2x + 1, to stand for the function f determined by
the polynomial. In the univariate case we can get away with just writing
the polynomial for the function, but in the multivariate case we must be
more careful: we may regard the polynomial x2 + 2xy + y2 to be a func-
tion of x, a function of y, or a function of both x and y. In these cases
we write f (x) = x2 + 2xy + y2 when x varies and y is held fixed, and
g(y) = x2 + 2xy + y2 when y varies for fixed x, and h(x, y) = x2 + 2xy + y2,
when both vary jointly.

In algebra it is usually left implicit that the variables x and y range
over the real numbers, and that f , g, and h are functions on the real line.
However, to be fully explicit, we sometimes write something like

f : R → R : x ∈ R 7→ x2 + 2x + 1

to indicate that f is a function on the reals sending x ∈ R to x2 + 2x + 1 ∈
R. This notation has the virtue of separating the name of the function, f ,
from the function itself, the mapping that sends x ∈ R to x2 + 2x + 1.
It also emphasizes that functions are a kind of “value” in mathematics
(namely, a certain set of ordered pairs), and that the variable f is bound to
that value (i.e., that set) by the declaration. This viewpoint is especially im-
portant once we consider operators, such as the differential operator, that
map functions to functions. For example, if f is a differentiable function
on the real line, the function D f is its first derivative, another function on
the real line. In the case of the function f defined above the function D f
sends x ∈ R to 2x + 2.

4.2 Functions and Application

The treatment of functions in ML is very similar, except that we stress
the algorithmic aspects of functions (how they determine values from ar-
guments), as well as the extensional aspects (what they compute). As in

APRIL 23, 2007 WORKING DRAFT

4.2 Functions and Application 35

mathematics, a function in ML is a kind of value, namely a value of func-
tion type of the form typ -> typ′. The type typ is the domain type (the type of
arguments) of the function, and typ′ is its range type (the type of its results).
We compute with a function by applying it to an argument value of its do-
main type and calculating the result, a value of its range type. Function
application is indicated by juxtaposition: we simply write the argument
next to the function.

The values of function type consist of primitive functions, such as addi-
tion and square root, and function expressions, which are also called lambda
expressions,1 of the form

fn var : typ => exp

The variable var is called the parameter, and the expression exp is called
the body. It has type typ->typ′ provided that exp has type typ′ under the
assumption that the parameter var has the type typ.

To apply such a function expression to an argument value val, we add
the binding

val var = val

to the value environment, and evaluate exp, obtaining a value val′. Then
the value binding for the parameter is removed, and the result value, val′,
is returned as the value of the application.

For example, Math.sqrt is a primitive function of type real->real that
may be applied to a real number to obtain its square root. For example, the
expression Math.sqrt 2.0 evaluates to 1.414 (approximately). We can,
if we wish, parenthesize the argument, writing Math.sqrt (2.0) for the
sake of clarity; this is especially useful for expressions such as Math.sqrt

(Math.sqrt 2.0). The square root function is built in. We may write the
fourth root function as the following function expression:

fn x : real => Math.sqrt (Math.sqrt x)

It may be applied to an argument by writing an expression such as

(fn x : real => Math.sqrt (Math.sqrt x)) (16.0),

1For purely historical reasons.

APRIL 23, 2007 WORKING DRAFT

4.2 Functions and Application 36

which calculates the fourth root of 16.0. The calculation proceeds by bind-
ing the variable x to the argument 16.0, then evaluating the expression
Math.sqrt (Math.sqrt x) in the presence of this binding. When evalua-
tion completes, we drop the binding of x from the environment, since it is
no longer needed.

Notice that we did not give the fourth root function a name; it is an
“anonymous” function. We may give it a name using the declaration
forms introduced in chapter 3. For example, we may bind the fourth root
function to the variable fourthroot using the following declaration:

val fourthroot : real -> real =

fn x : real => Math.sqrt (Math.sqrt x)

We may then write fourthroot 16.0 to compute the fourth root of 16.0.
This notation for defining functions quickly becomes tiresome, so ML

provides a special syntax for function bindings that is more concise and
natural. Instead of using the val binding above to define fourthroot, we
may instead write

fun fourthroot (x:real):real = Math.sqrt (Math.sqrt x)

This declaration has the same meaning as the earlier val binding, namely
it binds fn x:real => Math.sqrt(Math.sqrt x) to the variable fourthroot.

It is important to note that function applications in ML are evaluated
according to the call-by-value rule: the arguments to a function are evalu-
ated before the function is called. Put in other terms, functions are defined
to act on values, rather than on unevaluated expressions. Thus, to evaluate
an expression such as fourthroot (2.0+2.0), we proceed as follows:

1. Evaluate fourthroot to the function value fn x : real => Math.sqrt

(Math.sqrt x).

2. Evaluate the argument 2.0+2.0 to its value 4.0

3. Bind x to the value 4.0.

4. Evaluate Math.sqrt (Math.sqrt x) to 1.414 (approximately).

(a) Evaluate Math.sqrt to a function value (the primitive square
root function).

APRIL 23, 2007 WORKING DRAFT

4.3 Binding and Scope, Revisited 37

(b) Evaluate the argument expression Math.sqrt x to its value, ap-
proximately 2.0.

i. Evaluate Math.sqrt to a function value (the primitive square
root function).

ii. Evaluate x to its value, 4.0.
iii. Compute the square root of 4.0, yielding 2.0.

(c) Compute the square root of 2.0, yielding 1.414.

5. Drop the binding for the variable x.

Notice that we evaluate both the function and argument positions of an
application expression — both the function and argument are expressions
yielding values of the appropriate type. The value of the function position
must be a value of function type, either a primitive function or a lambda
expression, and the value of the argument position must be a value of the
domain type of the function. In this case the result value (if any) will be of
the range type of the function. Functions in ML are first-class, meaning that
they may be computed as the value of an expression. We are not limited to
applying only named functions, but rather may compute “new” functions
on the fly and apply these to arguments. This is a source of considerable
expressive power, as we shall see in the sequel.

Using similar techniques we may define functions with arbitrary do-
main and range. For example, the following are all valid function declara-
tions:

fun srev (s:string):string = implode (rev (explode s))

fun pal (s:string):string = s ˆ (srev s)

fun double (n:int):int = n + n

fun square (n:int):int = n * n

fun halve (n:int):int = n div 2

fun is even (n:int):bool = (n mod 2 = 0)

Thus pal "ot" evaluates to the string "otto", and is even 4 evaluates to
true.

4.3 Binding and Scope, Revisited

A function expression of the form

APRIL 23, 2007 WORKING DRAFT

4.3 Binding and Scope, Revisited 38

fn var:typ => exp

binds the variable var within the body exp of the function. Unlike val

bindings, function expressions bind a variable without giving it a specific
value. The value of the parameter is only determined when the function
is applied, and then only temporarily, for the duration of the evaluation of
its body.

It is worth reviewing the rules for binding and scope of variables that
we introduced in chapter 3 in the presence of function expressions. As be-
fore we adhere to the principle of static scope, according to which variables
are taken to refer to the nearest enclosing binding of that variable, whether
by a val binding or by a fn expression.

Thus, in the following example, the occurrences of x in the body of the
function f refer to the parameter of f, whereas the occurrences of x in the
body of g refer to the preceding val binding.

val x:real = 2.0

fun f(x:real):real = x+x

fun g(y:real):real = x+y

Local val bindings may shadow parameters, as well as other val bindings.
For example, consider the following function declaration:

fun h(x:real):real =

let val x:real = 2.0 in x+x end * x

The inner binding of x by the val declaration shadows the parameter x of
h, but only within the body of the let expression. Thus the last occurrence
of x refers to the parameter of h, whereas the preceding two occurrences
refer to the inner binding of x to 2.0.

The phrases “inner” and “outer” binding refer to the logical structure,
or abstract syntax of an expression. In the preceding example, the body
of h lies “within” the scope of the parameter x, and the expression x+x

lies within the scope of the val binding for x. Since the occurrences of x
within the body of the let lie within the scope of the inner val binding,
they are taken to refer to that binding, rather than to the parameter. On
the other hand the last occurrence of x does not lie within the scope of the
val binding, and hence refers to the parameter of h.

In general the names of parameters do not matter; we can rename them
at will without affecting the meaning of the program, provided that we

APRIL 23, 2007 WORKING DRAFT

4.4 Sample Code 39

simultaneously (and consistently) rename the binding occurrence and all
uses of that variable. Thus the functions f and g below are completely
equivalent to each other:

fun f(x:int):int = x*x

fun g(y:int):int = y*y

A parameter is just a placeholder; its name is not important.
Our ability to rename parameters is constrained by the static scoping

rule. We may rename a parameter to whatever we’d like, provided that
we don’t change the way in which uses of a variable are resolved. For
example, consider the following situation:

val x:real = 2.0

fun h(y:real):real = x+y

The parameter y to h may be renamed to z without affecting its meaning.
However, we may not rename it to x, for doing so changes its meaning!
That is, the function

fun h’(x:real):real = x+x

does not have the same meaning as h, because now both occurrences of x
in the body of h’ refer to the parameter, whereas in h the variable x refers
to the outer val binding, whereas the variable y refers to the parameter.

While this may seem like a minor technical issue, it is essential that you
master these concepts now, for they play a central, and rather subtle, role
later on.

4.4 Sample Code

Here is the complete code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/fcns.sml

Chapter 5

Products and Records

5.1 Product Types

A distinguishing feature of ML is that aggregate data structures, such as
tuples, lists, arrays, or trees, may be created and manipulated with ease.
In contrast to most familiar languages it is not necessary in ML to be con-
cerned with allocation and deallocation of data structures, nor with any
particular representation strategy involving, say, pointers or address arith-
metic. Instead we may think of data structures as first-class values, on a
par with every other value in the language. Just as it is unnecessary to
think about “allocating” integers to evaluate an arithmetic expression, it is
unnecessary to think about allocating more complex data structures such
as tuples or lists.

5.1.1 Tuples

This chapter is concerned with the simplest form of aggregate data struc-
ture, the n-tuple. An n-tuple is a finite ordered sequence of values of the
form

(val1,...,valn),

where each vali is a value. A 2-tuple is usually called a pair, a 3-tuple a
triple, and so on.

An n-tuple is a value of a product type of the form

typ1*... *typn.

40

5.1 Product Types 41

Values of this type are n-tuples of the form

(val1,...,valn),

where vali is a value of type typi (for each 1 ≤ i ≤ n).
Thus the following are well-formed bindings:

val pair : int * int = (2, 3)

val triple : int * real * string = (2, 2.0, "2")

val quadruple

: int * int * real * real

= (2,3,2.0,3.0)

val pair of pairs

: (int * int) * (real * real)

= ((2,3),(2.0,3.0))

The nesting of parentheses matters! A pair of pairs is not the same as
a quadruple, so the last two bindings are of distinct values with distinct
types.

There are two limiting cases, n = 0 and n = 1, that deserve special
attention. A 0-tuple, which is also known as a null tuple, is the empty
sequence of values, (). It is a value of type unit, which may be thought of
as the 0-tuple type.1 The null tuple type is surprisingly useful, especially
when programming with effects. On the other hand there seems to be no
particular use for 1-tuples, and so they are absent from the language.

As a convenience, ML also provides a general tuple expression of the
form

(exp1,...,expn),

where each expi is an arbitrary expression, not necessarily a value. Tuple
expressions are evaluated from left to right, so that the above tuple expres-
sion evaluates to the tuple value yielding the tuple value

(val1,...,valn),

provided that exp1 evaluates to val1, exp2 evaluates to val2, and so on. For
example, the binding

1In Java (and other languages) the type unit is misleadingly written void, which sug-
gests that the type has no members, but in fact it has exactly one!

APRIL 23, 2007 WORKING DRAFT

5.1 Product Types 42

val pair : int * int = (1+1, 5-2)

binds the value (2, 3) to the variable pair.
Strictly speaking, it is not essential to have tuple expressions as a prim-

itive notion in the language. Rather than write

(exp1,...,expn),

with the (implicit) understanding that the expi’s are evaluated from left to
right, we may instead write

let val x1 = exp1
val x2 = exp2
...

val xn = expn
in (x1,...,xn) end

which makes the evaluation order explicit.

5.1.2 Tuple Patterns

One of the most powerful, and distinctive, features of ML is the use of
pattern matching to access components of aggregate data structures. For
example, suppose that val is a value of type

(int * string) * (real * char)

and we wish to retrieve the first component of the second component of
val, a value of type real. Rather than explicitly “navigate” to this position
to retrieve it, we may simply use a generalized form of value binding in
which we select that component using a pattern:

val ((,), (r:real,)) = val

The left-hand side of the val binding is a tuple pattern that describes a
pair of pairs, binding the first component of the second component to the
variable r. The underscores indicate “don’t care” positions in the pattern
— their values are not bound to any variable. If we wish to give names to
all of the components, we may use the following value binding:

val ((i:int, s:string), (r:real, c:char)) = val

APRIL 23, 2007 WORKING DRAFT

5.1 Product Types 43

If we’d like we can even give names to the first and second components of
the pair, without decomposing them into constituent parts:

val (is:int*string,rc:real*char) = val

The general form of a value binding is

val pat = exp,

where pat is a pattern and exp is an expression. A pattern is one of three
forms:

1. A variable pattern of the form var:typ.

2. A tuple pattern of the form (pat1,...,patn), where each pati is a pat-
tern. This includes as a special case the null-tuple pattern, ().

3. A wildcard pattern of the form .

The type of a pattern is determined by an inductive analysis of the form
of the pattern:

1. A variable pattern var:typ is of type typ.

2. A tuple pattern (pat1,...,patn) has type typ1*· · · *typn, where each
pati is a pattern of type typi. The null-tuple pattern () has type unit.

3. The wildcard pattern has any type whatsoever.

A value binding of the form

val pat = exp

is well-typed iff pat and exp have the same type; otherwise the binding is
ill-typed and is rejected.

For example, the following bindings are well-typed:

val (m:int, n:int) = (7+1,4 div 2)

val (m:int, r:real, s:string) = (7, 7.0, "7")

val ((m:int,n:int), (r:real, s:real)) = ((4,5),(3.1,2.7))

val (m:int, n:int, r:real, s:real) = (4,5,3.1,2.7)

In contrast, the following are ill-typed:

APRIL 23, 2007 WORKING DRAFT

5.1 Product Types 44

val (m:int,n:int,r:real,s:real) = ((4,5),(3.1,2.7))

val (m:int, r:real) = (7+1,4 div 2)

val (m:int, r:real) = (7, 7.0, "7")

Value bindings are evaluated using the bind-by-value principle discussed
earlier, except that the binding process is now more complex than before.
First, we evaluate the right-hand side of the binding to a value (if indeed
it has one). This happens regardless of the form of the pattern — the right-
hand side is always evaluated. Second, we perform pattern matching to
determine the bindings for the variables in the pattern.

The process of matching a value against a pattern is defined by a set
of rules for reducing bindings with complex patterns to a set of bindings
with simpler patterns, stopping once we reach a binding with a variable
pattern. The rules are as follows:

1. The variable binding val var = val is irreducible.

2. The wildcard binding val = val is discarded.

3. The tuple binding

val (pat1,...,patn) =

(val1,...,valn)

is reduced to the set of n bindings

val pat1 = val1
...

val patn = valn

In the case that n = 0 the tuple binding is simply discarded.

These simplifications are repeated until all bindings are irreducible, which
leaves us with a set of variable bindings that constitute the result of pattern
matching.

For example, evaluation of the binding

val ((m:int,n:int), (r:real, s:real)) = ((2,3),(2.0,3.0))

proceeds as follows. First, we compose this binding into the following two
bindings:

APRIL 23, 2007 WORKING DRAFT

5.2 Record Types 45

val (m:int, n:int) = (2,3)

and (r:real, s:real) = (2.0,3.0).

Then we decompose each of these bindings in turn, resulting in the fol-
lowing set of four atomic bindings:

val m:int = 2

and n:int = 3

and r:real = 2.0

and s:real = 3.0

At this point the pattern-matching process is complete.

5.2 Record Types

Tuples are most useful when the number of positions is small. When the
number of components grows beyond a small number, it becomes difficult
to remember which position plays which role. In that case it is more natu-
ral to attach a label to each component of the tuple that mediates access to
it. This is the notion of a record type.

A record type has the form

{lab1:typ1,...,labn:typn},

where n ≥ 0, and all of the labels labi are distinct. A record value has the
form

{lab1=val1,...,labn=valn},

where vali has type typi. A record pattern has the form

{lab1=pat1,...,labn=patn}

which has type

{lab1:typ1,...,labn:typn}

provided that each pati has type typi.
A record value binding of the form

APRIL 23, 2007 WORKING DRAFT

5.2 Record Types 46

val

{lab1=pat1,...,labn=patn} =

{lab1=val1,...,labn=valn}

is decomposed into the following set of bindings

val pat1 = val1
and ...

and patn = valn.

Since the components of a record are identified by name, not position,
the order in which they occur in a record value or record pattern is not
important. However, in a record expression (in which the components may
not be fully evaluated), the fields are evaluated from left to right in the
order written, just as for tuple expressions.

Here are some examples to help clarify the use of record types. First,
let us define the record type hyperlink as follows:

type hyperlink =

{ protocol : string,

address : string,

display : string }

The record binding

val mailto rwh : hyperlink =

{ protocol="mailto",

address="rwh@cs.cmu.edu",

display="Robert Harper" }

defines a variable of type hyperlink. The record binding

val { protocol=prot, display=disp, address=addr } = mailto rwh

decomposes into the three variable bindings

val prot = "mailto"

val addr = "rwh@cs.cmu.edu"

val disp = "Robert Harper"

which extract the values of the fields of mailto rwh.
Using wild cards we can extract selected fields from a record. For ex-

ample, we may write

APRIL 23, 2007 WORKING DRAFT

5.2 Record Types 47

val {protocol=prot, address= , display= } = mailto rwh

to bind the variable prot to the protocol field of the record value mailto rwh.
It is quite common to encounter record types with tens of fields. In

such cases even the wild card notation doesn’t help much when it comes
to selecting one or two fields from such a record. For this we often use
ellipsis patterns in records, as illustrated by the following example.

val {protocol=prot,...} = intro home

The pattern {protocol=prot,...} stands for the expanded pattern

{protocol=prot, address= , display= }

in which the elided fields are implicitly bound to wildcard patterns.
In general the ellipsis is replaced by as many wildcard bindings as are

necessary to fill out the pattern to be consistent with its type. In order for
this to occur the compiler must be able to determine unambiguously the type of
the record pattern. Here the right-hand side of the value binding determines
the type of the pattern, which then determines which additional fields to
fill in. In some situations the context does not disambiguate, in which case
you must supply additional type information, or avoid the use of ellipsis
notation.

Finally, ML provides a convenient abbreviated form of record pattern

{lab1,...,labn}

which stands for the pattern

{lab1=var1,...,labn=varn}

where the variables vari are variables with the same name as the corre-
sponding label labi. For example, the binding

val { protocol, address, display } = mailto rwh

decomposes into the sequence of atomic bindings

val protocol = "mailto"

val address = "rwh@cs.cmu.edu"

val display = "Robert Harper"

This avoids the need to think up a variable name for each field; we can just
make the label do “double duty” as a variable.

APRIL 23, 2007 WORKING DRAFT

5.3 Multiple Arguments and Multiple Results 48

5.3 Multiple Arguments and Multiple Results

A function may bind more than one argument by using a pattern, rather
than a variable, in the argument position. Function expressions are gener-
alized to have the form

fn pat => exp

where pat is a pattern and exp is an expression. Application of such a func-
tion proceeds much as before, except that the argument value is matched
against the parameter pattern to determine the bindings of zero or more
variables, which are then used during the evaluation of the body of the
function.

For example, we may make the following definition of the Euclidean
distance function:

val dist

: real * real -> real

= fn (x:real, y:real) => sqrt (x*x + y*y)

This function may then be applied to a pair (a two-tuple!) of arguments to
yield the distance between them. For example, dist (2.0,3.0) evaluates
to (approximately) 4.0.

Using fun notation, the distance function may be defined more con-
cisely as follows:

fun dist (x:real, y:real):real = sqrt (x*x + y*y)

The meaning is the same as the more verbose val binding given earlier.
Keyword parameter passing is supported through the use of record pat-

terns. For example, we may define the distance function using keyword
parameters as follows:

fun dist’ {x=x:real, y=y:real} = sqrt (x*x + y*y)

The expression dist’ {x=2.0,y=3.0} invokes this function with the indi-
cated x and y values.

Functions with multiple results may be thought of as functions yield-
ing tuples (or records). For example, we might compute two different no-
tions of distance between two points at once as follows:

APRIL 23, 2007 WORKING DRAFT

5.3 Multiple Arguments and Multiple Results 49

fun dist2 (x:real, y:real):real*real

= (sqrt (x*x+y*y), abs(x-y))

Notice that the result type is a pair, which may be thought of as two results.
These examples illustrate a pleasing regularity in the design of ML.

Rather than introduce ad hoc notions such as multiple arguments, multiple
results, or keyword parameters, we make use of the general mechanisms
of tuples, records, and pattern matching.

It is sometimes useful to have a function to select a particular compo-
nent from a tuple or record (e.g., the third component or the component
with a given label). Such functions may be easily defined using pattern
matching. But since they arise so frequently, they are pre-defined in ML
using sharp notation. For any tuple type

typ1*· · ·*typn,

and each 1 ≤ i ≤ n, there is a function #i of type

typ1*· · ·*typn->typi

defined as follows:

fun #i (, ..., , x, , ...,) = x

where x occurs in the ith position of the tuple (and there are underscores
in the other n− 1 positions).

Thus we may refer to the second field of a three-tuple val by writing
#2(val). It is bad style, however, to over-use the sharp notation; code is
generally clearer and easier to maintain if you use patterns wherever pos-
sible. Compare, for example, the following definition of the Euclidean
distance function written using sharp notation with the original.

fun dist (p:real*real):real

= sqrt((#1 p)*(#1 p)+(#2 p)*(#2 p))

You can easily see that this gets out of hand very quickly, leading to un-
readable code. Use of the sharp notation is strongly discouraged!

A similar notation is provided for record field selection. The following
function #lab selects the component of a record with label lab.

fun #lab {lab=x,...} = x

Notice the use of ellipsis! Bear in mind the disambiguation requirement:
any use of #lab must be in a context sufficient to determine the full record
type of its argument.

APRIL 23, 2007 WORKING DRAFT

5.4 Sample Code 50

5.4 Sample Code

Here is the complete code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/prodpat.sml

Chapter 6

Case Analysis

6.1 Homogeneous and Heterogeneous Types

Tuple types have the property that all values of that type have the same
form (n-tuples, for some n determined by the type); they are said to be
homogeneous. For example, all values of type int*real are pairs whose
first component is an integer and whose second component is a real. Any
type-correct pattern will match any value of that type; there is no pos-
sibility of failure of pattern matching. The pattern (x:int,y:real) is of
type int*real and hence will match any value of that type. On the other
hand the pattern (x:int,y:real,z:string) is of type int*real*string

and cannot be used to match against values of type int*real; attempting
to do so fails at compile time.

Other types have values of more than one form; they are said to be het-
erogeneous types. For example, a value of type int might be 0, 1, ˜1, . . . or
a value of type char might be #"a" or #"z". (Other examples of hetero-
geneous types will arise later on.) Corresponding to each of the values of
these types is a pattern that matches only that value. Attempting to match
any other value against that pattern fails at execution time with an error
condition called a bind failure.

Here are some examples of pattern-matching against values of a het-
erogeneous type:

val 0 = 1-1

val (0,x) = (1-1, 34)

val (0, #"0") = (2-1, #"0")

51

6.2 Clausal Function Expressions 52

The first two bindings succeed, the third fails. In the case of the second,
the variable x is bound to 34 after the match. No variables are bound in
the first or third examples.

6.2 Clausal Function Expressions

The importance of constant patterns becomes clearer once we consider
how to define functions over heterogeneous types. This is achieved in
ML using a clausal function expression whose general form is

fn pat1 => exp1

|
...

| patn => expn

Each pati is a pattern and each expi is an expression involving the variables
of the pattern pati. Each component pat=>exp is called a clause, or a rule.
The entire assembly of rules is called a match.

The typing rules for matches ensure consistency of the clauses. Specif-
ically, there must exist types typ1 and typ2 such that

1. Each pattern pati has type typ1.

2. Each expression expi has type typ2, given the types of the variables in
pattern pati.

If these requirements are satisfied, the function has the type typ1->typ2.
Application of a clausal function to a value val proceeds by considering

the clauses in the order written. At stage i, where 1 ≤ i ≤ n, the argument
value val is matched against the pattern pati; if the pattern match succeeds,
evaluation continues with the evaluation of expression expi, with the vari-
ables of pati replaced by their values as determined by pattern matching.
Otherwise we proceed to stage i + 1. If no pattern matches (i.e., we reach
stage n + 1), then the application fails with an execution error called a
match failure.

Here’s an example. Consider the following clausal function:

val recip : int -> int =

fn 0 => 0 | n:int => 1 div n

APRIL 23, 2007 WORKING DRAFT

6.3 Booleans and Conditionals, Revisited 53

This defines an integer-valued reciprocal function on the integers, where
the reciprocal of 0 is arbitrarily defined to be 0. The function has two
clauses, one for the argument 0, the other for non-zero arguments n. (Note
that n is guaranteed to be non-zero because the patterns are considered in
order: we reach the pattern n:int only if the argument fails to match the
pattern 0.)

The fun notation is also generalized so that we may define recip using
the following more concise syntax:

fun recip 0 = 0

| recip (n:int) = 1 div n

One annoying thing to watch out for is that the fun form uses an equal
sign to separate the pattern from the expression in a clause, whereas the
fn form uses a double arrow.

Case analysis on the values of a heterogeneous type is performed by
application of a clausally-defined function. The notation

case exp
of pat1 => exp1
| ...

| patn => expn

is short for the application

(fn pat1 => exp1
| ...

| patn => expn)

exp.

Evaluation proceeds by first evaluating exp, then matching its value suc-
cessively against the patterns in the match until one succeeds, and contin-
uing with evaluation of the corresponding expression. The case expres-
sion fails if no pattern succeeds to match the value.

6.3 Booleans and Conditionals, Revisited

The type bool of booleans is perhaps the most basic example of a hetero-
geneous type. Its values are true and false. Functions may be defined

APRIL 23, 2007 WORKING DRAFT

6.4 Exhaustiveness and Redundancy 54

on booleans using clausal definitions that match against the patterns true
and false.

For example, the negation function may be defined clausally as fol-
lows:

fun not true = false

| not false = true

The conditional expression

if exp then exp1 else exp2

is short-hand for the case analysis

case exp
of true => exp1
| false => exp2

which is itself short-hand for the application

(fn true => exp1 | false => exp2) exp.

The “short-circuit” conjunction and disjunction operations are defined
as follows. The expression exp1 andalso exp2 is short for

if exp1 then exp2 else false

and the expression exp1 orelse exp2 is short for

if exp1 then true else exp2.

You should expand these into case expressions and check that they behave
as expected. Pay particular attention to the evaluation order, and observe
that the call-by-value principle is not violated by these expressions.

6.4 Exhaustiveness and Redundancy

Matches are subject to two forms of “sanity check” as an aid to the ML
programmer. The first, called exhaustiveness checking, ensures that a well-
formed match covers its domain type in the sense that every value of the

APRIL 23, 2007 WORKING DRAFT

6.4 Exhaustiveness and Redundancy 55

domain must match one of its clauses. The second, called redundancy check-
ing, ensures that no clause of a match is subsumed by the clauses that pre-
cede it. This means that the set of values covered by a clause in a match
must not be contained entirely within the set of values covered by the pre-
ceding clauses of that match.

Redundant clauses are always a mistake — such a clause can never be
executed. Redundant rules often arise accidentally. For example, the sec-
ond rule of the following clausal function definition is redundant:

fun not True = false

| not False = true

By capitalizing True we have turned it into a variable, rather than a con-
stant pattern. Consequently, every value matches the first clause, rendering
the second redundant.

Since the clauses of a match are considered in the order they are writ-
ten, redundancy checking is correspondingly order-sensitive. In particu-
lar, changing the order of clauses in a well-formed, irredundant match can
make it redundant, as in the following example:

fun recip (n:int) = 1 div n

| recip 0 = 0

The second clause is redundant because the first matches any integer value,
including 0.

Inexhaustive matches may or may not be in error, depending on whether
the match might ever be applied to a value that is not covered by any
clause. Here is an example of a function with an inexhaustive match that
is plausibly in error:

fun is numeric #"0" = true

| is numeric #"1" = true

| is numeric #"2" = true

| is numeric #"3" = true

| is numeric #"4" = true

| is numeric #"5" = true

| is numeric #"6" = true

| is numeric #"7" = true

| is numeric #"8" = true

| is numeric #"9" = true

APRIL 23, 2007 WORKING DRAFT

6.5 Sample Code 56

When applied to, say, #"a", this function fails. Indeed, the function never
returns false for any argument!

Perhaps what was intended here is to include a catch-all clause at the
end:

fun is numeric #"0" = true

| is numeric #"1" = true

| is numeric #"2" = true

| is numeric #"3" = true

| is numeric #"4" = true

| is numeric #"5" = true

| is numeric #"6" = true

| is numeric #"7" = true

| is numeric #"8" = true

| is numeric #"9" = true

| is numeric = false

The addition of a final catch-all clause renders the match exhaustive, be-
cause any value not matched by the first ten clauses will surely be matched
by the eleventh.

Having said that, it is a very bad idea to simply add a catch-all clause
to the end of every match to suppress inexhaustiveness warnings from the
compiler. The exhaustiveness checker is your friend! Each such warning is
a suggestion to double-check that match to be sure that you’ve not made
a silly error of omission, but rather have intentionally left out cases that
are ruled out by the invariants of the program. In chapter 10 we will see
that the exhaustiveness checker is an extremely valuable tool for managing
code evolution.

6.5 Sample Code

Here is the complete code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/clauses.sml

Chapter 7

Recursive Functions

So far we’ve only considered very simple functions (such as the reciprocal
function) whose value is computed by a simple composition of primitive
functions. In this chapter we introduce recursive functions, the principal
means of iterative computation in ML. Informally, a recursive function is
one that computes the result of a call by possibly making further calls to
itself. Obviously, to avoid infinite regress, some calls must return their
results without making any recursive calls. Those that do must ensure
that the arguments are, in some sense, “smaller” so that the process will
eventually terminate.

This informal description obscures a central point, namely the means
by which we may convince ourselves that a function computes the result
that we intend. In general we must prove that for all inputs of the do-
main type, the body of the function computes the “correct” value of result
type. Usually the argument imposes some additional assumptions on the
inputs, called the pre-conditions. The correctness requirement for the re-
sult is called a post-condition. Our burden is to prove that for every input
satisfying the pre-conditions, the body evaluates to a result satisfying the
post-condition. In fact we may carry out such an analysis for many differ-
ent pre- and post-condition pairs, according to our interest. For example,
the ML type checker proves that the body of a function yields a value of
the range type (if it terminates) whenever it is given an argument of the
domain type. Here the domain type is the pre-condition, and the range
type is the post-condition. In most cases we are interested in deeper prop-
erties, examples of which we shall consider below.

To prove the correctness of a recursive function (with respect to given

57

7.1 Self-Reference and Recursion 58

pre- and post-conditions) it is typically necessary to use some form of in-
ductive reasoning. The base cases of the induction correspond to those
cases that make no recursive calls; the inductive step corresponds to those
that do. The beauty of inductive reasoning is that we may assume that the
recursive calls work correctly when showing that a case involving recur-
sive calls is correct. We must separately show that the base cases satisfy
the given pre- and post-conditions. Taken together, these two steps are
sufficient to establish the correctness of the function itself, by appeal to an
induction principle that justifies the particular pattern of recursion.

No doubt this all sounds fairly theoretical. The point of this chapter is
to show that it is also profoundly practical.

7.1 Self-Reference and Recursion

In order for a function to “call itself”, it must have a name by which it can
refer to itself. This is achieved by using a recursive value binding, which are
ordinary value bindings qualified by the keyword rec. The simplest form
of a recursive value binding is as follows:

val rec var:typ = val.

As in the non-recursive case, the left-hand is a pattern, but here the right-
hand side must be a value. In fact the right-hand side must be a function
expression, since only functions may be defined recursively in ML. The
function may refer to itself by using the variable var.

Here’s an example of a recursive value binding:

val rec factorial : int->int =

fn 0 => 1 | n:int => n * factorial (n-1)

Using fun notation we may write the definition of factorial much more
clearly and concisely as follows:

fun factorial 0 = 1

| factorial (n:int) = n * factorial (n-1)

There is obviously a close correspondence between this formulation of
factorial and the usual textbook definition of the factorial function in

APRIL 23, 2007 WORKING DRAFT

7.1 Self-Reference and Recursion 59

terms of recursion equations:

0! = 1
n! = n× (n− 1)! (n > 0)

Recursive value bindings are type-checked in a manner that may, at
first glance, seem paradoxical. To check that the binding

val rec var : typ = val

is well-formed, we ensure that the value val has type typ, assuming that
var has type typ. Since var refers to the value val itself, we are in effect
assuming what we intend to prove while proving it!

(Incidentally, since val is required to be a function expression, the type
typ will always be a function type.)

Let’s look at an example. To check that the binding for factorial

given above is well-formed, we assume that the variable factorial has
type int->int, then check that its definition, the function

fn 0 => 1 | n:int => n * factorial (n-1),

has type int->int. To do so we must check that each clause has type
int->int by checking for each clause that its pattern has type int and
that its expression has type int. This is clearly true for the first clause of
the definition. For the second, we assume that n has type int, then check
that n * factorial (n-1) has type int. This is so because of the rules for
the primitive arithmetic operations and because of our assumption that
factorial has type int->int.

How are applications of recursive functions evaluated? The rules are
almost the same as before, with one modification. We must arrange that
all occurrences of the variable standing for the function are replaced by
the function itself before we evaluate the body. That way all references
to the variable standing for the function itself are indeed references to the
function itself!

Suppose that we have the following recursive function binding

val rec var : typ =

fn pat1 => exp1
| ...

| patn => expn

APRIL 23, 2007 WORKING DRAFT

7.1 Self-Reference and Recursion 60

and we wish to apply var to the value val of type typ. As before, we con-
sider each clause in turn, until we find the first pattern pati matching val.
We proceed, as before, by evaluating expi, replacing the variables in pati by
the bindings determined by pattern matching, but, in addition, we replace
all occurrences of the var by its binding in expi before continuing evalua-
tion.

For example, to evaluate factorial 3, we proceed by retrieving the
binding of factorial and evaluating

(fn 0=>1 | n:int => n*factorial(n-1))(3).

Considering each clause in turn, we find that the first doesn’t match, but
the second does. We therefore continue by evaluating its right-hand side,
the expression n * factorial(n-1), after replacing n by 3 and factorial

by its definition. We are left with the sub-problem of evaluating the ex-
pression

3 * (fn 0 => 1 | n:int => n*factorial(n-1))(2)

Proceeding as before, we reduce this to the sub-problem of evaluating

3 * (2 * (fn 0=>1 | n:int => n*factorial(n-1))(1)),

which reduces to the sub-problem of evaluating

3 * (2 * (1 * (fn 0=>1 | n:int => n*factorial(n-1))(0))),

which reduces to

3 * (2 * (1 * 1)),

which then evaluates to 6, as desired.
Observe that the repeated substitution of factorial by its definition

ensures that the recursive calls really do refer to the factorial function itself.
Also observe that the size of the sub-problems grows until there are no
more recursive calls, at which point the computation can complete. In
broad outline, the computation proceeds as follows:

1. factorial 3

2. 3 * factorial 2

APRIL 23, 2007 WORKING DRAFT

7.2 Iteration 61

3. 3 * 2 * factorial 1

4. 3 * 2 * 1 * factorial 0

5. 3 * 2 * 1 * 1

6. 3 * 2 * 1

7. 3 * 2

8. 6

Notice that the size of the expression first grows (in direct proportion to
the argument), then shrinks as the pending multiplications are completed.
This growth in expression size corresponds directly to a growth in run-
time storage required to record the state of the pending computation.

7.2 Iteration

The definition of factorial given above should be contrasted with the
following two-part definition:

fun helper (0,r:int) = r

| helper (n:int,r:int) = helper (n-1,n*r)

fun factorial (n:int) = helper (n, 1)

First we define a “helper” function that takes two parameters, an integer
argument and an accumulator that records the running partial result of the
computation. The idea is that the accumulator re-associates the pending
multiplications in the evaluation trace given above so that they can be per-
formed prior to the recursive call, rather than after it completes. This re-
duces the space required to keep track of those pending steps. Second, we
define factorial by calling helper with argument n and initial accumu-
lator value 1, corresponding to the product of zero terms (empty prefix).

As a matter of programming style, it is usual to conceal the definitions
of helper functions using a local declaration. In practice we would make
the following definition of the iterative version of factorial:

APRIL 23, 2007 WORKING DRAFT

7.3 Inductive Reasoning 62

local

fun helper (0,r:int) = r

| helper (n:int,r:int) = helper (n-1,n*r)

in

fun factorial (n:int) = helper (n,1)

end

This way the helper function is not visible, only the function of interest is
“exported” by the declaration.

The important thing to observe about helper is that it is iterative, or tail
recursive, meaning that the recursive call is the last step of evaluation of an
application of it to an argument. This means that the evaluation trace of a
call to helper with arguments (3,1) has the following general form:

1. helper (3, 1)

2. helper (2, 3)

3. helper (1, 6)

4. helper (0, 6)

5. 6

Notice that there is no growth in the size of the expression because there
are no pending computations to be resumed upon completion of the re-
cursive call. Consequently, there is no growth in the space required for an
application, in contrast to the first definition given above. Tail recursive
definitions are analogous to loops in imperative languages: they merely
iterate a computation, without requiring auxiliary storage.

7.3 Inductive Reasoning

Time and space usage are important, but what is more important is that
the function compute the intended result. The key to the correctness of
a recursive function is an inductive argument establishing its correctness.
The critical ingredients are these:

1. An input-output specification of the intended behavior stating pre-conditions
on the arguments and a post-condition on the result.

APRIL 23, 2007 WORKING DRAFT

7.3 Inductive Reasoning 63

2. A proof that the specification holds for each clause of the function,
assuming that it holds for any recursive calls.

3. An induction principle that justifies the correctness of the function as
a whole, given the correctness of its clauses.

We’ll illustrate the use of inductive reasoning by a graduated series
of examples. First consider the simple, non-tail recursive definition of
factorial given in section 7.1. One reasonable specification for factorial
is as follows:

1. Pre-condition: n ≥ 0.

2. Post-condition: factorial n evaluates to n!.

We are to establish the following statement of correctness of factorial:

if n ≥ 0, then factorial n evaluates to n!.

That is, we show that the pre-conditions imply the post-condition holds
of the result of any application. This is called a total correctness assertion
because it states not only that the post-condition holds of any result of
application, but, moreover, that every application in fact yields a result
(subject to the pre-condition on the argument).

In contrast, a partial correctness assertion does not insist on termination,
only that the post-condition holds whenever the application terminates.
This may be stated as the assertion

if n ≥ 0 and factorial n evaluates to p, then p = n!.

Notice that this statement is true of a function that diverges whenever it is
applied! In this sense a partial correctness assertion is weaker than a total
correctness assertion.

Let us establish the total correctness of factorial using the pre- and
post-conditions stated above. To do so, we apply the principle of math-
ematical induction on the argument n. Recall that this means we are to
establish the specification for the case n = 0, and, assuming it to hold for
n >= 0, show that it holds for n + 1. The base case, n = 0, is trivial:
by definition factorial n evaluates to 1, which is 0!. Now suppose that
n = m + 1 for some m >= 0. By the inductive hypothesis we have that

APRIL 23, 2007 WORKING DRAFT

7.3 Inductive Reasoning 64

factorial m evaluates to m! (since m ≥ 0), and so by definition factorial

n evaluates to
n×m! = (m + 1)×m!

= (m + 1)!
= n!,

as required. This completes the proof.
That was easy. What about the iterative definition of factorial? We

focus on the behavior of helper. A suitable specification is given as fol-
lows:

1. Pre-condition: n ≥ 0.

2. Post-condition: helper (n, r) evaluates to n!× r.

To show the total correctness of helper with respect to this specification,
we once again proceed by mathematical induction on n. We leave it as an
exercise to give the details of the proof.

With this in hand it is easy to prove the correctness of factorial — if
n ≥ 0 then factorial n evaluates to the result of helper (n, 1), which
evaluates to n!× 1 = n!. This completes the proof.

Helper functions correspond to lemmas, main functions correspond to
theorems. Just as we use lemmas to help us prove theorems, we use helper
functions to help us define main functions. The foregoing argument shows
that this is more than an analogy, but lies at the heart of good program-
ming style.

Here’s an example of a function defined by complete induction (or strong
induction), the Fibonacci function, defined on integers n >= 0:

(* for n>=0, fib n yields the nth Fibonacci number *)

fun fib 0 = 1

| fib 1 = 1

| fib (n:int) = fib (n-1) + fib (n-2)

The recursive calls are made not only on n-1, but also n-2, which is why
we must appeal to complete induction to justify the definition. This defi-
nition of fib is very inefficient because it performs many redundant com-
putations: to compute fib n requires that we compute fib (n-1) and fib

(n-2). To compute fib (n-1) requires that we compute fib (n-2) a sec-
ond time, and fib (n-3). Computing fib (n-2) requires computing fib

APRIL 23, 2007 WORKING DRAFT

7.4 Mutual Recursion 65

(n-3) again, and fib (n-4). As you can see, there is considerable redun-
dancy here. It can be shown that the running time fib of is exponential in
its argument, which is quite awful.

Here’s a better solution: for each n >= 0 compute not only the nth
Fibonacci number, but also the (n− 1)st as well. (For n = 0 we define the
“−1st” Fibonacci number to be zero). That way we can avoid redundant
recomputation, resulting in a linear-time algorithm. Here’s the code:

(* for n>=0, fib’ n evaluates to (a, b), where

a is the nth Fibonacci number, and

b is the (n-1)st *)

fun fib’ 0 = (1, 0)

| fib’ 1 = (1, 1)

| fib’ (n:int) =

let

val (a:int, b:int) = fib’ (n-1)

in

(a+b, a)

end

You might feel satisfied with this solution since it runs in time linear in
n. It turns out (see Graham, Knuth, and Patashnik, Concrete Mathematics
(Addison-Wesley 1989) for a derivation) that the recurrence

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

has a closed-form solution over the real numbers. This means that the
nth Fibonacci number can be calculated directly, without recursion, by us-
ing floating point arithmetic. However, this is an unusual case. In most
instances recursively-defined functions have no known closed-form solu-
tion, so that some form of iteration is inevitable.

7.4 Mutual Recursion

It is often useful to define two functions simultaneously, each of which
calls the other (and possibly itself) to compute its result. Such functions

APRIL 23, 2007 WORKING DRAFT

7.5 Sample Code 66

are said to be mutually recursive. Here’s a simple example to illustrate the
point, namely testing whether a natural number is odd or even. The most
obvious approach is to test whether the number is congruent to 0 mod
2, and indeed this is what one would do in practice. But to illustrate the
idea of mutual recursion we instead use the following inductive charac-
terization: 0 is even, and not odd; n > 0 is even iff n − 1 is odd; n > 0 is
odd iff n− 1 is even. This may be coded up using two mutually-recursive
procedures as follows:

fun even 0 = true

| even n = odd (n-1)

and odd 0 = false

| odd n = even (n-1)

Notice that even calls odd and odd calls even, so they are not definable
separately from one another. We join their definitions using the keyword
and to indicate that they are defined simultaneously by mutual recursion.

7.5 Sample Code

Here is the complete code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/recfcn.sml

Chapter 8

Type Inference and
Polymorphism

8.1 Type Inference

So far we’ve mostly written our programs in what is known as the explic-
itly typed style. This means that whenever we’ve introduced a variable,
we’ve assigned it a type at its point of introduction. In particular every
variable in a pattern has a type associated with it. As you may have no-
ticed, this gets a little tedious after a while, especially when you’re using
clausal function definitions. A particularly pleasant feature of ML is that
it allows you to omit this type information whenever it can be determined
from context. This process is known as type inference since the compiler is
inferring the missing type information based on context.

For example, there is no need to give a type to the variable s in the
function

fn s:string => s ˆ "\n".

The reason is that no other type for s makes sense, since s is used as an
argument to string concatenation. Consequently, you may write simply

fn s => s ˆ "\n",

leaving ML to insert “:string” for you.
When is it allowable to omit this information? Almost always, with

very few exceptions. It is a deep, and important, result about ML that

67

8.1 Type Inference 68

missing type information can (almost) always be reconstructed completely
and unambiguously where it is omitted. This is called the principal typing
property of ML: whenever type information is omitted, there is always a
most general (i.e., least restrictive) way to recover the omitted type informa-
tion. If there is no way to recover the omitted type information, then the
expression is ill-typed. Otherwise there is a “best” way to fill in the blanks,
which will (almost) always be found by the compiler. This is an amazingly
useful, and widely under-appreciated, property of ML. It means, for exam-
ple, that the programmer can enjoy the full benefits of a static type system
without paying any notational penalty whatsoever!

The prototypical example is the identity function, fn x=>x. The body
of the function places no constraints on the type of x, since it merely re-
turns x as the result without performing any computation on it. Since the
behavior of the identity function is the same for all possible choices of type
for its argument, it is said to be polymorphic. Therefore the identity function
has infinitely many types, one for each choice of the type of the parameter
x. Choosing the type of x to be typ, the type of the identity function is
typ->typ. In other words every type for the identity function has the form
typ->typ, where typ is the type of the argument.

Clearly there is a pattern here, which is captured by the notion of a type
scheme. A type scheme is a type expression involving one or more type
variables standing for an unknown, but arbitrary type expression. Type
variables are written ’a (pronounced “α”), ’b (pronounced “β”), ’c (pro-
nounced “γ”), etc.. An instance of a type scheme is obtained by replacing
each of the type variables occurring in it with a type scheme, with the same
type scheme replacing each occurrence of a given type variable. For ex-
ample, the type scheme ’a->’a has instances int->int, string->string,
(int*int)->(int*int), and (’b->’b)->(’b->’b), among infinitely many
others. However, it does not have the type int->string as instance, since
we are constrained to replace all occurrences of a type variable by the same
type scheme. However, the type scheme ’a->’b has both int->int and
int->string as instances since there are different type variables occurring
in the domain and range positions.

Type schemes are used to express the polymorphic behavior of func-
tions. For example, we may write fn x:’a=>x for the polymorphic iden-
tity function of type ’a->’a, meaning that the behavior of the identity
function is independent of the type of x. Similarly, the behavior of the
function fn (x,y)=>x+1 is independent of the type of y, but constrains the

APRIL 23, 2007 WORKING DRAFT

8.1 Type Inference 69

type of x to be int. This may be expressed using type schemes by writ-
ing this function in the explicitly-typed form fn (x:int,y:’a)=>x+1 with
type int*’a->int.

In these examples we needed only one type variable to express the
polymorphic behavior of a function, but usually we need more than one.
For example, the function fn (x,y) = x constrains neither the type of x
nor the type of y. Consequently we may choose their types freely and in-
dependently of one another. This may be expressed by writing this func-
tion in the form fn (x:’a,y:’b)=>x with type scheme ’a*’b->’a. Notice
that while it is correct to assign the type ’a*’a->’a to this function, doing
so would be overly restrictive since the types of the two parameters need
not be the same. However, we could not assign the type ’a*’b->’c to this
function because the type of the result must be the same as the type of
the first parameter: it returns its first parameter when invoked! The type
scheme ’a*’b->’a precisely captures the constraints that must be satis-
fied for the function to be type correct. It is said to be the most general or
principal type scheme for the function.

It is a remarkable fact about ML that every expression (with the excep-
tion of a few pesky examples that we’ll discuss below) has a principal type
scheme. That is, there is (almost) always a best or most general way to infer
types for expressions that maximizes generality, and hence maximizes flexi-
bility in the use of the expression. Every expression “seeks its own depth”
in the sense that an occurrence of that expression is assigned a type that is
an instance of its principal type scheme determined by the context of use.

For example, if we write

(fn x=>x)(0),

the context forces the type of the identity function to be int->int, and if
we write

(fn x=>x)(fn x=>x)(0)

the context forces the instance (int->int)->(int->int) of the principal
type scheme for the identity at the first occurrence, and the instance int->int
for the second.

How is this achieved? Type inference is a process of constraint satisfac-
tion. First, the expression determines a set of equations governing the rela-
tionships among the types of its subexpressions. For example, if a function

APRIL 23, 2007 WORKING DRAFT

8.2 Polymorphic Definitions 70

is applied to an argument, then a constraint equating the domain type of
the function with the type of the argument is generated. Second, the con-
straints are solved using a process similar to Gaussian elimination, called
unification. The equations can be classified by their solution sets as follows:

1. Overconstrained: there is no solution. This corresponds to a type error.

2. Underconstrained: there are many solutions. There are two sub-cases:
ambiguous (due to overloading, which we will discuss further in sec-
tion 8.3), or polymorphic (there is a “best” solution).

3. Uniquely determined: there is precisely one solution. This corresponds
to a completely unambiguous type inference problem.

The free type variables in the solution to the system of equations may be
thought of as determining the “degrees of freedom” or “range of polymor-
phism” of the type of an expression — the constraints are solvable for any
choice of types to substitute for these free type variables.

This description of type inference as a constraint satisfaction procedure
accounts for the notorious obscurity of type checking errors in ML. If a
program is not type correct, then the system of constraints associated with
it will not have a solution. The type inference procedure attempts to find
a solution to these constraints, and at some point discovers that it cannot
succeed. It is fundamentally impossible to attribute this inconsistency to
any particular constraint; all that can be said is that the constraint set as
a whole has no solution. The checker usually reports the first unsatisfi-
able equation it encounters, but this may or may not correspond to the
“reason” (in the mind of the programmer) for the type error. The usual
method for finding the error is to insert sufficient type information to nar-
row down the source of the inconsistency until the source of the difficulty
is uncovered.

8.2 Polymorphic Definitions

There is an important interaction between polymorphic expressions and
value bindings that may be illustrated by the following example. Suppose
that we wish to bind the identity function to a variable I so that we may
refer to it by name. We’ve previously observed that the identity function

APRIL 23, 2007 WORKING DRAFT

8.2 Polymorphic Definitions 71

is polymorphic, with principal type scheme ’a->’a. This may be captured
by ascribing this type scheme to the variable I at the val binding. That is,
we may write

val I : ’a->’a = fn x=>x

to ascribe the type scheme ’a->’a to the variable I. (We may also write

fun I(x:’a):’a = x

for an equivalent binding of I.) Having done this, each use of I determines a
distinct instance of the ascribed type scheme ’a->’a. That is, both I 0 and I I

0 are well-formed expressions, the first assigning the type int->int to I,
the second assigning the types

(int->int)->(int->int)

and

int->int

to the two occurrences of I. Thus the variable I behaves precisely the same
as its definition, fn x=>x, in any expression where it is used.

As a convenience ML also provides a form of type inference on value
bindings that eliminates the need to ascribe a type scheme to the variable
when it is bound. If no type is ascribed to a variable introduced by a
val binding, then it is implicitly ascribed the principal type scheme of the
right-hand side. For example, we may write

val I = fn x=>x

or

fun I(x) = x

as a binding for the variable . The type checker implicitly assigns the prin-
cipal type scheme, ’a->’a, of the binding to the variable I. In practice we
often allow the type checker to infer the principal type of a variable, but it
is often good form to explicitly indicate the intended type as a consistency
check and for documentation purposes.

The treatment of val bindings during type checking ensures that a
bound variable has precisely the same type as its binding. In other words

APRIL 23, 2007 WORKING DRAFT

8.2 Polymorphic Definitions 72

the type checker behaves as though all uses of the bound variable are im-
plicitly replaced by its binding before type checking. Since this may in-
volve replication of the binding, the meaning of a program is not necessar-
ily preserved by this transformation. (Think, for example, of any expres-
sion that opens a window on your screen: if you replicate the expression
and evaluate it twice, it will open two windows. This is not the same as
evaluating it only once, which results in one window.)

To ensure semantic consistency, variables introduced by a val binding
are allowed to be polymorphic only if the right-hand side is a value. This
is called the value restriction on polymorphic declarations. For fun bind-
ings this restriction is always met since the right-hand side is implicitly a
lambda expression, which is a value. However, it might be thought that
the following declaration introduces a polymorphic variable of type ’a ->

’a, but in fact it is rejected by the compiler:

val J = I I

The reason is that the right-hand side is not a value; it requires compu-
tation to determine its value. It is therefore ruled out as inadmissible for
polymorphism; the variable J may not be used polymorphically in the re-
mainder of the program. In this case the difficulty may be avoided by
writing instead

fun J x = I I x

because now the binding of J is a lambda, which is a value.
In some rare circumstances this is not possible, and some polymor-

phism is lost. For example, the following declaration of a value of list
type1

val l = nil @ nil

does not introduce an identifier with a polymorphic type, even though the
almost equivalent declaration

val l = nil

does do so. Since the right-hand side is a list, we cannot apply the “trick”
of defining l to be a function; we are stuck with a loss of polymorphism in

1To be introduced in chapter 9.

APRIL 23, 2007 WORKING DRAFT

8.3 Overloading 73

this case. This particular example is not very impressive, but occasionally
similar examples do arise in practice.

Why is the value restriction necessary? Later on, when we study mu-
table storage, we’ll see that some restriction on polymorphism is essen-
tial if the language is to be type safe. The value restriction is an easily-
remembered sufficient condition for soundness, but as the examples above
illustrate, it is by no means necessary. The designers of ML were faced
with a choice of simplicity vs flexibility; in this case they opted for simplic-
ity at the expense of some expressiveness in the language.

8.3 Overloading

Type information cannot always be omitted. There are a few corner cases
that create problems for type inference, most of which arise because of
concessions that are motivated by long-standing, if dubious, notational
practices.

The main source of difficulty stems from overloading of arithmetic oper-
ators. As a concession to long-standing practice in informal mathematics
and in many programming languages, the same notation is used for both
integer and floating point arithmetic operations. As long as we are pro-
gramming in an explicitly-typed style, this convention creates no particu-
lar problems. For example, in the function

fn x:int => x+x

it is clear that integer addition is called for, whereas in the function

fn x:real => x+x

it is equally obvious that floating point addition is intended.
However, if we omit type information, then a problem arises. What are

we to make of the function

fn x => x+x ?

Does “+” stand for integer or floating point addition? There are two dis-
tinct reconstructions of the missing type information in this example, cor-
responding to the preceding two explictly-typed programs. Which is the
compiler to choose?

When presented with such a program, the compiler has two choices:

APRIL 23, 2007 WORKING DRAFT

8.3 Overloading 74

1. Declare the expression ambiguous, and force the programmer to pro-
vide enough explicit type information to resolve the ambiguity.

2. Arbitrarily choose a “default” interpretation, say the integer arith-
metic, that forces one interpretation or another.

Each approach has its advantages and disadvantages. Many compilers
choose the second approach, but issue a warning indicating that it has
done so. To avoid ambiguity, explicit type information is required from
the programmer.

The situation is actually a bit more subtle than the preceding discus-
sion implies. The reason is that the type inference process makes use of
the surrounding context of an expression to help resolve ambiguities. For
example, if the expression fn x=>x+x occurs in the following, larger ex-
pression, there is in fact no ambiguity:

(fn x => x+x)(3).

Since the function is applied to an integer argument, there is no question
that the only possible resolution of the missing type information is to treat
x as having type int, and hence to treat + as integer addition.

The important question is how much context is considered before the
situation is considered ambiguous? The rule of thumb is that context is
considered up to the nearest enclosing function declaration. For example,
consider the following example:

let

val double = fn x => x+x

in

(double 3, double 4)

end

The function expression fn x=>x+x will be flagged as ambiguous, even
though its only uses are with integer arguments. The reason is that value
bindings are considered to be “units” of type inference for which all am-
biguity must be resolved before type checking continues. If your compiler
adopts the integer interpretation as default, the above program will be ac-
cepted (with a warning), but the following one will be rejected:

APRIL 23, 2007 WORKING DRAFT

8.3 Overloading 75

let

val double = fn x => x+x

in

(double 3.0, double 4.0)

end

Finally, note that the following program must be rejected because no
resolution of the overloading of addition can render it meaningful:

let

val double = fn x => x+x

in

(double 3, double 3.0)

end

The ambiguity must be resolved at the val binding, which means that the
compiler must commit at that point to treating the addition operation as
either integer or floating point. No single choice can be correct, since we
subsequently use double at both types.

A closely related source of ambiguity arises from the “record elision”
notation described in chapter 5. Consider the function #name, defined by

fun #name {name=n:string, ...} = n

which selects the name field of a record. This definition is ambiguous be-
cause the compiler cannot uniquely determine the domain type of the
function! Any of the following types are legitimate domain types for
#name, none of which is “best”:

{name:string}
{name:string,salary:real}
{name:string,salary:int}
{name:string,address:string}

Of course there are infinitely many such examples, none of which is clearly
preferable to the other. This function definition is therefore rejected as
ambiguous by the compiler — there is no one interpretation of the function
that suffices for all possible uses.

In chapter 5 we mentioned that functions such as #name are pre-defined
by the ML compiler, yet we just now claimed that such a function def-
inition is rejected as ambiguous. Isn’t this a contradiction? Not really,

APRIL 23, 2007 WORKING DRAFT

8.4 Sample Code 76

because what happens is that each occurrence of #name is replaced by the
function

fn {name=n,...} = n

and then context is used to resolve the “local” ambiguity. This works well,
provided that the complete record type of the arguments to #name can be
determined from context. If not, the uses are rejected as ambiguous. Thus,
the following expression is well-typed

fn r : {name:string,address:string,salary:int} =>

(#name r, #address r)

because the record type of r is explicitly given. If the type of r were omit-
ted, the expression would be rejected as ambiguous (unless the context
resolves the ambiguity.)

8.4 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/typinf.sml

Chapter 9

Programming with Lists

9.1 List Primitives

In chapter 5 we noted that aggregate data structures are especially easy
to handle in ML. In this chapter we consider another important aggregate
type, the list type. In addition to being an important form of aggregate
type it also illustrates two other general features of the ML type system:

1. Type constructors, or parameterized types. The type of a list reveals the
type of its elements.

2. Recursive types. The set of values of a list type are given by an induc-
tive definition.

Informally, the values of type typ list are the finite lists of values of
type typ. More precisely, the values of type typ list are given by an in-
ductive definition, as follows:

1. nil is a value of type typ list.

2. if h is a value of type typ, and t is a value of type typ list, then h::t
is a value of type typ list.

3. Nothing else is a value of type typ list.

The type expression typ list is a postfix notation for the application
of the type constructor list to the type typ. Thus list is a kind of “func-
tion” mapping types to types: given a type typ, we may apply list to it

77

9.1 List Primitives 78

to get another type, written typ list. The forms nil and :: are the value
constructors of type typ list. The nullary (no argument) constructor nil
may be thought of as the empty list. The binary (two argument) construc-
tor :: constructs a non-empty list from a value h of type typ and another
value t of type typ list; the resulting value, h::t, of type typ list, is pro-
nounced “h cons t” (for historical reasons). We say that “h is cons’d onto t”,
that h is the head of the list, and that t is its tail.

The definition of the values of type typ list given above is an example
of an inductive definition. The type is said to be recursive because this defi-
nition is “self-referential” in the sense that the values of type typ list are
defined in terms of (other) values of the same type. This is especially clear
if we examine the types of the value constructors for the type typ list:

val nil : typ list

val (op ::) : typ * typ list -> typ list

The notation op :: is used to refer to the :: operator as a function, rather
than to use it to form a list, which requires infix notation.

Two things are notable here:

1. The :: operation takes as its second argument a value of type typ
list, and yields a result of type typ list. This self-referential aspect
is characteristic of an inductive definition.

2. Both nil and op :: are polymorphic in the type of the underlying el-
ements of the list. Thus nil is the empty list of type typ list for
any element type typ, and op :: constructs a non-empty list inde-
pendently of the type of the elements of that list.

It is easy to see that a value val of type typ list has the form

val1::(val2:: (· · · ::(valn::nil)· · ·))

for some n ≥ 0, where vali is a value of type typi for each 1 ≤ i ≤ n.
For according to the inductive definition of the values of type typ list,
the value val must either be nil, which is of the above form, or val1::val′,
where val′ is a value of type typ list. By induction val′ has the form

(val2:: (· · · ::(valn::nil)· · ·))

APRIL 23, 2007 WORKING DRAFT

9.2 Computing With Lists 79

and hence val again has the specified form.
By convention the operator :: is right-associative, so we may omit the

parentheses and just write

val1::val2::· · ·::valn::nil

as the general form of val of type typ list. This may be further abbrevi-
ated using list notation, writing

[val1, val2, ..., valn]

for the same list. This notation emphasizes the interpretation of lists as
finite sequences of values, but it obscures the fundamental inductive char-
acter of lists as being built up from nil using the :: operation.

9.2 Computing With Lists

How do we compute with values of list type? Since the values are defined
inductively, it is natural that functions on lists be defined recursively, using
a clausal definition that analyzes the structure of a list. Here’s a definition
of the function length that computes the number of elements of a list:

fun length nil = 0

| length (::t) = 1 + length t

The definition is given by induction on the structure of the list argument.
The base case is the empty list, nil. The inductive step is the non-empty
list ::t (notice that we do not need to give a name to the head). Its defi-
nition is given in terms of the tail of the list t, which is “smaller” than the
list ::t. The type of length is ’a list -> int; it is defined for lists of
values of any type whatsoever.

We may define other functions following a similar pattern. Here’s the
function to append two lists:

fun append (nil, l) = l

| append (h::t, l) = h :: append (t, l)

This function is built into ML; it is written using infix notation as exp1 @

exp2. The running time of append is proportional to the length of the first
list, as should be obvious from its definition.

Here’s a function to reverse a list.

APRIL 23, 2007 WORKING DRAFT

9.2 Computing With Lists 80

fun rev nil = nil

| rev (h::t) = rev t @ [h]

Its running time is O(n2), where n is the length of the argument list. This
can be demonstrated by writing down a recurrence that defines the run-
ning time T(n) on a list of length n.

T(0) = O(1)
T(n + 1) = T(n) + O(n)

Solving the recurrence we obtain the result T(n) = O(n2).
Can we do better? Oddly, we can take advantage of the non-associativity

of :: to give a tail-recursive definition of rev.

local

fun helper (nil, a) = a

| helper (h::t, a) = helper (t, h::a)

in

fun rev’ l = helper (l, nil)

end

The general idea of introducing an accumulator is the same as before, ex-
cept that by re-ordering the applications of :: we reverse the list! The
helper function reverses its first argument and prepends it to its second
argument. That is, helper (l, a) evaluates to (rev l) @ a, where we
assume here an independent definition of rev for the sake of the specifica-
tion. Notice that helper runs in time proportional to the length of its first
argument, and hence rev’ runs in time proportional to the length of its
argument.

The correctness of functions defined on lists may be established using
the principle of structural induction. We illustrate this by establishing that
the function helper satisfies the following specification:

for every l and a of type typ list, helper(l, a) evaluates to
the result of appending a to the reversal of l.

That is, there are no pre-conditions on l and a, and we establish the post-
condition that helper (l, a) yields (rev l) @ a.

The proof is by structural induction on the list l. If l is nil, then helper

(l,a) evaluates to a, which fulfills the post-condition. If l is the list h::t,

APRIL 23, 2007 WORKING DRAFT

9.3 Sample Code 81

then the application helper (l, a) reduces to the value of helper (t,
(h::a)). By the inductive hypothesis this is just (rev t) @ (h :: a),
which is equivalent to (rev t) @ [h] @ a. But this is just rev (h::t) @

a, which was to be shown.
The principle of structural induction may be summarized as follows.

To show that a function works correctly for every list l, it suffices to show

1. The correctness of the function for the empty list, nil, and

2. The correctness of the function for h::t, assuming its correctness for
t.

As with mathematical induction over the natural numbers, structural in-
duction over lists allows us to focus on the basic and incremental behavior
of a function to establish its correctness for all lists.

9.3 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/lists.sml

Chapter 10

Concrete Data Types

10.1 Datatype Declarations

Lists are one example of the general notion of a recursive type. ML provides
a general mechanism, the datatype declaration, for introducing programmer-
defined recursive types. Earlier we introduced type declarations as an ab-
breviation mechanism. Types are given names as documentation and as
a convenience to the programmer, but doing so is semantically inconse-
quential — one could replace all uses of the type name by its definition
and not affect the behavior of the program. In contrast the datatype dec-
laration provides a means of introducing a new type that is distinct from
all other types and that does not merely stand for some other type. It is the
means by which the ML type system may be extended by the programmer.

The datatype declaration in ML has a number of facets. A datatype

declaration introduces

1. One or more new type constructors. The type constructors intro-
duced may, or may not, be mutually recursive.

2. One or more new value constructors for each of the type constructors
introduced by the declaration.

The type constructors may take zero or more arguments; a zero-argument,
or nullary, type constructor is just a type. Each value constructor may
also take zero or more arguments; a nullary value constructor is just a
constant. The type and value constructors introduced by the declaration
are “new” in the sense that they are distinct from all other type and value

82

10.2 Non-Recursive Datatypes 83

constructors previously introduced; if a datatype re-defines an “old” type
or value constructor, then the old definition is shadowed by the new one,
rendering the old ones inaccessible in the scope of the new definition.

10.2 Non-Recursive Datatypes

Here’s a simple example of a nullary type constructor with four nullary
value constructors.

datatype suit = Spades | Hearts | Diamonds | Clubs

This declaration introduces a new type suit with four nullary value con-
structors, Spades, Hearts, Diamonds, and Clubs. This declaration may be
read as introducing a type suit such that a value of type suit is either
Spades, or Hearts, or Diamonds, or Clubs. There is no significance to the
ordering of the constructors in the declaration; we could just as well have
written

datatype suit = Hearts | Diamonds | Spades | Clubs

(or any other ordering, for that matter). It is conventional to capitalize the
names of value constructors, but this is not required by the language.

Given the declaration of the type suit, we may define functions on it
by case analysis on the value constructors using a clausal function defini-
tion. For example, we may define the suit ordering in the card game of
bridge by the function

fun outranks (Spades, Spades) = false

| outranks (Spades,) = true

| outranks (Hearts, Spades) = false

| outranks (Hearts, Hearts) = false

| outranks (Hearts,) = true

| outranks (Diamonds, Clubs) = true

| outranks (Diamonds,) = false

| outranks (Clubs,) = false

This defines a function of type suit * suit -> bool that determines whether
or not the first suit outranks the second.

Data types may be parameterized by a type. For example, the declaration

APRIL 23, 2007 WORKING DRAFT

10.2 Non-Recursive Datatypes 84

datatype ’a option = NONE | SOME of ’a

introduces the unary type constructor ’a option with two value construc-
tors, NONE, with no arguments, and SOME, with one. The values of type typ
option are

1. The constant NONE, and

2. Values of the form SOME val, where val is a value of type typ.

For example, some values of type string option are NONE, SOME "abc",
and SOME "def".

The option type constructor is pre-defined in Standard ML. One com-
mon use of option types is to handle functions with an optional argument.
For example, here is a function to compute the base-b exponential function
for natural number exponents that defaults to base 2:

fun expt (NONE, n) = expt (SOME 2, n)

| expt (SOME b, 0) = 1

| expt (SOME b, n) =

if n mod 2 = 0 then

expt (SOME (b*b), n div 2)

else

b * expt (SOME b, n-1)

The advantage of the option type in this sort of situation is that it avoids
the need to make a special case of a particular argument, e.g., using 0 as
first argument to mean “use the default exponent”.

A related use of option types is in aggregate data structures. For exam-
ple, an address book entry might have a record type with fields for various
bits of data about a person. But not all data is relevant to all people. For
example, someone may not have a spouse, but they all have a name. For
this we might use a type definition of the form

type entry = { name:string, spouse:string option }

so that one would create an entry for an unmarried person with a spouse

field of NONE.
Option types may also be used to represent an optional result. For

example, we may wish to define a function reciprocal that returns the
reciprocal of an integer, if it has one, and otherwise indicates that it has

APRIL 23, 2007 WORKING DRAFT

10.3 Recursive Datatypes 85

no reciprocal. This is achieve by defining reciprocal to have type int ->

int option as follows:

fun reciprocal 0 = NONE

| reciprocal n = SOME (1 div n)

To use the result of a call to reciprocal we must perform a case analysis of
the form

case (reciprocal exp
of NONE => exp1
| SOME r => exp2

where exp1 covers the case that exp has no reciprocal, and exp2 covers the
case that exp has reciprocal r.

10.3 Recursive Datatypes

The next level of generality is the recursive type definition. For example,
one may define a type typ tree of binary trees with values of type typ at
the nodes using the following declaration:

datatype ’a tree =

Empty |

Node of ’a tree * ’a * ’a tree

This declaration corresponds to the informal definition of binary trees with
values of type typ at the nodes:

1. The empty tree Empty is a binary tree.

2. If tree 1 and tree 2 are binary trees, and val is a value of type typ, then
Node (tree 1, val, tree 2) is a binary tree.

3. Nothing else is a binary tree.

The distinguishing feature of this definition is that it is recursive in the
sense that binary trees are constructed out of other binary trees, with the
empty tree serving as the base case.

APRIL 23, 2007 WORKING DRAFT

10.3 Recursive Datatypes 86

(Incidentally, a leaf in a binary tree is here represented as a node both of
whose children are the empty tree. This definition of binary trees is analo-
gous to starting the natural numbers with zero, rather than one. One can
think of the children of a node in a binary tree as the “predecessors” of that
node, the only difference compared to the usual definition of predecessor
being that a node has two, rather than one, predecessors.)

To compute with a recursive type, use a recursive function. For exam-
ple, here is the function to compute the height of a binary tree:

fun height Empty = 0

| height (Node (lft, , rht)) =

1 + max (height lft, height rht)

Notice that height is called recursively on the children of a node, and is
defined outright on the empty tree. This pattern of definition is another
instance of structural induction (on the tree type). The function height

is said to be defined by induction on the structure of a tree. The general
idea is to define the function directly for the base cases of the recursive
type (i.e., value constructors with no arguments or whose arguments do
not involve values of the type being defined), and to define it for non-base
cases in terms of its definitions for the constituent values of that type. We
will see numerous examples of this as we go along.

Here’s another example. The size of a binary tree is the number of
nodes occurring in it. Here’s a straightforward definition in ML:

fun size Empty = 0

| size (Node (lft, , rht)) =

1 + size lft + size rht

The function size is defined by structural induction on trees.
A word of warning. One reason to capitalize value constructors is to

avoid a pitfall in the ML syntax that we mentioned in chapter 2. Suppose
we gave the following definition of size:

fun size empty = 0

| size (Node (lft, , rht)) =

1 + size lft + size rht

The compiler will warn us that the second clause of the definition is redun-
dant! Why? Because empty, spelled with a lower-case “e”, is a variable, not

APRIL 23, 2007 WORKING DRAFT

10.3 Recursive Datatypes 87

a constructor, and hence matches any tree whatsoever. Consequently the
second clause never applies. By capitalizing constructors we can hope to
make mistakes such as these more evident, but in practice you are bound
to run into this sort of mistake.

The tree data type is appropriate for binary trees: those for which each
node has exactly two children. (Of course, either or both children might
be the empty tree, so we may consider this to define the type of trees with
at most two children; it’s a matter of terminology which interpretation you
prefer.) It should be obvious how to define the type of ternary trees, whose
nodes have at most three children, and so on for other fixed arities. But
what if we wished to define a type of trees with a variable number of chil-
dren? In a so-called variadic tree some nodes might have three children,
some might have two, and so on. This can be achieved in at least two
ways. One way combines lists and trees, as follows:

datatype ’a tree =

Empty |

Node of ’a * ’a tree list

Each node has a list of children, so that distinct nodes may have different
numbers of children. Notice that the empty tree is distinct from the tree
with one node and no children because there is no data associated with
the empty tree, whereas there is a value of type ’a at each node.

Another approach is to simultaneously define trees and “forests”. A
variadic tree is either empty, or a node gathering a “forest” to form a tree;
a forest is either empty or a variadic tree together with another forest. This
leads to the following definition:

datatype ’a tree =

Empty |

Node of ’a * ’a forest

and ’a forest =

None |

Tree of ’a tree * ’a forest

This example illustrates the introduction of two mutually recursive datatypes.
Mutually recursive datatypes beget mutually recursive functions. Here’s

a definition of the size (number of nodes) of a variadic tree:

APRIL 23, 2007 WORKING DRAFT

10.4 Heterogeneous Data Structures 88

fun size tree Empty = 0

| size tree (Node (, f)) = 1 + size forest f

and size forest None = 0

| size forest (Tree (t, f’)) = size tree t + size forest f’

Notice that we define the size of a tree in terms of the size of a forest, and
vice versa, just as the type of trees is defined in terms of the type of forests.

Many other variations are possible. Suppose we wish to define a notion
of binary tree in which data items are associated with branches, rather than
nodes. Here’s a datatype declaration for such trees:

datatype ’a tree =

Empty |

Node of ’a branch * ’a branch

and ’a branch =

Branch of ’a * ’a tree

In contrast to our first definition of binary trees, in which the branches
from a node to its children were implicit, we now make the branches them-
selves explicit, since data is attached to them.

For example, we can collect into a list the data items labelling the branches
of such a tree using the following code:

fun collect Empty = nil

| collect (Node (Branch (ld, lt), Branch (rd, rt))) =

ld :: rd :: (collect lt) @ (collect rt)

10.4 Heterogeneous Data Structures

Returning to the original definition of binary trees (with data items at the
nodes), observe that the type of the data items at the nodes must be the
same for every node of the tree. For example, a value of type int tree

has an integer at every node, and a value of type string tree has a string at
every node. Therefore an expression such as

Node (Empty, 43, Node (Empty, "43", Empty))

is ill-typed. The type system insists that trees be homogeneous in the sense
that the type of the data items is the same at every node.

APRIL 23, 2007 WORKING DRAFT

10.5 Abstract Syntax 89

It is quite rare to encounter heterogeneous data structures in real pro-
grams. For example, a dictionary with strings as keys might be repre-
sented as a binary search tree with strings at the nodes; there is no need
for heterogeneity to represent such a data structure. But occasionally one
might wish to work with a heterogeneous tree, whose data values at each
node are of different types. How would one represent such a thing in ML?

To discover the answer, first think about how one might manipulate
such a data structure. When accessing a node, we would need to check
at run-time whether the data item is an integer or a string; otherwise we
would not know whether to, say, add 1 to it, or concatenate "1" to the
end of it. This suggests that the data item must be labelled with sufficient
information so that we may determine the type of the item at run-time. We
must also be able to recover the underlying data item itself so that familiar
operations (such as addition or string concatenation) may be applied to it.

The required labelling and discrimination is neatly achieved using a
datatype declaration. Suppose we wish to represent the type of integer-
or-string trees. First, we define the type of values to be integers or strings,
marked with a constructor indicating which:

datatype int or string =

Int of int |

String of string

Then we define the type of interest as follows:

type int or string tree =

int or string tree

Voila! Perfectly natural and easy — heterogeneity is really a special case of
homogeneity!

10.5 Abstract Syntax

Datatype declarations and pattern matching are extremely useful for defin-
ing and manipulating the abstract syntax of a language. For example, we
may define a small language of arithmetic expressions using the following
declaration:

APRIL 23, 2007 WORKING DRAFT

10.5 Abstract Syntax 90

datatype expr =

Numeral of int |

Plus of expr * expr |

Times of expr * expr

This definition has only three clauses, but one could readily imagine adding
others. Here is the definition of a function to evaluate expressions of the
language of arithmetic expressions written using pattern matching:

fun eval (Numeral n) = Numeral n

| eval (Plus (e1, e2)) =

let

val Numeral n1 = eval e1

val Numeral n2 = eval e2

in

Numeral (n1+n2)

end

| eval (Times (e1, e2)) =

let

val Numeral n1 = eval e1

val Numeral n2 = eval e2

in

Numeral (n1*n2)

end

The combination of datatype declarations and pattern matching con-
tributes enormously to the readability of programs written in ML. A less
obvious, but more important, benefit is the error checking that the com-
piler can perform for you if you use these mechanisms in tandem. As an
example, suppose that we extend the type expr with a new component for
the reciprocal of a number, yielding the following revised definition:

datatype expr =

Numeral of int |

Plus of expr * expr |

Times of expr * expr |

Recip of expr

First, observe that the “old” definition of eval is no longer applicable to
values of type expr! For example, the expression

APRIL 23, 2007 WORKING DRAFT

10.6 Sample Code 91

eval (Plus (Numeral 1, Numeral 2))

is ill-typed, even though it doesn’t use the Recip constructor. The reason is
that the re-declaration of expr introduces a “new” type that just happens
to have the same name as the “old” type, but is in fact distinct from it. This
is a boon because it reminds us to recompile the old code relative to the
new definition of the expr type.

Second, upon recompiling the definition of eval we encounter an inex-
haustive match warning: the old code no longer applies to every value of
type expr according to its new definition! We are of course lacking a case
for Recip, which we may provide as follows:

fun eval (Numeral n) = Numeral n

| eval (Plus (e1, e2)) = ... as before ...

| eval (Times (e1, e2)) = ... as before ...

| eval (Recip e) =

let

val Numeral n = eval e

in

Numeral (1 div n)

end

The value of the checks provided by the compiler in such cases cannot be
overestimated. When recompiling a large program after making a change
to a datatype declaration the compiler will automatically point out every
line of code that must be changed to conform to the new definition; it is
impossible to forget to attend to even a single case. This is a tremendous
help to the developer, especially if she is not the original author of the code
being modified and is another reason why the static type discipline of ML
is a positive benefit, rather than a hindrance, to programmers.

10.6 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/datatype.sml

Chapter 11

Higher-Order Functions

11.1 Functions as Values

Values of function type are first-class, which means that they have the same
rights and privileges as values of any other type. In particular, functions
may be passed as arguments and returned as results of other functions,
and functions may be stored in and retrieved from data structures such
as lists and trees. We will see that first-class functions are an important
source of expressive power in ML.

Functions which take functions as arguments or yield functions as re-
sults are known as higher-order functions (or, less often, as functionals or
operators). Higher-order functions arise frequently in mathematics. For
example, the differential operator is the higher-order function that, when
given a (differentiable) function on the real line, yields its first derivative
as a function on the real line. We also encounter functionals mapping func-
tions to real numbers, and real numbers to functions. An example of the
former is provided by the definite integral viewed as a function of its in-
tegrand, and an example of the latter is the definite integral of a given
function on the interval [a, x], viewed as a function of a, that yields the
area under the curve from a to x as a function of x.

Higher-order functions are less familiar tools for many programmers
since the best-known programming languages have only rudimentary mech-
anisms to support their use. In contrast higher-order functions play a
prominent role in ML, with a variety of interesting applications. Their
use may be classified into two broad categories:

92

11.2 Binding and Scope 93

1. Abstracting patterns of control. Higher-order functions are design pat-
terns that “abstract out” the details of a computation to lay bare the
skeleton of the solution. The skeleton may be fleshed out to form a
solution of a problem by applying the general pattern to arguments
that isolate the specific problem instance.

2. Staging computation. It arises frequently that computation may be
staged by expending additional effort “early” to simplify the compu-
tation of “later” results. Staging can be used both to improve effi-
ciency and, as we will see later, to control sharing of computational
resources.

11.2 Binding and Scope

Before discussing these programming techniques, we will review the criti-
cally important concept of scope as it applies to function definitions. Recall
that Standard ML is a statically scoped language, meaning that identifiers
are resolved according to the static structure of the program. A use of the
variable var is considered to be a reference to the nearest lexically enclosing
declaration of var. We say “nearest” because of the possibility of shadow-
ing; if we re-declare a variable var, then subsequent uses of var refer to the
“most recent” (lexically!) declaration of it; any “previous” declarations are
temporarily shadowed by the latest one.

This principle is easy to apply when considering sequences of declara-
tions. For example, it should be clear by now that the variable y is bound
to 32 after processing the following sequence of declarations:

val x = 2 (* x=2 *)

val y = x*x (* y=4 *)

val x = y*x (* x=8 *)

val y = x*y (* y=32 *)

In the presence of function definitions the situation is the same, but it can
be a bit tricky to understand at first.

Here’s an example to test your grasp of the lexical scoping principle:

APRIL 23, 2007 WORKING DRAFT

11.2 Binding and Scope 94

val x = 2

fun f y = x+y

val x = 3

val z = f 4

After processing these declarations the variable z is bound to 6, not to 7!
The reason is that the occurrence of x in the body of f refers to the first
declaration of x since it is the nearest lexically enclosing declaration of the
occurence, even though it has been subsequently re-declared.

This example illustrates three important points:

1. Binding is not assignment! If we were to view the second binding of
x as an assignment statement, then the value of z would be 7, not 6.

2. Scope resolution is lexical, not temporal. We sometimes refer to the
“most recent” declaration of a variable, which has a temporal flavor,
but we always mean “nearest lexically enclosing at the point of oc-
currence”.

3. ”Shadowed” bindings are not lost. The “old” binding for x is still
available (through calls to f), even though a more recent binding has
shadowed it.

One way to understand what’s going on here is through the concept
of a closure, a technique for implementing higher-order functions. When
a function expression is evaluated, a copy of the environment is attached
to the function. Subsequently, all free variables of the function (i.e., those
variables not occurring as parameters) are resolved with respect to the en-
vironment attached to the function; the function is therefore said to be
“closed” with respect to the attached environment. This is achieved at
function application time by “swapping” the attached environment of the
function for the environment active at the point of the call. The swapped
environment is restored after the call is complete. Returning to the ex-
ample above, the environment associated with the function f contains the
declaration val x = 2 to record the fact that at the time the function was
evaluated, the variable x was bound to the value 2. The variable x is sub-
sequently re-bound to 3, but when f is applied, we temporarily reinstate
the binding of x to 2, add a binding of y to 4, then evaluate the body of the
function, yielding 6. We then restore the binding of x and drop the binding
of y before yielding the result.

APRIL 23, 2007 WORKING DRAFT

11.3 Returning Functions 95

11.3 Returning Functions

While seemingly very simple, the principle of lexical scope is the source of
considerable expressive power. We’ll demonstrate this through a series of
examples.

To warm up let’s consider some simple examples of passing functions
as arguments and yielding functions as results. The standard example of
passing a function as argument is the map’ function, which applies a given
function to every element of a list. It is defined as follows:

fun map’ (f, nil) = nil

| map’ (f, h::t) = (f h) :: map’ (f, t)

For example, the application

map’ (fn x => x+1, [1,2,3,4])

evaluates to the list [2,3,4,5].
Functions may also yield functions as results. What is surprising is that

we can create new functions during execution, not just return functions
that have been previously defined. The most basic (and deceptively sim-
ple) example is the function constantly that creates constant functions:
given a value k, the application constantly k yields a function that yields
k whenever it is applied. Here’s a definition of constantly:

val constantly = fn k => (fn a => k)

The function constantly has type ’a -> (’b -> ’a). We used the fn nota-
tion for clarity, but the declaration of the function constantly may also be
written using fun notation as follows:

fun constantly k a = k

Note well that a white space separates the two successive arguments to
constantly! The meaning of this declaration is precisely the same as the
earlier definition using fn notation.

The value of the application constantly 3 is the function that is con-
stantly 3; i.e., it always yields 3 when applied. Yet nowhere have we de-
fined the function that always yields 3. The resulting function is “created”
by the application of constantly to the argument 3, rather than merely

APRIL 23, 2007 WORKING DRAFT

11.3 Returning Functions 96

“retrieved” off the shelf of previously-defined functions. In implementa-
tion terms the result of the application constantly 3 is a closure consisting
of the function fn a => k with the environment val k = 3 attached to it.
The closure is a data structure (a pair) that is created by each application of
constantly to an argument; the closure is the representation of the “new”
function yielded by the application. Notice, however, that the only differ-
ence between any two results of applying the function constantly lies in
the attached environment; the underlying function is always fn a => k. If
we think of the lambda as the “executable code” of the function, then this
amounts to the observation that no new code is created at run-time, just
new instances of existing code.

This also points out why functions in ML are not the same as code
pointers in C. You may be familiar with the idea of passing a pointer to
a C function to another C function as a means of passing functions as ar-
guments or yielding functions as results. This may be considered to be a
form of “higher-order” function in C, but it must be emphasized that code
pointers are significantly less powerful than closures because in C there
are only statically many possibilities for a code pointer (it must point to one
of the functions defined in your code), whereas in ML we may generate dy-
namically many different instances of a function, differing in the bindings
of the variables in its environment. The non-varying part of the closure,
the code, is directly analogous to a function pointer in C, but there is no
counterpart in C of the varying part of the closure, the dynamic environ-
ment.

The definition of the function map’ given above takes a function and list
as arguments, yielding a new list as result. Often it occurs that we wish to
map the same function across several different lists. It is inconvenient (and
a tad inefficient) to keep passing the same function to map’, with the list
argument varying each time. Instead we would prefer to create a instance
of map specialized to the given function that can then be applied to many
different lists. This leads to the following definition of the function map:

fun map f nil = nil

| map f (h::t) = (f h) :: (map f t)

The function map so defined has type (’a->’b) -> ’a list -> ’b list.
It takes a function of type ’a -> ’b as argument, and yields another func-
tion of type ’a list -> ’b list as result.

APRIL 23, 2007 WORKING DRAFT

11.4 Patterns of Control 97

The passage from map’ to map is called currying. We have changed a
two-argument function (more properly, a function taking a pair as argu-
ment) into a function that takes two arguments in succession, yielding af-
ter the first a function that takes the second as its sole argument. This
passage can be codified as follows:

fun curry f x y = f (x, y)

The type of curry is

(’a*’b->’c) -> (’a -> (’b -> ’c)).

Given a two-argument function, curry returns another function that, when
applied to the first argument, yields a function that, when applied to the
second, applies the original two-argument function to the first and second
arguments, given separately.

Observe that map may be alternately defined by the binding

fun map f l = curry map’ f l

Applications are implicitly left-associated, so that this definition is equiv-
alent to the more verbose declaration

fun map f l = ((curry map’) f) l

11.4 Patterns of Control

We turn now to the idea of abstracting patterns of control. There is an
obvious similarity between the following two functions, one to add up the
numbers in a list, the other to multiply them.

fun add up nil = 0

| add up (h::t) = h + add up t

fun mul up nil = 1

| mul up (h::t) = h * mul up t

What precisely is the similarity? We will look at it from two points of view.
One view is that in each case we have a binary operation and a unit

element for it. The result on the empty list is the unit element, and the
result on a non-empty list is the operation applied to the head of the list
and the result on the tail. This pattern can be abstracted as the function
reduce defined as follows:

APRIL 23, 2007 WORKING DRAFT

11.4 Patterns of Control 98

fun reduce (unit, opn, nil) =

unit

| reduce (unit, opn, h::t) =

opn (h, reduce (unit, opn, t))

Here is the type of reduce:

val reduce : ’b * (’a*’b->’b) * ’a list -> ’b

The first argument is the unit element, the second is the operation, and the
third is the list of values. Notice that the type of the operation admits the
possibility of the first argument having a different type from the second
argument and result.

Using reduce, we may re-define add up and mul up as follows:

fun add up l = reduce (0, op +, l)

fun mul up l = reduce (1, op *, l)

To further check your understanding, consider the following declaration:

fun mystery l = reduce (nil, op ::, l)

(Recall that “op ::” is the function of type ’a * ’a list -> ’a list that
adds a given value to the front of a list.) What function does mystery

compute?
Another view of the commonality between add up and mul up is that

they are both defined by induction on the structure of the list argument,
with a base case for nil, and an inductive case for h::t, defined in terms of
its behavior on t. But this is really just another way of saying that they are
defined in terms of a unit element and a binary operation! The difference
is one of perspective: whether we focus on the pattern part of the clauses
(the inductive decomposition) or the result part of the clauses (the unit
and operation). The recursive structure of add up and mul up is abstracted
by the reduce functional, which is then specialized to yield add up and
mul up. Said another way, the function reduce abstracts the pattern of defining
a function by induction on the structure of a list.

The definition of reduce leaves something to be desired. One thing to
notice is that the arguments unit and opn are carried unchanged through
the recursion; only the list parameter changes on recursive calls. While
this might seem like a minor overhead, it’s important to remember that

APRIL 23, 2007 WORKING DRAFT

11.5 Staging 99

multi-argument functions are really single-argument functions that take
a tuple as argument. This means that each time around the loop we are
constructing a new tuple whose first and second components remain fixed,
but whose third component varies. Is there a better way? Here’s another
definition that isolates the “inner loop” as an auxiliary function:

fun better reduce (unit, opn, l) =

let

fun red nil = unit

| red (h::t) = opn (h, red t)

in

red l

end

Notice that each call to better reduce creates a new function red that uses
the parameters unit and opn of the call to better reduce. This means that
red is bound to a closure consisting of the code for the function together
with the environment active at the point of definition, which will provide
bindings for unit and opn arising from the application of better reduce

to its arguments. Furthermore, the recursive calls to red no longer carry
bindings for unit and opn, saving the overhead of creating tuples on each
iteration of the loop.

11.5 Staging

An interesting variation on reduce may be obtained by staging the compu-
tation. The motivation is that unit and opn often remain fixed for many
different lists (e.g., we may wish to sum the elements of many different
lists). In this case unit and opn are said to be “early” arguments and the
list is said to be a “late” argument. The idea of staging is to perform as
much computation as possible on the basis of the early arguments, yield-
ing a function of the late arguments alone.

In the case of the function reduce this amounts to building red on the
basis of unit and opn, yielding it as a function that may be later applied to
many different lists. Here’s the code:

APRIL 23, 2007 WORKING DRAFT

11.5 Staging 100

fun staged reduce (unit, opn) =

let

fun red nil = unit

| red (h::t) = opn (h, red t)

in

red

end

The definition of staged reduce bears a close resemblance to the definition
of better reduce; the only difference is that the creation of the closure
bound to red occurs as soon as unit and opn are known, rather than each
time the list argument is supplied. Thus the overhead of closure creation
is “factored out” of multiple applications of the resulting function to list
arguments.

We could just as well have replaced the body of the let expression with
the function

fn l => red l

but a moment’s thought reveals that the meaning is the same.
Note well that we would not obtain the effect of staging were we to use

the following definition:

fun curried reduce (unit, opn) nil = unit

| curried reduce (unit, opn) (h::t) =

opn (h, curried reduce (unit, opn) t)

If we unravel the fun notation, we see that while we are taking two ar-
guments in succession, we are not doing any useful work in between the
arrival of the first argument (a pair) and the second (a list). A curried func-
tion does not take significant advantage of staging. Since staged reduce

and curried reduce have the same iterated function type, namely

(’b * (’a * ’b -> ’b)) -> ’a list -> ’b

the contrast between these two examples may be summarized by saying
not every function of iterated function type is curried. Some are, and some
aren’t. The “interesting” examples (such as staged reduce) are the ones
that aren’t curried. (This directly contradicts established terminology, but
it is necessary to deviate from standard practice to avoid a serious misap-
prehension.)

APRIL 23, 2007 WORKING DRAFT

11.5 Staging 101

The time saved by staging the computation in the definition of staged reduce

is admittedly minor. But consider the following definition of an append
function for lists that takes both arguments at once:

fun append (nil, l) = l

| append (h::t, l) = h :: append(t,l)

Suppose that we will have occasion to append many lists to the end of a
given list. What we’d like is to build a specialized appender for the first
list that, when applied to a second list, appends the second to the end of
the first. Here’s a naive solution that merely curries append:

fun curried append nil l = l

| curried append (h::t) l = h :: curried append t l

Unfortunately this solution doesn’t exploit the fact that the first argument
is fixed for many second arguments. In particular, each application of the
result of applying curried append to a list results in the first list being
traversed so that the second can be appended to it.

We can improve on this by staging the computation as follows:

fun staged append nil = fn l => l

| staged append (h::t) =

let

val tail appender = staged append t

in

fn l => h :: tail appender l

end

Notice that the first list is traversed once for all applications to a second ar-
gument. When applied to a list [v1,...,vn], the function staged append

yields a function that is equivalent to, but not quite as efficient as, the
function

fn l => v1 :: v2 :: ... :: vn :: l.

This still takes time proportional to n, but a substantial savings accrues
from avoiding the pattern matching required to destructure the original
list argument on each call.

APRIL 23, 2007 WORKING DRAFT

11.6 Sample Code 102

11.6 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/fcnls.sml

Chapter 12

Exceptions

In the first chapter of these notes we mentioned that expressions in Stan-
dard ML always have a type, may have a value, and may have an effect.
So far we’ve concentrated on typing and evaluation. In this chapter we
will introduce the concept of an effect. While it’s hard to give a precise
general definition of what we mean by an effect, the idea is that an effect is
any action resulting from evaluation of an expression other than returning
a value. From this point of view we might consider non-termination to be
an effect, but we don’t usually think of failure to terminate as a positive
“action” in its own right, rather as a failure to take any action.

The main examples of effects in ML are these:

1. Exceptions. Evaluation may be aborted by signaling an exceptional
condition.

2. Mutation. Storage may be allocated and modified during evaluation.

3. Input/output. It is possible to read from an input source and write to
an output sink during evaluation.

4. Communication. Data may be sent to and received from communica-
tion channels.

This chapter is concerned with exceptions; the other forms of effects will
be considered later.

103

12.1 Exceptions as Errors 104

12.1 Exceptions as Errors

ML is a safe language in the sense that its execution behavior may be un-
derstood entirely in terms of the constructs of the language itself. Behav-
ior such as “dumping core” or incurring a “bus error” are extra-linguistic
notions that may only be explained by appeal to the underlying imple-
mentation of the language. These cannot arise in ML. This is ensured by
a combination of a static type discipline, which rules out expressions that
are manifestly ill-defined (e.g., adding a string to an integer or casting an
integer as a function), and by dynamic checks that rule out violations that
cannot be detected statically (e.g., division by zero or arithmetic overflow).
Static violations are signalled by type checking errors; dynamic violations
are signalled by raising exceptions.

12.1.1 Primitive Exceptions

The expression 3 + "3" is ill-typed, and hence cannot be evaluated. In
contrast the expression 3 div 0 is well-typed (with type int), but incurs
a run-time fault that is signalled by raising the exception Div. We will
indicate this by writing

3 div 0 ⇓ raise Div

An exception is a form of “answer” to the question “what is the value
of this expression?”. In most implementations an exception such as this
is reported by an error message of the form “Uncaught exception Div”,
together with the line number (or some other indication) of the point in
the program where the exception occurred.

Exceptions have names so that we may distinguish different sources
of error in a program. For example, evaluation of the expression maxint

* maxint (where maxint is the largest representable integer) causes the
exception Overflow to be raised, indicating that an arithmetic overflow
error arose in the attempt to carry out the multiplication. This is usefully
distinguished from the exception Div, corresponding to division by zero.

(You may be wondering about the overhead of checking for arithmetic
faults. The compiler must generate instructions that ensure that an over-
flow fault is caught before any subsequent operations are performed. This
can be quite expensive on pipelined processors, which sacrifice precise de-
livery of arithmetic faults in the interest of speeding up execution in the

APRIL 23, 2007 WORKING DRAFT

12.1 Exceptions as Errors 105

non-faulting case. Unfortunately it is necessary to incur this overhead if
we are to avoid having the behavior of an ML program depend on the
underlying processor on which it is implemented.)

Another source of run-time exceptions is an inexhaustive match. Sup-
pose we define the function hd as follows

fun hd (h::) = h

This definition is inexhaustive since it makes no provision for the possibil-
ity of the argument being nil. What happens if we apply hd to nil? The
exception Match is raised, indicating the failure of the pattern-matching
process:

hd nil ⇓ raise Match

The occurrence of a Match exception at run-time is indicative of a vio-
lation of a pre-condition to the invocation of a function somewhere in the
program. Recall that it is often sensible for a function to be inexhaustive,
provided that we take care to ensure that it is never applied to a value
outside of its domain. Should this occur (because of a programming mis-
take, evidently), the result is nevertheless well-defined because ML checks
for, and signals, pattern match failure. That is, ML programs are implic-
itly “bullet-proofed” against failures of pattern matching. The flip side is
that if no inexhaustive match warnings arise during type checking, then
the exception Match can never be raised during evaluation (and hence no
run-time checking need be performed).

A related situation is the use of a pattern in a val binding to destructure
a value. If the pattern can fail to match a value of this type, then a Bind

exception is raised at run-time. For example, evaluation of the binding

val h:: = nil

raises the exception Bind since the pattern h:: does not match the value
nil. Here again observe that a Bind exception cannot arise unless the com-
piler has previously warned us of the possibility: no warning, no Bind

exception.

12.1.2 User-Defined Exceptions

So far we have considered examples of pre-defined exceptions that in-
dicate fatal error conditions. Since the built-in exceptions have a built-

APRIL 23, 2007 WORKING DRAFT

12.1 Exceptions as Errors 106

in meaning, it is generally inadvisable to use these to signal program-
specific error conditions. Instead we introduce a new exception using an
exception declaration, and signal it using a raise expression when a run-
time violation occurs. That way we can associate specific exceptions with
specific pieces of code, easing the process of tracking down the source of
the error.

Suppose that we wish to define a “checked factorial” function that en-
sures that its argument is non-negative. Here’s a first attempt at defining
such a function:

exception Factorial

fun checked factorial n =

if n < 0 then

raise Factorial

else if n=0 then

1

else n * checked factorial (n-1)

The declaration exception Factorial introduces an exception Factorial,
which we raise in the case that checked factorial is applied to a negative
number.

The definition of checked factorial is unsatisfactory in at least two
respects. One, relatively minor, issue is that it does not make effective use
of pattern matching, but instead relies on explicit comparison operations.
To some extent this is unavoidable since we wish to check explicitly for
negative arguments, which cannot be done using a pattern. A more sig-
nificant problem is that checked factorial repeatedly checks the validity
of its argument on each recursive call, even though we can prove that if
the initial argument is non-negative, then so must be the argument on each
recursive call. This fact is not reflected in the code. We can improve the
definition by introducing an auxiliary function:

exception Factorial

local

fun fact 0 = 1

| fact n = n * fact (n-1)

in

fun checked factorial n =

if n >= 0 then

APRIL 23, 2007 WORKING DRAFT

12.2 Exception Handlers 107

fact n

else

raise Factorial

end

Notice that we perform the range check exactly once, and that the auxiliary
function makes effective use of pattern-matching.

12.2 Exception Handlers

The use of exceptions to signal error conditions suggests that raising an
exception is fatal: execution of the program terminates with the raised
exception. But signaling an error is only one use of the exception mech-
anism. More generally, exceptions can be used to effect non-local transfers
of control. By using an exception handler we may “catch” a raised exception
and continue evaluation along some other path. A very simple example
is provided by the following driver for the factorial function that accepts
numbers from the keyboard, computes their factorial, and prints the re-
sult.

fun factorial driver () =

let

val input = read integer ()

val result =

toString (checked factorial input)

in

print result

end

handle Factorial => print "Out of range."

An expression of the form exp handle match is called an exception han-
dler. It is evaluated by attempting to evaluate exp. If it returns a value, then
that is the value of the entire expression; the handler plays no role in this
case. If, however, exp raises an exception exc, then the exception value is
matched against the clauses of the match (exactly as in the application of a
clausal function to an argument) to determine how to proceed. If the pat-
tern of a clause matches the exception exc, then evaluation resumes with
the expression part of that clause. If no pattern matches, the exception

APRIL 23, 2007 WORKING DRAFT

12.2 Exception Handlers 108

exc is re-raised so that outer exception handlers may dispatch on it. If no
handler handles the exception, then the uncaught exception is signaled
as the final result of evaluation. That is, computation is aborted with the
uncaught exception exc.

In more operational terms, evaluation of exp handle match proceeds
by installing an exception handler determined by match, then evaluating
exp. The previous binding of the exception handler is preserved so that
it may be restored once the given handler is no longer needed. Raising
an exception consists of passing a value of type exn to the current excep-
tion handler. Passing an exception to a handler de-installs that handler,
and re-installs the previously active handler. This ensures that if the han-
dler itself raises an exception, or fails to handle the given exception, then
the exception is propagated to the handler active prior to evaluation of the
handle expression. If the expression does not raise an exception, the previ-
ous handler is restored as part of completing the evaluation of the handle

expression.
Returning to the function factorial driver, we see that evaluation

proceeds by attempting to compute the factorial of a given number (read
from the keyboard by an unspecified function read integer), printing the
result if the given number is in range, and otherwise reporting that the
number is out of range. The example is trivialized to focus on the role of
exceptions, but one could easily imagine generalizing it in a number of
ways that also make use of exceptions. For example, we might repeatedly
read integers until the user terminates the input stream (by typing the end
of file character). Termination of input might be signaled by an EndOfFile

exception, which is handled by the driver. Similarly, we might expect that
the function read integer raises the exception SyntaxError in the case
that the input is not properly formatted. Again we would handle this
exception, print a suitable message, and resume.

Here’s a sketch of a more complicated factorial driver:

fun factorial driver () =

let

val input = read integer ()

val result =

toString (checked factorial input)

val = print result

in

APRIL 23, 2007 WORKING DRAFT

12.2 Exception Handlers 109

factorial driver ()

end

handle EndOfFile => print "Done."

| SyntaxError =>

let

val = print "Syntax error."

in

factorial driver ()

end

| Factorial =>

let

val = print "Out of range."

in

factorial driver ()

end

We will return to a more detailed discussion of input/output later in these
notes. The point to notice here is that the code is structured with a com-
pletely uncluttered “normal path” that reads an integer, computes its fac-
torial, formats it, prints it, and repeats. The exception handler takes care
of the exceptional cases: end of file, syntax error, and domain error. In the
latter two cases we report an error, and resume reading. In the former we
simply report completion and we are done.

The reader is encouraged to imagine how one might structure this pro-
gram without the use of exceptions. The primary benefits of the exception
mechanism are as follows:

1. They force you to consider the exceptional case (if you don’t, you’ll
get an uncaught exception at run-time), and

2. They allow you to segregate the special case from the normal case in
the code (rather than clutter the code with explicit checks).

These aspects work hand-in-hand to facilitate writing robust programs.
A typical use of exceptions is to implement backtracking, a program-

ming technique based on exhaustive search of a state space. A very sim-
ple, if somewhat artificial, example is provided by the following function
to compute change from an arbitrary list of coin values. What is at issue
is that the obvious “greedy” algorithm for making change that proceeds

APRIL 23, 2007 WORKING DRAFT

12.3 Value-Carrying Exceptions 110

by doling out as many coins as possible in decreasing order of value does
not always work. Given only a 5 cent and a 2 cent coin, we cannot make
16 cents in change by first taking three 5’s and then proceeding to dole out
2’s. In fact we must use two 5’s and three 2’s to make 16 cents. Here’s a
method that works for any set of coins:

exception Change

fun change 0 = nil

| change nil = raise Change

| change (coin::coins) amt =

if coin > amt then

change coins amt

else

(coin :: change (coin::coins) (amt-coin))

handle Change => change coins amt

The idea is to proceed greedily, but if we get “stuck”, we undo the most
recent greedy decision and proceed again from there. Simulate evaluation
of the example of change [5,2] 16 to see how the code works.

12.3 Value-Carrying Exceptions

So far exceptions are just “signals” that indicate that an exceptional con-
dition has arisen. Often it is useful to attach additional information that
is passed to the exception handler. This is achieved by attaching values to
exceptions.

For example, we might associate with a SyntaxError exception a string
indicating the precise nature of the error. In a parser for a language we
might write something like

raise SyntaxError "Integer expected"

to indicate a malformed expression in a situation where an integer is ex-
pected, and write

raise SyntaxError "Identifier expected"

to indicate a badly-formed identifier.
To associate a string with the exception SyntaxError, we declare it as

APRIL 23, 2007 WORKING DRAFT

12.3 Value-Carrying Exceptions 111

exception SyntaxError of string.

This declaration introduces the exception SyntaxError as an exception
carrying a string as value. This declaration introduces the exception con-
structor SyntaxError.

Exception constructors are in many ways similar to value constructors.
In particular they can be used in patterns, as in the following code frag-
ment:

... handle SyntaxError msg => print "Syntax error: " ^ msg

Here we specify a pattern for SyntaxError exceptions that also binds the
string associated with the exception to the identifier msg and prints that
string along with an error indication.

Recall that we may use value constructors in two ways:

1. We may use them to create values of a datatype (perhaps by applying
them to other values).

2. We may use them to match values of a datatype (perhaps also match-
ing a constituent value).

The situation with exception constructors is symmetric.

1. We may use them to create an exception (perhaps with an associated
value).

2. We may use them to match an exception (perhaps also matching the
associated value).

Value constructors have types, as we previously mentioned. For exam-
ple, the list constructors nil and :: have types ’a list and ’a * ’a list

-> ’a list, respectively. What about exception constructors? A “bare”
exception constructor (such as Factorial above) has type exn and a value-
carrying exception constructor (such as SyntaxError) has type string ->

exn. Thus Factorial is a value of type exn, and

SyntaxError "Integer expected"

is a value of type exn.
The type exn is the type of exception packets, the data values associated

with exceptions. The primitive operation raise takes any value of type

APRIL 23, 2007 WORKING DRAFT

12.4 Sample Code 112

exn as argument and raises an exception with that value. The clauses of
a handler may be applied to any value of type exn using the rules of pat-
tern matching described earlier; if an exception constructor is no longer in
scope, then the handler cannot catch it (other than via a wild-card pattern).

The type exn may be thought of as a kind of built-in datatype, except
that the constructors of this type are not determined once and for all (as
they are with a datatype declaration), but rather are incrementally intro-
duced as needed in a program. For this reason the type exn is sometimes
called an extensible datatype.

12.4 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/excs.sml

Chapter 13

Mutable Storage

In this chapter we consider a second form of effect, called a storage effect,
the allocation or mutation of storage during evaluation. The introduction
of storage effects has profound consequences, not all of which are desir-
able. (Indeed, one connotation of the phrase side effect is an unintended
consequence of a medication!) While it is excessive to dismiss storage ef-
fects as completely undesirable, it is advantageous to minimize the use of
storage effects except in situations where the task clearly demands them.
We will explore some techniques for programming with storage effects
later in this chapter, but first we introduce the primitive mechanisms for
programming with mutable storage in ML.

13.1 Reference Cells

To support mutable storage the execution model that we described in chap-
ter 2 is enriched with a memory consisting of a finite set of mutable cells. A
mutable cell may be thought of as a container in which a data value of a
specified type is stored. During execution of a program the contents of
a cell may be retrieved or replaced by any other value of the appropriate
type. Since cells are used by issuing “commands” to modify and retrieve
their contents, programming with cells is called imperative programming.

Changing the contents of a mutable cell introduces a temporal aspect
to evaluation. We speak of the current contents of a cell, meaning the value
most recently assigned to it. We also speak of previous and future values of a
reference cell when discussing the behavior of a program. This is in sharp

113

13.1 Reference Cells 114

contrast to the effect-free fragment of ML, for which no such concepts ap-
ply. For example, the binding of a variable does not change while eval-
uating within the scope of that variable, lending a “permanent” quality
to statements about variables — the “current” binding is the only binding
that variable will ever have.

The type typ ref is the type of reference cells containing values of type
typ. Reference cells are, like all values, first class — they may be bound
to variables, passed as arguments to functions, returned as results of func-
tions, appear within data structures, and even be stored within other ref-
erence cells.

A reference cell is created, or allocated, by the function ref of type typ ->

typ ref. When applied to a value val of type typ, ref allocates a “new” cell,
initializes its content to val, and returns a reference to the cell. By “new”
we mean that the allocated cell is distinct from all other cells previously
allocated, and does not share storage with them.

The contents of a cell of type typ is retrieved using the function ! of type
typ ref -> typ. Applying ! to a reference cell yields the current contents
of that cell. The contents of a cell is changed by applying the assignment
operator op :=, which has type typ ref * typ -> unit. Assignment is
usually written using infix syntax. When applied to a cell and a value, it
replaces the content of that cell with that value, and yields the null-tuple
as result.

Here are some examples:

val r = ref 0

val s = ref 0

val = r := 3

val x = !s + !r

val t = r

val = t := 5

val y = !s + !r

val z = !t + !r

After execution of these bindings, the variable x is bound to 3, the variable
y is bound to 5, and z is bound to 10.

Notice the use of a val binding of the form val = exp when exp is
to be evaluated purely for its effect. The value of exp is discarded by the
binding, since the left-hand side is a wildcard pattern. In most cases the

APRIL 23, 2007 WORKING DRAFT

13.2 Reference Patterns 115

expression exp has type unit, so that its value is guaranteed to be the null-
tuple, (), if it has a value at all.

A wildcard binding is used to define sequential composition of expres-
sions in ML. The expression

exp1; exp2

is shorthand for the expression

let

val = exp1
in

exp2
end

that first evaluates exp1 for its effect, then evaluates exp2.
Functions of type typ->unit are sometimes called procedures, because

they are executed purely for their effect. This is apparent from the type: it
is assured that the value of applying such a function is the null-tuple, (),
so the only point of applying it is for its effects on memory.

13.2 Reference Patterns

It is a common mistake to omit the exclamation point when referring to
the content of a reference, especially when that cell is bound to a variable.
In more familiar languages such as C all variables are implicitly bound
to reference cells, and they are implicitly de-referenced whenever they are
used so that a variable always stands for its current contents. This is both a
boon and a bane. It is obviously helpful in many common cases since it al-
leviates the burden of having to explicitly dereference variables whenever
their content is required. However, it shifts the burden to the program-
mer in the case that the address, and not the content, is intended. In C
one writes & x for the address of (the cell bound to) x. Whether explicit or
implicit de-referencing is preferable is to a large extent a matter of taste.
The burden of explicit de-referencing is not nearly so onerous in ML as
it might be in other languages simply because reference cells are used so
infrequently in ML programs, whereas they are the sole means of binding
variables in more familiar languages.

APRIL 23, 2007 WORKING DRAFT

13.3 Identity 116

An alternative to explicitly de-referencing cells is to use ref patterns. A
pattern of the form ref pat matches a reference cell whose content matches
the pattern pat. This means that the cell’s contents are implicitly retrieved
during pattern matching, and may be subsequently used without explicit
de-referencing. In fact, the function ! may be defined using a ref pattern
as follows:

fun !(ref a) = a

When called with a reference cell, it is de-referenced and its contents is
bound to a, which is returned as result. In practice it is common to use
both explicit de-referencing and ref patterns, depending on the situation.

13.3 Identity

Reference cells raise delicate issues of equality that considerably compli-
cate reasoning about programs. In general we say that two expressions (of
the same type) are equal iff they cannot be distinguished by any operation
in the language. That is, two expressions are distinct iff there is some way
within the language to tell them apart. This is called Leibniz’s Principle of
identity of indiscernables — we equate everything that we cannot tell apart
— and the indiscernability of identicals — that which we deem equal cannot
be told apart.

What makes Leibniz’s Principle tricky to grasp is that it hinges on what
we mean by a “way to tell expressions apart”. The crucial idea is that we
can tell two expressions apart iff there is a complete program containing one
of the expressions whose observable behavior changes when we replace that
expression by the other. That is, two expressions are considered equal iff
there is no such scenario that distinguishes them. But what do we mean by
“complete program”? And what do we mean by “observable behavior”?

For the present purposes we will consider a complete program to be
any expression of basic type (say, int or bool or string). The idea is that a
complete program is one that computes a concrete result such as a number.
The observable behavior of a complete program includes at least these
aspects:

1. Its value, or lack thereof, either by non-termination or by raising an
uncaught exception.

APRIL 23, 2007 WORKING DRAFT

13.3 Identity 117

2. Its visible side effects, include visible modifications to mutable stor-
age or any input/output it may perform.

In contrast here are some behaviors that we will not count as observations:

1. Execution time or space usage.

2. “Private” uses of storage (e.g., internally-allocated reference cells).

3. The name of uncaught exceptions (i.e., we will not distinguish be-
tween terminating with the uncaught exception Bind and the un-
caught exception Match.

With these ideas in mind, it should be plausible that if we evaluate
these bindings

val r = ref 0

val s = ref 0

then r and s are not equivalent. Consider the following usage of r to com-
pute an integer result:

(s := 1 ; !r)

Clearly this expression evaluates to 0, and mutates the binding of s. Now
replace r by s to obtain

(s := 1 ; !s)

This expression evaluates to 1, and mutates s as before. These two com-
plete programs distinguish r from s, and therefore must be considered
distinct.

Had we replaced the binding for s by the binding

val s = r

then the two expressions that formerly distinguished r from s no long
do so — they are, after all, bound to the same reference cell! In fact, no
program can be concocted that would distinguish them. In this case r and
s are equivalent.

Now consider a third, very similar scenario. Let us declare r and s as
follows:

APRIL 23, 2007 WORKING DRAFT

13.4 Aliasing 118

val r = ref ()

val s = ref ()

Are r and s equivalent or not? We might first try to distinguish them by
a variant of the experiment considered above. This breaks down because
there is only one possible value we can assign to a variable of type unit

ref! Indeed, one may suspect that r and s are equivalent in this case,
but in fact there is a way to distinguish them! Here’s a complete program
involving r that we will use to distinguish r from s:

if r=r then "it’s r" else "it’s not"

Now replace the first occurrence of r by s to obtain

if s=r then "it’s r" else "it’s not"

and the result is different.
This example hinges on the fact that ML defines equality for values

of reference type to be reference equality (or, occasionally, pointer equality).
Two reference cells (of the same type) are equal in this sense iff they both
arise from the exact same use of the ref operation to allocate that cell;
otherwise they are distinct. Thus the two cells bound to r and s above are
observably distinct (by testing reference equality), even though they can
only ever hold the value (). Had equality not been included as a primitive,
any two reference cells of unit type would have been equal.

Why does ML provide such a fine-grained notion of equality? “True”
equality, as defined by Leibniz’s Principle, is, unfortunately, undecidable
— there is no computer program that determines whether two expressions
are equivalent in this sense. ML provides a useful, conservative approxi-
mation to true equality that in some cases is not defined (you cannot test
two functions for equality) and in other cases is too picky (it distinguishes
reference cells that are otherwise indistinguishable). Such is life.

13.4 Aliasing

To see how reference cells complicate programming, let us consider the
problem of aliasing. Any two variables of the same reference type might
be bound to the same reference cell, or to two different reference cells. For
example, after the declarations

APRIL 23, 2007 WORKING DRAFT

13.5 Programming Well With References 119

val r = ref 0

val s = ref 0

the variables r and s are not aliases, but after the declaration

val r = ref 0

val s = r

the variables r and s are aliases for the same reference cell.
These examples show that we must be careful when programming

with variables of reference type. This is particularly problematic in the
case of functions, because we cannot assume that two different argument
variables are bound to different reference cells. They might, in fact, be
bound to the same reference cell, in which case we say that the two vari-
ables are aliases for one another. For example, in a function of the form

fn (x:typ ref, y:typ ref) => exp

we may not assume that x and y are bound to different reference cells. We
must always ask ourselves whether we’ve properly considered aliasing
when writing such a function. This is harder to do than it sounds. Aliasing
is a huge source of bugs in programs that work with reference cells.

13.5 Programming Well With References

Using references it is possible to mimic the style of programming used in
imperative languages such as C. For example, we might define the facto-
rial function in imitation of such languages as follows:

APRIL 23, 2007 WORKING DRAFT

13.5 Programming Well With References 120

fun imperative fact (n:int) =

let

val result = ref 1

val i = ref 0

fun loop () =

if !i = n then

()

else

(i := !i + 1;

result := !result * !i;

loop ())

in

loop (); !result

end

Notice that the function loop is essentially just a while loop; it repeatedly
executes its body until the contents of the cell bound to i reaches n. The
tail call to loop is essentially just a goto statement to the top of the loop.

It is (appallingly) bad style to program in this fashion. The purpose of the
function imperative fact is to compute a simple function on the natu-
ral numbers. There is nothing about its definition that suggests that state
must be maintained, and so it is senseless to allocate and modify storage
to compute it. The definition we gave earlier is shorter, simpler, more effi-
cient, and hence more suitable to the task. This is not to suggest, however,
that there are no good uses of references. We will now discuss some im-
portant uses of state in ML.

13.5.1 Private Storage

The first example is the use of higher-order functions to manage shared
private state. This programming style is closely related to the use of ob-
jects to manage state in object-oriented programming languages. Here’s
an example to frame the discussion:

APRIL 23, 2007 WORKING DRAFT

13.5 Programming Well With References 121

local

val counter = ref 0

in

fun tick () = (counter := !counter + 1; !counter)

fun reset () = (counter := 0)

end

This declaration introduces two functions, tick of type unit -> int and
reset of type unit -> unit. Their definitions share a private variable
counter that is bound to a mutable cell containing the current value of
a shared counter. The tick operation increments the counter and returns
its new value, and the reset operation resets its value to zero. The types
of the operations suggest that implicit state is involved. In the absence
of exceptions and implicit state, there is only one useful function of type
unit->unit, namely the function that always returns its argument (and
it’s debatable whether this is really useful!).

The declaration above defines two functions, tick and reset, that share
a single private counter. Suppose now that we wish to have several differ-
ent instances of a counter — different pairs of functions tick and reset that
share different state. We can achieve this by defining a counter generator (or
constructor) as follows:

fun new counter () =

let

val counter = ref 0

fun tick () = (counter := !counter + 1; !counter)

fun reset () = (counter := 0)

in

{ tick = tick, reset = reset }
end

The type of new counter is

unit -> { tick : unit->int, reset : unit->unit }.
We’ve packaged the two operations into a record containing two func-
tions that share private state. There is an obvious analogy with class-based
object-oriented programming. The function new counter may be thought
of as a constructor for a class of counter objects. Each object has a private in-
stance variable counter that is shared between the methods tick and reset

of the object represented as a record with two fields.

APRIL 23, 2007 WORKING DRAFT

13.5 Programming Well With References 122

Here’s how we use counters.

val c1 = new counter ()

val c2 = new counter ()

#tick c1 ();

(* 1 *)

#tick c1 ();

(* 2 *)

#tick c2 ();

(* 1 *)

#reset c1 ();

#tick c1 ();

(* 1 *)

#tick c2 ();

(* 2 *)

Notice that c1 and c2 are distinct counters that increment and reset inde-
pendently of one another.

13.5.2 Mutable Data Structures

A second important use of references is to build mutable data structures.
The data structures (such as lists and trees) we’ve considered so far are
immutable in the sense that it is impossible to change the structure of the
list or tree without building a modified copy of that structure. This is
both a benefit and a drawback. The principal benefit is that immutable
data structures are persistent in that operations performed on them do not
destroy the original structure — in ML we can eat our cake and have it too.
For example, we can simultaneously maintain a dictionary both before
and after insertion of a given word. The principal drawback is that if we
aren’t really relying on persistence, then it is wasteful to make a copy of a
structure if the original is going to be discarded anyway. What we’d like
in this case is to have an “update in place” operation to build an ephemeral
(opposite of persistent) data structure. To do this in ML we make use of
references.

A simple example is the type of possibly circular lists, or pcl’s. Informally,
a pcl is a finite graph in which every node has at most one neighbor, called
its predecessor, in the graph. In contrast to ordinary lists the predecessor

APRIL 23, 2007 WORKING DRAFT

13.5 Programming Well With References 123

relation is not necessarily well-founded: there may be an infinite sequence
of nodes arranged in descending order of predecession. Since the graph
is finite, this can only happen if there is a cycle in the graph: some node
has an ancestor as predecessor. How can such a structure ever come into
existence? If the predecessors of a cell are needed to construct a cell, then
the ancestor that is to serve as predecessor in the cyclic case can never be
created! The “trick” is to employ backpatching: the predecessor is initial-
ized to Nil, so that the node and its ancestors can be constructed, then it is
reset to the appropriate ancestor to create the cycle.

This can be achieved in ML using the following datatype declaration:

datatype ’a pcl = Pcl of ’a pcell ref

and ’a pcell = Nil | Cons of ’a * ’a pcl;

A value of type typ pcl is essentially a reference to a value of type typ
pcell. A value of type typ pcell is either Nil, the cell at the end of a non-
circular possibly-circular list, or Cons (h, t), where h is a value of type
typ and t is another such possibly-circular list.

Here are some convenient functions for creating and taking apart possibly-
circular lists:

fun cons (h, t) = Pcl (ref (Cons (h, t)));

fun nill () = Pcl (ref Nil);

fun phd (Pcl (ref (Cons (h,)))) = h;

fun ptl (Pcl (ref (Cons (, t)))) = t;

To implement backpatching, we need a way to “zap” the tail of a possibly-
circular list.

fun stl (Pcl (r as ref (Cons (h,))), u) =

(r := Cons (h, u));

If you’d like, it would make sense to require that the tail of the Cons cell
be the empty pcl, so that you’re only allowed to backpatch at the end of a
finite pcl.

Here is a finite and an infinite pcl.

val finite = cons (4, cons (3, cons (2, cons (1, nill ()))))

val tail = cons (1, nill());

val infinite = cons (4, cons (3, cons (2, tail)));

val = stl (tail, infinite)

APRIL 23, 2007 WORKING DRAFT

13.6 Mutable Arrays 124

The last step backpatches the tail of the last cell of infinite to be infinite
itself, creating a circular list.

Now let us define the size of a pcl to be the number of distinct nodes
occurring in it. It is an interesting problem is to define a size function
for pcls that makes no use of auxiliary storage (e.g., no set of previously-
encountered nodes) and runs in time proportional to the number of cells in
the pcl. The idea is to think of running a long race between a tortoise and a
hare. If the course is circular, then the hare, which quickly runs out ahead
of the tortoise, will eventually come from behind and pass it! Conversely,
if this happens, the course must be circular.

local

fun race (Nil, Nil) = 0

| race (Cons (, Pcl (ref c)), Nil) =

1 + race (c, Nil)

| race (Cons (, Pcl (ref c)), Cons (, Pcl (ref Nil))) =

1 + race (c, Nil)

| race (Cons (, l), Cons (, Pcl (ref (Cons (, m))))) =

1 + race’ (l, m)

and race’ (Pcl (r as ref c), Pcl (s as ref d)) =

if r=s then 0 else race (c, d)

in

fun size (Pcl (ref c)) = race (c, c)

end

The hare runs twice as fast as the tortoise. We let the tortoise do the count-
ing; the hare’s job is simply to detect cycles. If the hare reaches the finish
line, it simply waits for the tortoise to finish counting. This covers the
first three clauses of race. If the hare has not yet finished, we must con-
tinue with the hare running at twice the pace, checking whether the hare
catches the tortoise from behind. Notice that it can never arise that the
tortoise reaches the end before the hare does! Consequently, the definition
of race is inexhaustive.

13.6 Mutable Arrays

In addition to reference cells, ML also provides mutable arrays as a prim-
itive data structure. The type typ array is the type of arrays carrying val-

APRIL 23, 2007 WORKING DRAFT

13.6 Mutable Arrays 125

ues of type typ. The basic operations on arrays are these:

val array : int * ’a -> ’a array

val length : ’a array -> int

val sub : ’a array * int -> ’a

val update : ’a array * int * ’a -> unit

The function array creates a new array of a given length, with the given
value as the initial value of every element of the array. The function length

returns the length of an array. The function sub performs a subscript op-
eration, returning the ith element of an array A, where 0 ≤ i < length(A).
(These are just the basic operations on arrays; please see V for complete
information.)

One simple use of arrays is for memoization. Here’s a function to com-
pute the nth Catalan number, which may be thought of as the number
of distinct ways to parenthesize an arithmetic expression consisting of a
sequence of n consecutive multiplication’s. It makes use of an auxiliary
summation function that you can easily define for yourself. (Applying
sum to f and n computes the sum of f 0 + · · ·+ f n.)

fun C 1 = 1

| C n = sum (fn k => (C k) * (C (n-k))) (n-1)

This definition of C is hugely inefficient because a given computation may
be repeated exponentially many times. For example, to compute C 10 we
must compute C 1, C 2, . . . , C 9, and the computation of C i engenders the
computation of C 1, . . . , C i − 1 for each 1 ≤ i ≤ 9. We can do better by
caching previously-computed results in an array, leading to an enormous
improvement in execution speed. Here’s the code:

local

val limit : int = 100

val memopad : int option array =

Array.array (limit, NONE)

in

fun C’ 1 = 1

| C’ n = sum (fn k => (C k)*(C (n-k))) (n-1)

and C n =

if n < limit then

case Array.sub (memopad, n)

APRIL 23, 2007 WORKING DRAFT

13.7 Sample Code 126

of SOME r => r

| NONE =>

let

val r = C’ n

in

Array.update (memopad, n, SOME r);

r

end

else

C’ n

end

Note carefully the structure of the solution. The function C is a memoized
version of the Catalan number function. When called it consults the mem-
opad to determine whether or not the required result has already been
computed. If so, the answer is simply retrieved from the memopad, other-
wise the result is computed, stored in the cache, and returned. The func-
tion C’ looks superficially similar to the earlier definition of C, with the
important difference that the recursive calls are to C, rather than C’ itself.
This ensures that sub-computations are properly cached and that the cache
is consulted whenever possible.

The main weakness of this solution is that we must fix an upper bound
on the size of the cache. This can be alleviated by implementing a more
sophisticated cache management scheme that dynamically adjusts the size
of the cache based on the calls made to it.

13.7 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/refs.sml

Chapter 14

Input/Output

The Standard ML Basis Library (described in V) defines a three-layer input
and output facility for Standard ML. These modules provide a rudimen-
tary, platform-independent text I/O facility that we summarize briefly
here. The reader is referred to V for more details. Unfortunately, there
is at present no standard library for graphical user interfaces; each imple-
mentation provides its own package. See your compiler’s documentation
for details.

14.1 Textual Input/Output

The text I/O primitives are based on the notions of an input stream and an
output stream, which are values of type instream and outstream, respec-
tively. An input stream is an unbounded sequence of characters arising
from some source. The source could be a disk file, an interactive user, or
another program (to name a few choices). Any source of characters can
be attached to an input stream. An input stream may be thought of as
a buffer containing zero or more characters that have already been read
from the source, together with a means of requesting more input from the
source should the program require it. Similarly, an output stream is an un-
bounded sequence of characters leading to some sink. The sink could be a
disk file, an interactive user, or another program (to name a few choices).
Any sink for characters can be attached to an output stream. An output
stream may be thought of as a buffer containing zero or more characters
that have been produced by the program but have yet to be flushed to the

127

14.1 Textual Input/Output 128

sink.
Each program comes with one input stream and one output stream,

called stdIn and stdOut, respectively. These are ordinarily connected to
the user’s keyboard and screen, and are used for performing simple text
I/O in a program. The output stream stdErr is also pre-defined, and is
used for error reporting. It is ordinarily connected to the user’s screen.

Textual input and output are performed on streams using a variety of
primitives. The simplest are inputLine and print. To read a line of input
from a stream, use the function inputLine of type instream -> string. It
reads a line of input from the given stream and yields that line as a string
whose last character is the line terminator. If the source is exhausted, re-
turn the empty string. To write a line to stdOut, use the function print

of type string -> unit. To write to a specific stream, use the function
output of type outstream * string -> unit, which writes the given string
to the specified output stream. For interactive applications it is often im-
portant to ensure that the output stream is flushed to the sink (e.g., so that
it is displayed on the screen). This is achieved by calling flushOut of type
outstream -> unit, which ensures that the output stream is flushed to
the sink. The print function is a composition of output (to stdOut) and
flushOut.

A new input stream may be created by calling the function openIn of
type string -> instream. When applied to a string, the system attempts
to open a file with that name (according to operating system-specific nam-
ing conventions) and attaches it as a source to a new input stream. Simi-
larly, a new output stream may be created by calling the function openOut

of type string -> outstream. When applied to a string, the system at-
tempts to create a file with that name (according to operating system-
specific naming conventions) and attaches it as a sink for a new output
stream. An input stream may be closed using the function closeIn of type
instream -> unit. A closed input stream behaves as if there is no fur-
ther input available; request for input from a closed input stream yield
the empty string. An output stream may be closed using closeOut of type
outstream -> unit. A closed output stream is unavailable for further out-
put; an attempt to write to a closed output stream raises the exception
TextIO.IO.

The function input of type instream -> string is a blocking read op-
eration that returns a string consisting of the characters currently available
from the source. If none are currently available, but the end of source has

APRIL 23, 2007 WORKING DRAFT

14.2 Sample Code 129

not been reached, then the operation blocks until at least one character is
available from the source. If the source is exhausted or the input stream
is closed, input returns the null string. To test whether an input opera-
tion would block, use the function canInput of type instream * int ->

int option. Given a stream s and a bound n, the function canInput de-
termines whether or not a call to input on s would immediately yield up
to n characters. If the input operation would block, canInput yields NONE;
otherwise it yields SOME k, with 0 ≤ k ≤ n being the number of characters
immediately available on the input stream. If canInput yields SOME 0, the
stream is either closed or exhausted. The function endOfStream of type
instream -> bool tests whether the input stream is currently at the end
(no further input is available from the source). This condition is transitive
since, for example, another process might append data to an open file in
between calls to endOfStream.

The function output of type outstream * string -> unitwrites a string
to an output stream. It may block until the sink is able to accept the en-
tire string. The function flushOut of type outstream -> unit forces any
pending output to the sink, blocking until the sink accepts the remaining
buffered output.

This collection of primitive I/O operations is sufficient for performing
rudimentary textual I/O. For further information on textual I/O, and sup-
port for binary I/O and Posix I/O primitives, see the Standard ML Basis
Library.

14.2 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/io.sml

Chapter 15

Lazy Data Structures

In ML all variables are bound by value, which means that the bindings of
variables are fully evaluated expressions, or values. This general principle
has several consequences:

1. The right-hand side of a val binding is evaluated before the binding
is effected. If the right-hand side has no value, the val binding does
not take effect.

2. In a function application the argument is evaluated before being passed
to the function by binding that value to the parameter of the func-
tion. If the argument does not have a value, then neither does the
application.

3. The arguments to value constructors are evaluated before the con-
structed value is created.

According to the by-value discipline, the bindings of variables are evalu-
ated, regardless of whether that variable is ever needed to complete ex-
ecution. For example, to compute the result of applying the function fn

x => 1 to an argument, we never actually need to evaluate the argument,
but we do anyway. For this reason ML is sometimes said to be an eager
language.

An alternative is to bind variables by name,1 which means that the bind-
ing of a variable is an unevaluated expression, known as a computation or a

1The terminology is historical, and not well-motivated. It is, however, firmly estab-
lished.

130

131

suspension or a thunk.2 This principle has several consequences:

1. The right-hand side of a val binding is not evaluated before the bind-
ing is effected. The variable is bound to a computation (unevaluated
expression), not a value.

2. In a function application the argument is passed to the function in
unevaluated form by binding it directly to the parameter of the func-
tion. This holds regardless of whether the argument has a value or
not.

3. The arguments to value constructor are left unevaluated when the
constructed value is created.

According to the by-name discipline, the bindings of variables are only
evaluated (if ever) when their values are required by a primitive operation.
For example, to evaluate the expression x+x, it is necessary to evaluate the
binding of x in order to perform the addition. Languages that adopt the
by-name discipline are, for this reason, said to be lazy.

This discussion glosses over another important aspect of lazy evalua-
tion, called memoization. In actual fact laziness is based on a refinement
of the by-name principle, called the by-need principle. According to the by-
name principle, variables are bound to unevaluated computations, and are
evaluated only as often as the value of that variable’s binding is required
to complete the computation. In particular, to evaluate the expression x+x

the value of the binding of x is needed twice, and hence it is evaluated
twice. According to the by-need principle, the binding of a variable is
evaluated at most once — not at all, if it is never needed, and exactly once if
it ever needed at all. Re-evaluation of the same computation is avoided by
memoization. Once a computation is evaluated, its value is saved for future
reference should that computation ever be needed again.

The advantages and disadvantages of lazy vs. eager languages have
been hotly debated. We will not enter into this debate here, but rather con-
tent ourselves with the observation that laziness is a special case of eagerness.
(Recent versions of) ML have lazy data types that allow us to treat uneval-
uated computations as values of such types, allowing us to incorporate
laziness into the language without disrupting its fundamental character

2For reasons that are lost in the mists of time.

APRIL 23, 2007 WORKING DRAFT

15.1 Lazy Data Types 132

on which so much else depends. This affords the benefits of laziness, but
on a controlled basis — we can use it when it is appropriate, and ignore it
when it is not.

The main benefit of laziness is that it supports demand-driven computa-
tion. This is useful for representing on-line data structures that are created
only insofar as we examine them. Infinite data structures, such as the se-
quence of all prime numbers in order of magnitude, are one example of
an on-line data structure. Clearly we cannot ever “finish” creating the se-
quence of all prime numbers, but we can create as much of this sequence
as we need for a given run of a program. Interactive data structures, such
as the sequence of inputs provided by the user of an interactive system,
are another example of on-line data structures. In such a system the user’s
inputs are not pre-determined at the start of execution, but rather are cre-
ated “on demand” in response to the progress of computation up to that
point. The demand-driven nature of on-line data structures is precisely
what is needed to model this behavior.

Note: Lazy evaluation is a non-standard feature of ML that is supported
only by the SML/NJ compiler. The lazy evaluation features must be en-
abled by executing the following at top level:

Compiler.Control.lazysml := true;

open Lazy;

15.1 Lazy Data Types

SML/NJ provides a general mechanism for introducing lazy data types by
simply attaching the keyword lazy to an ordinary datatype declaration.
The ideas are best illustrated by example. We will focus attention on the
type of infinite streams, which may be declared as follows:

datatype lazy ’a stream = Cons of ’a * ’a stream

Notice that this type definition has no “base case”! Had we omitted the
keyword lazy, such a datatype would not be very useful, since there
would be no way to create a value of that type!

Adding the keyword lazy makes all the difference. Doing so specifies
that the values of type typ stream are computations of values of the form

Cons (val, val′),

APRIL 23, 2007 WORKING DRAFT

15.2 Lazy Function Definitions 133

where val is of type typ, and val′ is another such computation. Notice how
this description captures the “incremental” nature of lazy data structures.
The computation is not evaluated until we examine it. When we do, its
structure is revealed as consisting of an element val together with another
suspended computation of the same type. Should we inspect that compu-
tation, it will again have this form, and so on ad infinitum.

Values of type typ stream are created using a val rec lazy declara-
tion that provides a means for building a “circular” data structure. Here
is a declaration of the infinite stream of 1’s as a value of type int stream:

val rec lazy ones = Cons (1, ones)

The keyword lazy indicates that we are binding ones to a computation,
rather than a value. The keyword rec indicates that the computation is
recursive (or self-referential or circular). It is the computation whose under-
lying value is constructed using Cons (the only possibility) from the integer
1 and the very same computation itself.

We can inspect the underlying value of a computation by pattern match-
ing. For example, the binding

val Cons (h, t) = ones

extracts the “head” and “tail” of the stream ones. This is performed by
evaluating the computation bound to ones, yielding Cons (1, ones), then
performing ordinary pattern matching to bind h to 1 and t to ones.

Had the pattern been “deeper”, further evaluation would be required,
as in the following binding:

val Cons (h, (Cons (h’, t’)) = ones

To evaluate this binding, we evaluate ones to Cons (1, ones), binding h

to 1 in the process, then evaluate ones again to Cons (1, ones), binding
h’ to 1 and t’ to ones. The general rule is pattern matching forces evaluation
of a computation to the extent required by the pattern. This is the means by
which lazy data structures are evaluated only insofar as required.

15.2 Lazy Function Definitions

The combination of (recursive) lazy function definitions and decomposi-
tion by pattern matching are the core mechanisms required to support lazy

APRIL 23, 2007 WORKING DRAFT

15.2 Lazy Function Definitions 134

evaluation. However, there is a subtlety about function definitions that re-
quires careful consideration, and a third new mechanism, the lazy function
declaration.

Using pattern matching we may easily define functions over lazy data
structures in a familiar manner. For example, we may define two functions
to extract the head and tail of a stream as follows:

fun shd (Cons (h,)) = h

fun stl (Cons (, s)) = s

These are functions that, when applied to a stream, evaluate it, and match
it against the given patterns to extract the head and tail, respectively.

While these functions are surely very natural, there is a subtle issue that
deserves careful discussion. The issue is whether these functions are “lazy
enough”. From one point of view, what we are doing is decomposing a
computation by evaluating it and retrieving its components. In the case
of the shd function there is no other interpretation — we are extracting a
value of type typ from a value of type typ stream, which is a computation
of a value of the form Cons (exph, expt). We can adopt a similar view-
point about stl, namely that it is simply extracting a component value
from a computation of a value of the form Cons (exph, expt).

However, in the case of stl, another point of view is also possible.
Rather than think of stl as extracting a value from a stream, we may in-
stead think of it as creating a stream out of another stream. Since streams
are computations, the stream created by stl (according to this view) should
also be suspended until its value is required. Under this interpretation the
argument to stl should not be evaluated until its result is required, rather
than at the time stl is applied. This leads to a variant notion of “tail” that
may be defined as follows:

fun lazy lstl (Cons (, s)) = s

The keyword lazy indicates that an application of lstl to a stream does
not immediately perform pattern matching on its argument, but rather sets
up a stream computation that, when forced, forces the argument and ex-
tracts the tail of the stream.

The behavior of the two forms of tail function can be distinguished
using print statements as follows:

APRIL 23, 2007 WORKING DRAFT

15.3 Programming with Streams 135

val rec lazy s = (print "."; Cons (1, s))

val = stl s (* prints "." *)

val = stl s (* silent *)

val rec lazy s = (print "."; Cons (1, s));

val = lstl s (* silent *)

val = stl s (* prints "." *)

Since stl evaluates its argument when applied, the “.” is printed when it
is first called, but not if it is called again. However, since lstl only sets
up a computation, its argument is not evaluated when it is called, but only
when its result is evaluated.

15.3 Programming with Streams

Let’s define a function smap that applies a function to every element of a
stream, yielding another stream. The type of smap should be (’a -> ’b)

-> ’a stream -> ’b stream. The thing to keep in mind is that the appli-
cation of smap to a function and a stream should set up (but not compute)
another stream that, when forced, forces the argument stream to obtain
the head element, applies the given function to it, and yields this as the
head of the result.

Here’s the code:

fun smap f =

let

fun lazy loop (Cons (x, s)) =

Cons (f x, loop s)

in

loop

end

We have “staged” the computation so that the partial application of smap
to a function yields a function that loops over a given stream, applying
the given function to each element. This loop is a lazy function to en-
sure that it merely sets up a stream computation, rather than evaluating
its argument when it is called. Had we dropped the keyword lazy from
the definition of the loop, then an application of smap to a function and a
stream would immediately force the computation of the head element of

APRIL 23, 2007 WORKING DRAFT

15.3 Programming with Streams 136

the stream, rather than merely set up a future computation of the same
result.

To illustrate the use of smap, here’s a definition of the infinite stream
of natural numbers:

val one plus = smap (fn n => n+1)

val rec lazy nats = Cons (0, one plus nats)

Now let’s define a function sfilter of type

(’a -> bool) -> ’a stream -> ’a stream

that filters out all elements of a stream that do not satisfy a given predicate.

fun sfilter pred =

let

fun lazy loop (Cons (x, s)) =

if pred x then

Cons (x, loop s)

else

loop s

in

loop

end

We can use sfilter to define a function sieve that, when applied to a
stream of numbers, retains only those numbers that are not divisible by a
preceding number in the stream:

fun m mod n = m - n * (m div n)

fun divides m n = n mod m = 0

fun lazy sieve (Cons (x, s)) =

Cons (x, sieve (sfilter (not o (divides x)) s))

(This example uses o for function composition.)
We may now define the infinite stream of primes by applying sieve to

the natural numbers greater than or equal to 2:

val nats2 = stl (stl nats)

val primes = sieve nats2

APRIL 23, 2007 WORKING DRAFT

15.4 Sample Code 137

To inspect the values of a stream it is often useful to use the following
function that takes n ≥ 0 elements from a stream and builds a list of those
n values:

fun take 0 = nil

| take n (Cons (x, s)) = x :: take (n-1) s

Here’s an example to illustrate the effects of memoization:

val rec lazy s = Cons ((print "."; 1), s)

val Cons (h,) = s;

(* prints ".", binds h to 1 *)

val Cons (h,) = s;

(* silent, binds h to 1 *)

Replace print ".";1 by a time-consuming operation yielding 1 as result,
and you will see that the second time we force s the result is returned
instantly, taking advantage of the effort expended on the time-consuming
operation induced by the first force of s.

15.4 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/streams.sml

Chapter 16

Equality and Equality Types

16.1 Sample Code

Here is the code for this chapter.

138

examples/eq.sml

Chapter 17

Concurrency

Concurrent ML (CML) is an extension of Standard ML with mechanisms
for concurrent programming. It is available as part of the Standard ML of
New Jersey compiler. The eXene Library for programming the X windows
system is based on CML.

17.1 Sample Code

Here is the code for this chapter.

139

http://cm.bell-labs.com/cm/cs/who/jhr/sml/cml/index.html
http://cm.bell-labs.com/cm/cs/what/smlnj/index.html
http://cm.bell-labs.com/cm/cs/what/smlnj/index.html
http://cm.bell-labs.com/cm/cs/who/jhr/sml/eXene/index.html
examples/concur.sml

Part III

The Module Language

140

141

The Standard ML module language comprises the mechanisms for struc-
turing programs into separate units. Program units are called structures. A
structure consists of a collection of components, including types and val-
ues, that constitute the unit. Composition of units to form a larger unit
is mediated by a signature, which describes the components of that unit.
A signature may be thought of as the type of a unit. Large units may be
structured into hierarchies using substructures. Generic, or parameterized,
units may be defined as functors.

APRIL 23, 2007 WORKING DRAFT

Chapter 18

Signatures and Structures

The fundamental constructs of the ML module system are signatures and
structures. A signature may be thought of as an interface or specification
of a structure, and a structure may correspondingly be thought of as an
implementation of a signature. Many languages (such as Modula, Ada,
or Java) have similar constructs: signatures are analogous to interfaces
or package specifications or class types, and structures are analogous to
implementations or packages or classes. However, these are only rough
analogies that should not be taken too seriously.

18.1 Signatures

A signature is a specification, or a description, of a program unit, or structure.
Structures consist of declarations of type constructors, exception construc-
tors, and value bindings. A signature is an item-by-item specification of
these components of a structure. A structure matches, or implements, a sig-
nature iff the requirements of the signature are met by the structure. (This
will be made precise below.)

18.1.1 Basic Signatures

A basic signature expression has the form sig specs end, where specs is a
sequence of specifications. There are four basic forms of specification that

142

18.1 Signatures 143

may occur in specs:1

1. A type specification of the form

type (tyvar1,...,tyvarn) tycon [=

typ],

where the definition typ of tycon may or may not be present.

2. A datatype specification, which has precisely the same form as a datatype
declaration.

3. An exception specification of the form

exception excon of typ.

4. A value specification of the form

val id : typ.

The sequence of specifications are to be understood in the order given, and
no component may be specified more than once. Each specification may
refer to the type constructors introduced earlier in the sequence.

Signatures may be given names using a signature binding

signature sigid = sigexp,

where sigid is a signature identifier and sigexp is a signature expression.
Signature identifiers are abbreviations for the signatures to which they are
bound. In practice we nearly always bind signature expressions to identi-
fiers and refer to them by name.

Here is an illustrative example of a signature definition. We will refer
back to this definition often in the rest of this chapter.

signature QUEUE =

sig

type ’a queue

exception Empty

val empty : ’a queue

val insert : ’a * ’a queue -> ’a queue

val remove : ’a queue -> ’a * ’a queue

end

1There are two other forms of specification beyond these four, substructure specifications
and sharing specifications. These will be introduced in chapter 21.

APRIL 23, 2007 WORKING DRAFT

18.1 Signatures 144

The signature QUEUE specifies a structure that must provide

1. a unary type constructor ’a queue,

2. a nullary exception Empty,

3. a polymorphic value empty of type ’a queue,

4. two polymorphic functions, insert and remove, with the specified
type schemes.

Notice that queues are polymorphic in the type of elements of the queue
— the same operations are used regardless of the element type.

18.1.2 Signature Inheritance

Signatures may be built up from one another using two principal tools,
signature inclusion and signature specialization. Each is a form of inheritance
in which a new signature is created by enriching another signature with
additional information.

Signature inclusion is used to add more components to an existing sig-
nature. For example, if we wish to add an emptiness test to the signature
QUEUE we might define the augmented signature, QUEUE WITH EMPTY, using
the following signature binding:

signature QUEUE WITH EMPTY =

sig

include QUEUE

val is empty : ’a queue -> bool

end

As the notation suggests, the signature QUEUE is included into the body of
the signature QUEUE WITH EMPTY, and an additional component is added.

It is not strictly necessary to use include to define this signature. In-
deed, we may define it directly using the following signature binding:

APRIL 23, 2007 WORKING DRAFT

18.1 Signatures 145

signature QUEUE WITH EMPTY =

sig

type ’a queue

exception Empty

val empty : ’a queue

val insert : ’a * ’a queue -> ’a queue

val remove : ’a queue -> ’a * ’a queue

val is empty : ’a queue -> bool

end

There is no semantic difference between the two definitions of QUEUE WITH EMPTY.
Signature inclusion is a convenience that documents the “history” of how
the more refined signature was created.

Signature specialization is used to augment an existing signature with
additional type definitions. For example, if we wish to refine the signature
QUEUE to specify that the type constructor ’a queue must be defined as a
pair of lists, we may proceed as follows:

signature QUEUE AS LISTS =

QUEUE where type ’a queue = ’a list * ’a list

There where type clause “patches” the signature QUEUE by adding a defi-
nition for the type constructor ’a queue.

The signature QUEUE AS LISTS may also be defined directly as follows:

signature QUEUE AS LISTS =

sig

type ’a queue = ’a list * ’a list

exception Empty

val empty : ’a queue

val insert : ’a * ’a queue -> ’a queue

val remove : ’a queue -> ’a * ’a queue

end

A where type clause may not be used to re-define a type that is already
defined in a signature. For example, the following is illegal:

signature QUEUE AS LISTS AS LIST =

QUEUE AS LISTS where type ’a queue = ’a list

APRIL 23, 2007 WORKING DRAFT

18.2 Structures 146

If you wish to replace the definition of a type constructor in a signature
with another definition using where type, you must go back to a common
ancestor in which that type is not yet defined.

signature QUEUE AS LIST =

QUEUE where type ’a queue = ’a list

Two signatures are said to be equivalent iff they differ only up to the
type equivalences induced by type abbreviations.2 For example, the sig-
nature QUEUE where type ’a queue = ’a list is equivalent to the signa-
ture

signature QUEUE AS LIST =

sig

type ’a queue = ’a list

exception Empty

val empty : ’a list

val insert : ’a * ’a list -> ’a list

val remove : ’a list -> ’a * ’a list

end

Within the scope of the definition of the type ’a queue as ’a list, the two
are equivalent, and hence the specifications of the value components are
equivalent.

This principle of equivalence is sometimes called progagation of type
sharing. Within the scope of the type declaration in the signature QUEUE AS LIST,
the type constructors ’a queue and ’a list are said to share, or are equiv-
alent. Therefore they may be used interchangeably within their scope, as
we have done above, without affecting the meaning.

18.2 Structures

A structure is a unit of program consisting of a sequence of declarations
of types, exceptions, and values. Structures are implementations of signa-
tures; signatures are the “types” of structures.

2In some languages signatures are compared by name, which means that two signa-
tures are equivalent iff they are the same signature identifier. This is not the case in ML.

APRIL 23, 2007 WORKING DRAFT

18.2 Structures 147

18.2.1 Basic Structures

The basic form of structure is an encapsulated sequence of declarations
of the form struct decs end. The declarations in decs are of one of the
following four forms:

1. A type declaration defining a type constructor.

2. A datatype declaration defining a new datatype.

3. An exception declaration defining a new exception constructor with a
specified argument type.

4. A value declaration defining a new value variable with a specified
type.

These are precisely the declarations introduced in Part II.
A structure expression is well-formed iff it consists of a well-formed se-

quence of well-formed declarations (according to the rules given in Part II).
A structure expression is evaluated by evaluating each of the declarations
within it, in the order given. This amounts to evaluating the right-hand
sides of each value declaration in turn to determine its value, which is
then bound to the corresponding value identifier. This means, in particu-
lar, that any side effects that arise out of evaluating the constituent value
bindings occur when the structure expression is evaluated. A structure
value is a structure expression in which all bindings are fully evaluated.

A structure may be bound to a structure identifier using a structure
binding of the form

structure strid = strexp

This declaration defines strid to stand for the value of strexp. Such a decla-
ration is well-formed exactly when strexp is well-formed. It is evaluated by
evaluating the right-hand side, and binding the resulting structure value
to strid.

Here is an example of a structure binding:

APRIL 23, 2007 WORKING DRAFT

18.2 Structures 148

structure Queue =

struct

type ’a queue = ’a list * ’a list

exception Empty

val empty = (nil, nil)

fun insert (x, (b,f)) = (x::b, f)

fun remove (nil, nil) = raise Empty

| remove (bs, nil) = remove (nil, rev bs)

| remove (bs, f::fs) = (f, (bs, fs))

end

Recall that a fun binding is really an abbreviation for a val rec binding!
Thus the bindings of the value identifiers insert and remove are function
expressions.

18.2.2 Long and Short Identifiers

Once a structure has been bound to a structure identifier, we may access
its components using paths, or long identifiers, or qualified names. A path has
the form strid.id.3 It stands for the id component of the structure bound
to strid. For example, Queue.empty refers to the empty component of the
structure Queue. It has type ’a Queue.queue (note well the syntax!), stating
that it is a polymorphic value whose type is built up from the unary type
constructor Queue.queue. Similarly, the function Queue.insert has type
’a * ’a Queue.queue -> ’a Queue.queue and Queue.remove has type ’a
Queue.queue -> ’a * ’a Queue.queue.

Type definitions permeate structure boundaries. For example, the type
’a Queue.queue is equivalent to the type ’a list because it is defined to
be so in the structure Q. We will shortly introduce the means for limiting
the visibility of type definitions. Unless special steps are taken, the def-
initions of types within a structure determine the definitions of the long
identifiers that refer to those types within a structure. Consequently, it is
correct to write an expression such as

val q = Queue.insert (1, ([6,5,4],[1,2,3]))

3In chapter 21, we will generalize this to admit an arbitrary sequence of strid’s sepa-
rated by a dot.

APRIL 23, 2007 WORKING DRAFT

18.2 Structures 149

even though the list [6,5,4] was not obtained by using the operations
from the structure Q. This is because the type int Queue.queue is equiva-
lent to the type int list, and hence the call to insert is well-typed.

The use of long identifiers can get out of hand, cluttering the pro-
gram, rather than clarifying it. Suppose that we are frequently using the
Queue operations in a program, so that the code is cluttered with calls to
Queue.empty, Queue.insert, and Queue.remove. One way to reduce clut-
ter is to introduce a structure abbreviation of the form structure strid =

strid′ that introduces one structure identifier as an abbreviation for an-
other. For example, after declaring

structure Q = Queue

we may write Q.empty, Q.insert, and Q.remove, rather than the more ver-
bose forms mentioned above.

Another way to reduce clutter is to open the structure Queue to incorpo-
rate its bindings directly into the current environment. An open declaration
has the form

open strid1 ... stridn

which incorporates the bindings from the given structures in left-to-right
order (later structures override earlier ones when there is overlap). For
example, the declaration

open Queue

incorporates the body of the structure Queue into the current environment
so that we may write just empty, insert, and remove, without qualification,
to refer to the corresponding components of the structure Queue.

Although this is surely convenient, using open has its disadvantages.
One is that we cannot simultaneously open two structures that have a
component with the same name. For example, if we write

open Queue Stack

where the structure Stack also has a component empty, then uses of empty
(without qualification) will stand for Stack.empty, not for Queue.empty.

Another problem with open is that it is hard to control its behavior,
since it incorporates the entire body of a structure, and hence may inadver-
tently shadow identifiers that happen to be also used in the structure. For

APRIL 23, 2007 WORKING DRAFT

18.3 Sample Code 150

example, if the structure Queue happened to define an auxiliary function
helper, that function would also be incorporated into the current environ-
ment by the declaration open Queue, which may not have been intended.
This turns out to be a source of many bugs; it is best to use open sparingly,
and only then in a let or local declaration (to limit the damage).

18.3 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/sigstr.sml

Chapter 19

Signature Matching

When does a structure implement a signature? Roughly speaking, the
structure must provide all of the components and satisfy all of the type defini-
tions required by the signature. Exception components must be provided
with types equivalent to those in the signature. Value components must
be provided with types at least as general as those in the signature. Type
components must be provided with the right arities, and with equivalent
definitions (if any).

These are useful rules of thumb; nailing them down is surprisingly
tricky. Let us mention a few issues that complicate matters:

• To minimize bureaucracy, a structure may provide more components
than are strictly required by the signature. If a signature requires
components x, y, and z, it is sufficient for the structure to provide x,
y, z, and w.

• To enhance reuse, a structure may provide values with more general
types than are required by the signature. If a signature demands a
function of type int->int, it is enough to provide a function of type
’a->’a.

• To avoid over-specification, a datatype may be provided where a type
is required, and a value constructor may be provided where a value
is required.

• To increase flexibility, a structure may consist of declarations presented
in any sensible order, not just the order specified in the signature,
provided that the requirements of the specification are met.

151

19.1 Principal Signatures 152

What it means for a structure to implement a signature is very similar
to what it means for an expression to have a type. An expression exp has
type typ iff typ is an instance of the principal type of exp. Similarly, we will
define a structure to implement a signature iff the principal signature of
the structure matches that signature.

19.1 Principal Signatures

The principal signature of a structure is, in a precise sense, the most specific
description of the components of that structure. It captures everything
that needs to be known about that structure during type checking. It is
an important, and highly non-trivial, property of ML that there is always
a principal signature for any well-formed structure. For the purposes of
type checking, the principal signature is the official proxy for the structure.
We need never examine the code of the structure durng type checking,
once its principal signature has been determined.

A structure expression is assigned a principal signature by a component-
by-component analysis of its constituent declarations. The principal sig-
nature of a structure is obtained as follows:1

1. Corresponding to a declaration of the form

type (tyvar1,...,tyvarn) tycon = typ,

the principal signature contains the specification

type (tyvar1,...,tyvarn) tycon = typ

The principal signature includes the definition of tycon.

2. Corresponding to a declaration of the form

datatype (tyvar1,...,tyvarn) tycon =

con1 of typ1 | ... | conk of typk

the principal signature contains the specification

1These rules gloss over some technical complications that arise only in unusual cir-
cumstances. See The Definition of Standard ML [3] for complete details.

APRIL 23, 2007 WORKING DRAFT

19.2 Matching 153

datatype (tyvar1,...,tyvarn) tycon =

con1 of typ1 | ... | conk of typk

The specification is identical to the declaration.

3. Corresponding to a declaration of the form

exception id of typ

the principal signature contains the specification

exception id of typ

4. Corresponding to a declaration of the form

val id = exp

the principal signature contains the specification

val id : typ

where typ is the principal type scheme of the expression exp (relative
to the preceding declarations). Keep in mind that fun bindings are
really (recursive) val bindings of function type.

In brief, the principal signature contains all of the type definitions, datatype
definitions, and exception bindings of the structure, plus the principal
types of its value bindings.

An important point to keep in mind is that the principal signature of a
structure is obtained by inspecting the code of that structure. While this
may seem like an obvious point, it has important implications for manag-
ing dependencies between modules. We will return to this point in sec-
tion 20.4 of chapter 20.

19.2 Matching

A candidate signature sigexpc is said to match a target signature sigexpt iff
sigexpc has all of the components and all of the type equations specified by
sigexpt. More precisely,

APRIL 23, 2007 WORKING DRAFT

19.2 Matching 154

1. Every type constructor in the target must also be present in the can-
didate, with the same arity (number of arguments) and an equivalent
definition (if any).

2. Every datatype in the target must be present in the candidate, with
equivalent types for the value constructors.

3. Every exception in the target must be present in the candidate, with
an equivalent argument type.

4. Every value in the target must be present in the candidate, with at
least as general a type.

The candidate may have additional components not mentioned in the tar-
get, or satisfy additional type equations not required in the target, but it
cannot have fewer of either. The target signature may therefore be seen
as a weakening of the candidate signature, since all of the properties of the
latter are true of the former.

It is easy to see that the matching relation is reflexive — every sig-
nature matches itself — and transitive — if sigexp1 matches sigexp2 and
sigexp2 matches sigexp3, then sigexp1 matches sigexp3. This means that the
signature matching relation is a pre-order. It is also a partial order, which is
to say that if sigexp1 matches sigexp2 and vice versa, then sigexp1 and sigexp2
are equivalent signatures (to within propagation of type equations).

It will be helpful to consider some examples. Recall the following sig-
natures from chapter 18.

signature QUEUE =

sig

type ’a queue

exception Empty

val empty : ’a queue

val insert : ’a * ’a queue -> ’a queue

val remove : ’a queue -> ’a * ’a queue

end

signature QUEUE WITH EMPTY =

sig

include QUEUE

val is empty : ’a queue -> bool

APRIL 23, 2007 WORKING DRAFT

19.2 Matching 155

end

signature QUEUE AS LISTS =

QUEUE where type ’a queue = ’a list * ’a list

The signature QUEUE WITH EMPTY matches the signature QUEUE, because
all of requirements of QUEUE are met by QUEUE WITH EMPTY. The converse
does not hold, because QUEUE lacks the component is empty, which is re-
quired by QUEUE WITH EMPTY.

The signature QUEUE AS LISTS matches the signature QUEUE. It is identi-
cal to QUEUE, apart from the additional specification of the type ’a queue.
The converse fails, because the signature QUEUE does not satisfy the re-
quirement that ’a queue be equivalent to ’a list * ’a list.

Matching does not distinguish between equivalent signatures. For ex-
ample, consider the following signature:

signature QUEUE AS LIST = sig

type ’a queue = ’a list

exception Empty

val empty : ’a list

val insert : ’a * ’a list -> ’a list

val remove : ’a list -> ’a * ’a list

val is empty : ’a list -> bool

end

At first glance you might think that this signature does not match the sig-
nature QUEUE, since the components of QUEUE AS LIST have superficially
dissimilar types from those in QUEUE. However, the signature QUEUE AS LIST

is equivalent to the signature QUEUE with type ’a queue = ’a list, which
matches QUEUE for reasons noted earlier. Therefore, QUEUE AS LISTmatches
QUEUE as well.

Signature matching may also involve instantiation of polymorphic types.
The types of values in the candidate may be more general than required
by the target. For example, the signature

signature MERGEABLE QUEUE =

sig

include QUEUE

val merge : ’a queue * ’a queue -> ’a queue

end

APRIL 23, 2007 WORKING DRAFT

19.2 Matching 156

matches the signature

signature MERGEABLE INT QUEUE =

sig

include QUEUE

val merge : int queue * int queue -> int queue

end

because the polymorphic type of merge in MERGEABLE QUEUE instantiates to
its type in MERGEABLE INT QUEUE.

Finally, a datatype specification matches a signature that specifies a
type with the same name and arity (but no definition), and zero or more
value components corresponding to some (or all) of the value constructors
of the datatype. The types of the value components must match exactly the
types of the corresponding value constructors; no specialization is allowed
in this case. For example, the signature

signature RBT DT =

sig

datatype ’a rbt =

Empty |

Red of ’a rbt * ’a * ’a rbt |

Black of ’a rbt * ’a * ’a rbt

end

matches the signature

signature RBT =

sig

type ’a rbt

val Empty : ’a rbt

val Red : ’a rbt * ’a * ’a rbt -> ’a rbt

end

The signature RBT specifies the type ’a rbt as abstract, and includes two
value specifications that are met by value constructors in the signature
RBT DT.

One way to understand this is to mentally rewrite the signature RBT DT

in the (fanciful) form2

2Unfortunately, the “signature” RBT DTS is not a legal ML signature!

APRIL 23, 2007 WORKING DRAFT

19.3 Satisfaction 157

signature RBT DTS =

sig

type ’a rbt

con Empty : ’a rbt

con Red : ’a rbt * ’a * ’a rbt -> ’a rbt

con Black : ’a rbt * ’a * ’a rbt -> ’a rbt

The rule is simply that a val specification may be matched by a con speci-
fication.

19.3 Satisfaction

Returning to the motivating question of this chapter, a candidate structure
implements a target signature iff the principal signature of the candidate
structure matches the target signature. By the reflexivity of the match-
ing relation it is immediate that a structure satisfies its principal signa-
ture. Therefore any signature implemented by a structure is weaker than
the principal signature of that structure. That is, the principal signature is
the strongest signature implemented by a structure.

19.4 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/matching.sml

Chapter 20

Signature Ascription

Signature ascription imposes the requirement that a structure implement a
signature and, in so doing, weakens the signature of that structure for all
subsequent uses of it. There are two forms of ascription in ML. Both re-
quire that a structure implement a signature; they differ in the extent to
which the assigned signature of the structure is weakened by the ascrip-
tion.

1. Transparent, or descriptive ascription. The structure is assigned the tar-
get signature augmented by propagating to the target the definitions
of those types in the candidate.

2. Opaque, or restrictive ascription. The structure is assigned the target
signature as is, without augmentation.

Both forms of ascription hide components not present in the target signa-
ture.

Using modules effectively requires careful control over the propaga-
tion of type information. What is held back is as at least as important
as what is revealed. Opaque ascription is the means by which type in-
formation is curtailed; transparent ascription is the means by which it is
propagated.

20.1 Ascribed Structure Bindings

The most common form of signature ascription is in a structure binding.
There are two forms, the transparent

158

20.1 Ascribed Structure Bindings 159

structure strid : sigexp = strexp

and the opaque

structure strid :> sigexp = strexp

The only difference is that transparent ascription is written using a single
colon, “:”, whereas opaque ascription is written as “:>”.

Ascribed structure bindings are type checked as follows. First, the
compiler checks that strexp implements sigexp according to the rules given
in chapter 19. Specifically, the principal signature sigexp0 of strexp is de-
termined and matched against sigexp. This determines an augmentation
sigexp′ of sigexp by propagating type equations from the principal signa-
ture, sigexp0. Second, the structure identifier is assigned a signature based
on the form of ascription. For an opaque ascription, it is assigned the
signature sigexp; for a transparent ascription, it is assigned the signature
sigexp′.

Incidentally, this makes clear that transparent ascription is really a spe-
cial case of opaque ascription! Since the augmented signature, sigexp′, is it-
self a signature, we could have written it ourselves and opaquely ascribed
it to strexp, with the same net effect as a transparent ascription. Thus trans-
parent ascription is really a form of “signature inference” in which we are
asking the compiler to fill in details that it is too inconvenient to write
ourselves. As we will see below, this is more than a minor convenience!

Ascribed signature bindings are evaluated by first evaluating strexp.
Then a view of the resulting value is formed by dropping all components
that are not present in the target signature, sigexp.1 The structure variable
strid is bound to the view. The formation of the view ensures that the
components of a structure may always be accessed in constant time, and
that there are no “space leaks” because of components that are present in
the structure, but not in the signature.

1There are some technical complications to do with dropping type components. For
example, if we attempt to include only the value constructors of a datatype, and not
the datatype itself, the compiler will implicitly include the datatype to ensure that the
types of the constructors are expressible in the signature of the view. Any such type
implicitly included in the view is marked as “hidden”. See The Definition of Standard ML
for complete details.

APRIL 23, 2007 WORKING DRAFT

20.2 Opaque Ascription 160

20.2 Opaque Ascription

The primary use of opaque ascription is to enforce data abstraction. A
good example is provided by the implementation of queues as, say, pairs
of lists.

structure Queue :> QUEUE =

struct

type ’a queue = ’a list * ’a list

val empty = (nil, nil)

fun insert (x, (bs, fs)) = (x::bs, fs)

exception Empty

fun remove (nil, nil) = raise Empty

| remove (bs, f::fs) = (f, (bs, fs))

| remove (bs, nil) = remove (nil, rev bs)

end

The use of opaque ascription ensures that the type ’a Queue.queue is ab-
stract. No definition is provided for it in the signature QUEUE, and there-
fore it has no definition in terms of other types of the language; the type
’a Queue.queue is abstract.

The principal effect of rendering ’a Queue.queue abstract is that only
the operations empty, insert, and remove may be performed on values of
that type. We may not make use of the fact that a queue is “really” a pair
of lists simply because it is implemented this way. Instead we have ob-
scured this fact by opaquely ascribing a signature that does not define the
type ’a queue. This ensures that all clients of the structure Queue are in-
sulated from the details of how queues are implemented. This means that
the implementation can be changed without fear of breaking any client
code, a strong tool for enhancing maintainability of large programs. Were
abstraction not enforced, the client might well (inadvertently or deliber-
ately) make use of the representation of queues as pairs of lists, forcing all
client code to be reconsidered whenever a change of representation occurs.

A closely-related reason for hiding the representation of a type is that it
allows us to isolate the enforcement of representation invariants to the im-
plementation of the abstraction. We may think of the type ’a Queue.queue

as the type of states of an abstract machine whose sole instructions are
empty (the initial state), insert, and remove. Internally to the structure

APRIL 23, 2007 WORKING DRAFT

20.2 Opaque Ascription 161

Queue we may wish to impose invariants on the internal state of the ma-
chine. The beauty of data abstraction is that it supports an elegant tech-
nique for enforcing such invariants.

The technique, called the assume-ensure, or rely-guarantee, technique re-
duces enforcement of representation invariants to these two requirements:

1. All initialization instructions must ensure that the invariant holds
true of the machine state after execution.

2. All state transition instructions may assume that the invariant holds
of the inputs states, and must ensure that it holds of the output state.

By induction on the number of “instructions” executed, the invariant must
hold for all states — i.e., it must really be invariant!

Now suppose that we wish to implement an abstract type of priority
queues for an arbitrary element type. The queue operations are no longer
polymorphic in the element type because they actually “touch” the ele-
ments to determine their relative priorities. Here is a possible signature
for priority queues that expresses this dependency:2

signature PQ =

sig

type elt

val lt : elt * elt -> bool

type queue

exception Empty

val empty : queue

val insert : elt * queue -> queue

val remove : queue -> elt * queue

end

Now let us consider an implementation of priority queues in which
the elements are taken to be strings. Since priority queues form an ab-
stract type, we would expect to use opaque ascription to ensure that its
representation is hidden. This suggests an implementation along these
lines:

2In chapter 21 we’ll introduce better means for structuring this module, but the central
points discussed here will not be affected.

APRIL 23, 2007 WORKING DRAFT

20.3 Transparent Ascription 162

structure PrioQueue :> PQ =

struct

type elt = string

val lt : string * string -> bool = (op <)

type queue = ...
...

end

But not only is the type PrioQueue.queue abstract, so is PrioQueue.elt!
This leaves us no means of creating a value of type PrioQueue.elt, and
hence we can never call PrioQueue.insert. The problem is that the in-
terface is “too abstract” — it should only obscure the identity of the type
queue, and not that of the type elt.

The solution is to augment the signature PQ with a definition for the
type elt, then opaquely ascribe this to PrioQueue:

signature STRING PQ = PQ where type elt = string

structure PrioQueue :> STRING PQ = ...

Now the type PrioQueue.elt is equivalent to string, and we may call
PrioQueue.insert with a string, as expected.

The moral is that there is always an element of judgement involved in
deciding which types to hold abstract, and which to make opaque. In the
case of priority queues, the determining factor is that we specified only the
operations on elt that were required for the implementation of priority
queues, and no others. This means that elt could not usefully be held
abstract, but must instead be specified in the signature. On the other hand
the operations on queues are intended to be complete, and so we hold the
type abstract.

20.3 Transparent Ascription

Transparent ascription cuts down on the need for explicit specification of
type definitions in signatures. As we remarked earlier, we can always re-
place uses of transparent ascription by a use of opaque ascription with a
hand-crafted augmented signature. This can become burdensome. On the
other hand, excessive use of transparent ascription impedes modular pro-
gramming by exposing type information that would better be left abstract.

APRIL 23, 2007 WORKING DRAFT

20.3 Transparent Ascription 163

The prototypical use of transparent ascription is to form a view of a
structure that eliminates the components that are not necessary in a given
context without obscuring the identities of its type components. Consider
the signature ORDERED defined as follows:

signature ORDERED =

sig

type t

val lt : t * t -> bool

end

This signature specifies a type t equipped with a comparison operation
lt.

It should be clear that it would not make sense to opaquely ascribe
this signature to a structure. Doing so would preclude ever calling the lt

operation, for there would be no means of creating values of type t. Such
a signature is only useful once it has been augmented with a definition for
the type t. This is precisely what transparent ascription does for you.

For example, consider the following structure binding:

structure String : ORDERED =

struct

type t = string

val clt = Char.<

fun lt (s, t) = ... clt ...

end

This structure implements string comparison in terms of character com-
parison (say, to implement the lexicographic ordering of strings). Ascrip-
tion of the signature ORDERED ensures two things:

1. The auxiliary function clt is pruned out of the structure. It was in-
tended for internal use, and was not meant to be externally visible.

2. The type String.t is equivalent to string, even though this fact is
not present in the signature ORDERED. Transparent ascription com-
putes an augmentation of ORDERED with this definition exposed. The
“true” signature of String is the signature

ORDERED where type t = string

APRIL 23, 2007 WORKING DRAFT

20.4 Transparency, Opacity, and Dependency 164

which makes clear the underlying definition of t.

A related use of transparent ascription is to document an interpreta-
tion of a type without rendering it abstract. For example, we may wish
to consider the integers ordered in two different ways, one by the stan-
dard arithmetic comparison, the other by divisibility. We might make the
following declarations to express this:

structure IntLt : ORDERED =

struct

type t = int

val lt = (op <)

end

structure IntDiv : ORDERED =

struct

type t = int

fun lt (m, n) = (n mod m = 0)

end

The ascription specifies the interpretation of int as partially ordered, in
two senses, but does not hide the type of elements. In particular, IntLt.t
and IntDiv.t are both equivalent to int.

20.4 Transparency, Opacity, and Dependency

An important observation is that transparent ascription is, in a sense, a
form of opaque ascription. The target signature is augmented with the
type definitions of the candidate, and then the augmented signature is
opaquely ascribed to the structure. In principle one can always write
out the augmented signature by hand (using where type clauses), then
opaquely ascribe it to the structure. While this is true in principle, in prac-
tice it is simply too inconvenient to require the programmer to be fully
explicit about the propagation of type information in signatures.3

Transparent ascription is a convenience akin to type inference. The
compiler automatically fleshes out omitted information in a manner that

3Worse, for very technical reasons, it is not always possible to write the augmented
signature by hand, because to do so requires access to “hidden” types.

APRIL 23, 2007 WORKING DRAFT

20.5 Sample Code 165

is convenient for the programmer. However, this convenience comes at a
price: whenever you use transparent ascription, the compiler must have access to
the source code of the structure to determine the “true” signature of that structure.
This means that any code that makes reference to the ascribed structure
depends on the implementation of that structure, and not just its (apparent)
interface. With transparent ascription, what you see (the ascribed signa-
ture) is not what you get! Rather, what you get is an augmentation of what
you see obtained by inspecting the implementation of that structure.

On the other hand, whereas transparent ascription therefore introduces
implementation dependencies, opaque ascription eliminates them. Once a
signature has been opaquely ascribed to a structure, all future uses of that
structure may rely only on the ascribed signature. Since the signature is
given independently of the implementation, client code is insulated from
changes to the implementation that do not also affect its interface. This
greatly facilitates team development and code evolution.

Implementation dependencies are fundamentally anti-modular.4 The
goal of modular programming is to isolate parts of programs from one
another so that they can be independently developed and modified with
minimal interference. The fewer the dependencies between modules, the
fewer the problems with integrating modules to form a complete system.

20.5 Sample Code

Here is the code for this chapter.

4That’s why inheritance in class-based languages is a bad idea. If a class D inherits
from a class C, you have an implementation dependency of C on D. This is called the
fragile base class problem, because changes to C force reconsideration of D.

APRIL 23, 2007 WORKING DRAFT

examples/ascription.sml

Chapter 21

Module Hierarchies

So far we have confined ourselves to considering “flat” modules consist-
ing of a linear sequence of declarations of types, exceptions, and values.
As programs grow in size and complexity, it becomes important to intro-
duce further structuring mechanisms to support their growth. The ML
module language also supports module hierarchies, tree-structured config-
urations of modules that reflect the architecture of a large system.

21.1 Substructures

A substructure is a “structure within a structure”. Structures bindings (ei-
ther opaque or transparent) are admitted as components of other struc-
tures. Structure specifications of the form

structure strid : sigexp

may appear in signatures. There is no distinction between transparent
and opaque specifications in a signature, because there is no structure to
ascribe!

The type checking and evaluation rules for structures are extended
to substructures recursively. The principal signature of a sub-structure
binding is determined according to the rules given in chapter 19. A sub-
structure binding in one signature matches the corresponding one in an-
other iff their signatures match according to the rules in chapter 19. Eval-
uation of a sub-structure binding consists of evaluating the structure ex-
pression, then binding the resulting structure value to that identifier.

166

21.1 Substructures 167

To see how substructures arise in practice, consider the following pro-
gramming scenario. The first version of a system makes use of a polymor-
phic dictionary data structure whose search keys are strings. The signature
for such a data structure might be as follows:

signature MY STRING DICT =

sig

type ’a dict

val empty : ’a dict

val insert : ’a dict * string * ’a -> ’a dict

val lookup : ’a dict * string -> ’a option

end

The return type of lookup is ’a option, since there may be no entry in the
dictionary with the specified key.

The implementation of this abstraction looks approximately like this:

structure MyStringDict :> MY STRING DICT =

struct

datatype ’a dict =

Empty |

Node of ’a dict * string * ’a * ’a dict

val empty = Empty

fun insert (d, k, v) = ...

fun lookup (d, k) = ...

end

The omitted implementations of insert and lookup make use of the built-
in lexicographic ordering of strings.

The second version of the system requires another dictionary whose
keys are integers, leading to another signature and implementation for
dictionaries.

signature MY INT DICT =

sig

type ’a dict

val empty : ’a dict

val insert : ’a dict * int * ’a -> ’a dict

val lookup : ’a dict * int -> ’a option

end

APRIL 23, 2007 WORKING DRAFT

21.1 Substructures 168

structure MyIntDict :> MY INT DICT =

sig

datatype ’a dict =

Empty |

Node of ’a dict * int * ’a * ’a dict

val empty = Empty

fun insert (d, k, v) = ...

fun lookup (d, k) = ...

end

The ellided implementations of insert and lookup make use of the prim-
itive comparison operations on integers.

At this point we may observe an obvious pattern, that of a dictionary
with keys of a specific type. To avoid further repetition we decide to ab-
stract out the key type from the signature so that it can be filled in later.

signature MY GEN DICT =

sig

type key

type ’a dict

val empty : ’a dict

val insert : ’a dict * key * ’a -> ’a dict

end

Notice that the dictionary abstraction carries with it the type of its keys.
Specific instances of this generic dictionary signature are obtained us-

ing where type.

signature MY STRING DICT =

MY GEN DICT where type key = string

signature MY INT DICT =

MY GEN DICT where type key = int

A string dictionary might then be implemented as follows:

structure MyStringDict :> MY STRING DICT =

struct

type key = string

datatype ’a dict =

Empty |

APRIL 23, 2007 WORKING DRAFT

21.1 Substructures 169

Node of ’a dict * key * ’a * ’a dict

val empty = Empty

fun insert (Empty, k, v) = Node (Empty, k, v, Empty)

fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =

if k < l then (* string comparison *)

lookup (dl, k)

else if k > l then (* string comparison *)

lookup (dr, k)

else

v

end

By a similar process we may build an implementation MyIntDict of the
signature MY INT DICT, with integer keys ordered by the standard integer
comparison operations.

Now suppose that we require a third dictionary, with integers as keys,
but ordered according to the divisibility ordering.1 This implementation,
say MyIntDivDict, makes use of modular arithmetic to compare opera-
tions, but has the same signature MY INT DICT as MyIntDict.

structure MyIntDivDict :> MY INT DICT =

struct

type key = int

datatype ’a dict =

Empty |

Node of ’a dict * key * ’a * ’a dict

fun divides (k, l) = (l mod k = 0)

val empty = Empty

fun insert (None, k, v) = Node (Empty, k, v, Empty)

fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =

if divides (k, l) then (* divisibility test *)

lookup (dl, k)

else if divides (l, k) then (* divisibility test *)

lookup (dr, k)

else

1For which, m < n iff m divides n evenly.

APRIL 23, 2007 WORKING DRAFT

21.1 Substructures 170

v

end

Notice that we required an auxiliary function, divides, to implement the
comparison in the required sense.

With this in mind, let us re-consider our initial attempt to consolidate
the signatures of the various versions of dictionaries in play. In one sense
there is nothing to do — the signature MY GEN DICT suffices. However,
as we’ve just seen, the instances of this signature, which are ascribed to
particular implementations, do not determine the interpretation. What
we’d like to do is to package the type with its interpretation so that the
dictionary module is self-contained. Not only does the dictionary module
carry with it the type of its keys, but it also carries the interpretation used
on that type.

This is achieved by introducing a substructure binding in the dictio-
nary structure. To begin with we first isolate the notion of an ordered
type.

signature ORDERED =

sig

type t

val lt : t * t -> bool

val eq : t * t -> bool

end

This signature describes modules that contain a type t equipped with an
equality and comparison operation on it.

An implementation of this signature specifies the type and the inter-
pretation, as in the following examples.

(* Lexicographically ordered strings. *)

structure LexString : ORDERED =

struct

type t = string

val eq = (op =)

val lt = (op <)

end

(* Integers ordered conventionally. *)

structure LessInt : ORDERED =

APRIL 23, 2007 WORKING DRAFT

21.1 Substructures 171

struct

type t = int

val eq = (op =)

val lt = (op <)

end

(* Integers ordered by divisibility.*)

structure DivInt : ORDERED =

struct

type t = int

fun lt (m, n) = (n mod m = 0)

fun eq (m, n) = lt (m, n) andalso lt (n, m)

end

Notice that the use of transparent ascription is very natural here, since
ORDERED is not intended as a self-contained abstraction.

The signature of dictionaries is re-structured as follows:

signature DICT =

sig

structure Key : ORDERED

type ’a dict

val empty : ’a dict

val insert : ’a dict * Key.t * ’a -> ’a dict

val lookup : ’a dict * Key.t -> ’a option

end

The signature DICT includes as a substructure the key type together with
its interpretation as an ordered type.

To enforce abstraction we introduce specialized versions of this signa-
ture that specify the key type using a where type clause.

signature STRING DICT =

DICT where type Key.t=string

signature INT DICT =

DICT where type Key.t=int

These are, respectively, signatures for the abstract type of dictionaries whose
keys are strings and integers.

How are these signatures to be implemented? Corresponding to the
layering of the signatures, we have a layering of the implementation.

APRIL 23, 2007 WORKING DRAFT

21.1 Substructures 172

structure StringDict :> STRING DICT =

struct

structure Key : ORDERED = LexString

datatype ’a dict =

Empty |

Node of ’a dict * Key.t * ’a * ’a dict

val empty = Empty

fun insert (None, k, v) = Node (Empty, k, v, Empty)

fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =

if Key.lt(k, l) then

lookup (dl, k)

else if Key.lt (l, k) then

lookup (dr, k)

else

v

end

Observe that the implementation of insert and lookup make use of the
comparison operations Key.lt and Key.eq.

Similarly, we may implement IntDict, with the standard ordering, as
follows:

structure LessIntDict :> INT DICT =

struct

structure Key : ORDERED = LessInt

datatype ’a dict =

Empty |

Node of ’a dict * Key.t * ’a * ’a dict

val empty = Empty

fun insert (None, k, v) = Node (Empty, k, v, Empty)

fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =

if Key.lt(k, l) then

lookup (dl, k)

else if Key.lt (l, k) then

lookup (dr, k)

else

v

APRIL 23, 2007 WORKING DRAFT

21.1 Substructures 173

end

Similarly, dictionaries with integer keys ordered by divisibility may be
implemented as follows:

structure IntDivDict :> INT DICT =

struct

structure Key : ORDERED = IntDiv

datatype ’a dict =

Empty |

Node of ’a dict * Key.t * ’a * ’a dict

val empty = Empty

fun insert (None, k, v) = Node (Empty, k, v, Empty)

fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =

if Key.lt(k, l) then

lookup (dl, k)

else if Key.lt (l, k) then

lookup (dr, k)

else

v

end

Taking stock of the development, what we have done is to structure
the signature of dictionaries to allow the type of keys, together with its
interpretation, to vary from one implementation to another. The Key sub-
structure may be viewed as a “parameter” of the signature DICT that is “in-
stantiated” by specialization to specific types of interest. In this sense sub-
structures subsume the notion of a parameterized signature found in some
languages. There are several advantages to this:

1. A signature with one or more substructures is still a complete sig-
nature. Parameterized signatures, in contrast, are incomplete signa-
tures that must be completed to be used.

2. Any substructure of a signature may play the role of a “parameter”.
There is no need to designate in advance which are “arguments” and
which are “results”.

In chapter 23 we will introduce the mechanisms needed to build a
generic implementation of dictionaries that may be instantiated by the key
type and its ordering.

APRIL 23, 2007 WORKING DRAFT

21.2 Sample Code 174

21.2 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/hierarchies.sml

Chapter 22

Sharing Specifications

In chapter 21 we illustrated the use of substructures to express the depen-
dence of one abstraction on another. In this chapter we will consider the
problem of symmetric combination of modules to form larger modules.

22.1 Combining Abstractions

The discussion will be based on a representation of geometry in ML based
on the following (drastically simplified) signature.

signature GEOMETRY =

sig

structure Point : POINT

structure Sphere : SPHERE

end

For the purposes of this example, we have reduced geometry to two con-
cepts, that of a point in space and that of a sphere.

Points and vectors are fundamental to representing geometry. They are
described by the following (abbreviated) signatures:

signature VECTOR =

sig

type vector

val zero : vector

val scale : real * vector -> vector

175

22.1 Combining Abstractions 176

val add : vector * vector -> vector

val dot : vector * vector -> real

end

signature POINT =

sig

structure Vector : VECTOR

type point

(* move a point along a vector *)

val translate : point * Vector.vector -> point

(* the vector from a to b *)

val ray : point * point -> Vector.vector

end

The vector operations support addition, scalar multiplication, and inner
product, and include a unit element for addition. The point operations
support translation of a point along a vector and the creation of a vector as
the “difference” of two points (i.e., the vector from the first to the second).

Spheres are implemented by a module implementing the following
(abbreviated) signature:

signature SPHERE =

sig

structure Vector : VECTOR

structure Point : POINT

type sphere

val sphere : Point.point * Vector.vector -> sphere

end

The operation sphere creates a sphere centered at a given point and with
the radius vector given.

These signatures are intentionally designed so that the dimension of
the space is not part of the specification. This allows us — using the mech-
anisms to be introduced in chapter 23 — to build packages that work in
an arbitrary dimension without requiring run-time conformance checks.
It is the structures, and not the signatures, that specify the dimension.
Two- and three-dimensional geometry are defined by structure bindings
like these:

structure Geom2D :> GEOMETRY = ...

structure Geom3D :> GEOMETRY = ...

APRIL 23, 2007 WORKING DRAFT

22.1 Combining Abstractions 177

As a consequence of the use of opaque ascription, the types Geom2D.Point.point
and Geom3D.Point.point are distinct. This means that dimensional con-
formance is enforced by the type checker. For example, we cannot apply
Geom3D.Sphere.sphere to a point in two-space and a vector in three-space.

This is a good thing: the more static checking we have, the better off
we are. Closer inspection reveals that, unfortunately, we have too much
of a good thing. Suppose that p and q are two-dimensional points of type
Geom2D.Point.point. We might expect to be able to form a sphere cen-
tered at p with radius determined by the vector from p to q:

Geom2D.Sphere.sphere (p, Geom2D.Point.ray (p, q)).

But this expression is ill-typed! The reason is that the types Geom2D.Point.Vector
and Geom2D.Sphere.Vector.vector are also distinct from one another, which
is not at all what we intend.

What has gone wrong? The situation is quite subtle. In keeping with
the guidelines discussed in section 21.1, we have incorporated as substruc-
tures the structures on which a given structure depends. For example,
forming a ray from one point to another yields a vector, so an implemen-
tation of POINT depends on an implementation of VECTOR. Thus, POINT has
a substructure implementing VECTOR, and, similarly, SPHERE has substruc-
tures implementing VECTOR and POINT.

This leads to a proliferation of structures. Even in the very simpli-
fied geometry signature given above, we have two “copies” of the point
abstraction, and three “copies” of the vector abstraction! Since we used
opaque ascription to define the two- and three-dimensional implementa-
tions of the signature GEOMETRY, all of these abstractions are kept distinct
from one another, even though they may be implemented identically.

In a sense this is the correct state of affairs. The various “copies” of,
say, the vector abstraction might well be distinct from one another. In
the elided implementation of two-dimensional geometry, we might have
used completely incompatible notions of vector in each of the three places
where they are required. Of course, this may not be what is intended, but
(so far) there is nothing in the signature to prevent it. Hence, we are compelled
to keep these types distinct.

What is missing is the expression of the intention that the various “copies”
of vectors and points within the geometry abstraction be identical, so that
we can mix-and-match the vectors constructed in various components of

APRIL 23, 2007 WORKING DRAFT

22.1 Combining Abstractions 178

the package. To support this it is necessary to constrain the implementa-
tion to use the same notion of vector throughout. This is achieved using
a type sharing constraint. The revised signatures for the geometry package
look like this:

signature SPHERE =

sig

structure Vector : VECTOR

structure Point : POINT

sharing type Point.Vector.vector = Vector.vector

type sphere

val sphere : Point.point * Vector.vector -> sphere

end

signature GEOMETRY =

sig

structure Point : POINT

structure Sphere : SPHERE

sharing type Point.point = Sphere.Point.point

and Point.Vector.vector = Sphere.Vector.vector

end

These equations specify that the two “copies” of the point abstraction, and
the three “copies” of the vector abstraction must coincide. In the presence
of the above sharing specification, the ill-typed expression above becomes
well-typed, since now the required type equation holds by explicit speci-
fication in the signature.

As a notational convenience we may use a structure sharing constraint
instead to express the same requirements:

signature SPHERE =

sig

structure Vector : VECTOR

structure Point : POINT

sharing Point.Vector = Vector

type sphere

val sphere : Point.point * Vector.vector -> sphere

end

signature GEOMETRY =

sig

APRIL 23, 2007 WORKING DRAFT

22.1 Combining Abstractions 179

structure Point : POINT

structure Sphere : SPHERE

sharing Point = Sphere.Point

and Point.Vector = Sphere.Vector

end

Rather than specify the required sharing type-by-type, we can instead
specify it structure-by-structure, with the meaning that corresponding types
of shared structures are required to share. Since each structure in our ex-
ample contains only one type, the effect of the structure sharing specifica-
tion above is identical to the preceding type sharing specification.

Not only does the sharing specification ensure that the desired equa-
tions hold amongst the various components of an implementation of GEOMETRY,
but it also constrains the implementation to ensure that these types are the
same. It is easy to achieve this requirement by defining a single implemen-
tation of points and vectors that is re-used in the higher-level abstractions.

structure Vector3D : VECTOR = ...

structure Point3D : POINT =

struct

structure Vector : VECTOR = Vector3D
...

end

structure Sphere3D : SPHERE =

struct

structure Vector : VECTOR = Vector3D

structure Point : POINT = Point3D
...

end

structure Geom3D :> GEOMETRY =

struct

structure Point = Point3D

structure Sphere = Sphere3D

end

The required type sharing constraints are true by construction.
Had we instead replaced the above declaration of Geom3D by the fol-

lowing one, the type checker would reject it on the grounds that the re-

APRIL 23, 2007 WORKING DRAFT

22.1 Combining Abstractions 180

quired sharing between Sphere.Point and Point does not hold, because
Sphere2D.Point is distinct from Point3D.

structure Geom3D :> GEOMETRY =

struct

structure Point = Point3D

structure Sphere = Sphere2D

end

It is natural to wonder whether it might be possible to restructure the
GEOMETRY signature so that the duplication of the point and vector com-
ponents is avoided, thereby obviating the need for sharing specifications.
One can re-structure the code in this manner, but doing so would do vio-
lence to the overall structure of the program. This is why sharing specifi-
cations are so important.

Let’s try to re-organize the signature GEOMETRY so that duplication of
the point and vector structures is avoided. One step is to eliminate the sub-
structure Vector from SPHERE, replacing uses of Vector.vector by Vector.Point.vector.

signature SPHERE =

sig

structure Point : POINT

type sphere

val sphere :

Point.point * Point.Vector.vector -> sphere

end

After all, since the structure Point comes equipped with a notion of vector,
why not use it?

This cuts down the number of sharing specifications to one:

signature GEOMETRY =

sig

structure Point : POINT

structure Sphere : SPHERE

sharing Point = Sphere.Point

end

If we could further eliminate the substructure Point from the signature
SPHERE we would have only one copy of Point and no need for a sharing
specification.

APRIL 23, 2007 WORKING DRAFT

22.1 Combining Abstractions 181

But what would the signature SPHERE look like in this case?

signature SPHERE =

sig

type sphere

val sphere :

Point.point * Point.Vector.vector -> sphere

end

The problem now is that the signature SPHERE is no longer self-contained.
It makes reference to a structure Point, but which Point are we talking
about? Any commitment would tie the signature to a specific structure,
and hence a specific dimension, contrary to our intentions. Rather, the
notion of point must be a generic concept within SPHERE, and hence Point

must appear as a substructure. The substructure Point may be thought of
as a parameter of the signature SPHERE in the sense discussed earlier.

The only other move available to us is to eliminate the structure Point

from the signature GEOMETRY. This is indeed possible, and would eliminate
the need for any sharing specifications. But it only defers the problem,
rather than solving it. A full-scale geometry package would contain more
abstractions that involve points, so that there will still be copies in the
other abstractions. Sharing specifications would then be required to en-
sure that these copies are, in fact, identical.

Here is an example. Let us introduce another geometric abstraction,
the semi-space.

signature SEMI SPACE =

sig

structure Point : POINT

type semispace

val side : Point.point * semispace -> bool option

end

The function side determines (if possible) whether a given point lies in
one half of the semi-space or the other.

The expanded GEOMETRY signature would look like this (with the elim-
ination of the Point structure in place).

signature EXTD GEOMETRY =

sig

APRIL 23, 2007 WORKING DRAFT

22.2 Sample Code 182

structure Sphere : SPHERE

structure SemiSpace : SEMI SPACE

sharing Sphere.Point = SemiSpace.Point

end

By an argument similar to the one we gave for the signature SPHERE, we
cannot eliminate the substructure Point from the signature SEMI SPACE,
and hence we wind up with two copies. Therefore the sharing specifica-
tion is required.

What is at issue here is a fundamental tension in the very notion of
modular programming. On the one hand we wish to separate modules
from one another so that they may be treated independently. This re-
quires that the signatures of these modules be self-contained. Unbound
references to a structure — such as Point — ties that signature to a spe-
cific implementation, in violation of our desire to treat modules separately
from one another. On the other hand we wish to combine modules together
to form programs. Doing so requires that the composition be coherent,
which is achieved by the use of sharing specifications. What sharing spec-
ifications do for you is to provide an after the fact means of tying together
several different abstractions to form a coherent whole. This approach to
the problem of coherence is a unique — and uniquely effective — feature
of the ML module system.

22.2 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/sharing.sml

Chapter 23

Parameterization

To support code re-use it is useful to define generic, or parameterized, mod-
ules that leave unspecified some aspects of the implementation of a mod-
ule. The unspecified parts may be instantiated to determine specific in-
stances of the module. The common part is thereby implemented once and
shared among all instances.

In ML such generic modules are called functors. A functor is a module-
level function that takes a structure as argument and yields a structure
as result. Instances are created by applying the functor to an argument
specifying the interpretation of the parameters.

23.1 Functor Bindings and Applications

Functors are defined using a functor binding. There are two forms, the
opaque and the transparent. A transparent functor has the form

functor funid(decs):sigexp = strexp

where the result signature, sigexp, is transparently ascribed; an opaque func-
tor has the form

functor funid(decs):>sigexp = strexp

where the result signature is opaquely ascribed. A functor is a module-
level function whose argument is a sequence of declarations, and whose
result is a structure.

183

23.1 Functor Bindings and Applications 184

Type checking of a functor consists of checking that the functor body
matches the ascribed result signature, given that the parameters of the
functor have the specified signatures. For a transparent functor the re-
sult signature is the augmented signature determined by matching the
principal signature of the body (relative to the assumptions governing the
parameters) against the given result signature. For opaque functors the
ascribed result signature is used as-is, without further augmentation by
type equations.

In chapter 21 we developed a modular implementation of dictionaries
in which the ordering of keys is made explicit as a substructure. The im-
plementation of dictionaries is the same for each choice of order structure
on the keys. This can be expressed by a single functor binding that defines
the implementation of dictionaries parametrically in the choice of keys.

functor DictFun

(structure K : ORDERED) :>

DICT where type Key.t = K.t =

struct

structure Key : ORDERED = K

datatype ’a dict =

Empty |

Node of ’a dict * Key.t * ’a * ’a dict

val empty = Empty

fun insert (None, k, v) =

Node (Empty, k, v, Empty)

fun lookup (Empty,) = NONE

| lookup (Node (dl, l, v, dr), k) =

if Key.lt(k, l) then

lookup (dl, k)

else if Key.lt (l, k) then

lookup (dr, k)

else

v

end

The functor DictFun takes as argument a single structure specifiying the
ordered key type as a structure implementing signature ORDERED. The opaquely
ascribed result signature is

APRIL 23, 2007 WORKING DRAFT

23.1 Functor Bindings and Applications 185

DICT where type Key.t = K.t.

This signature holds the type ’a dict abstract, but specifies that the key
type is the type K.t passed as argument to the functor. The body of the
functor has been written so that the comparison operations are obtained
from the Key substructure. This ensures that the dictionary code is inde-
pendent of the choice of key type and ordering.

Instances of functors are obtained by application. A functor application
has the form

funid(binds)

where binds is a sequence of bindings of the arguments of the functor.
The signature of a functor application is determined by the following

procedure. We assume we are given the signatures of the functor param-
eters, and also the “true” result signature of the functor (the given sig-
nature for opaque functors, the augmented signature for the transparent
functors).

1. For each argument, match the argument signature against the cor-
responding parameter signature of the functor. This determines an
augmentation of the parameter signature for each argument (as de-
scribed in chapter 20).

2. For each reference to a type component of a functor parameter in
the result signature, propagate the type definitions of the augmented
parameter signature to the result signature.

The signature of the application determined by this procedure is then
opaquely ascribed to the application. This means that if a type is left abstract
in the result signature of a functor, that type is “new” in every instance of
that functor. This behavior is called generativity of the functor.1

Returning to the example of the dictionary functor, the three versions of
dictionaries considered in chapter 21 may be obtained by applying DictFun

to appropriate arguments.

structure LtIntDict = DictFun (structure K = LessInt)

structure LexStringDict = DictFun (structure K = LexString)

structure DivIntDict = DictFun (structure K = DivInt)

1The alternative, called applicativity, means that there is one abstract type shared by all
instances of that functor.

APRIL 23, 2007 WORKING DRAFT

23.2 Functors and Sharing Specifications 186

In each case the functor DictFun is instantiated by specifying a binding for
its argument stucture K. The argument structures are, as described in chap-
ter 21, implementations of the signature ORDERED. They specify the type of
keys and the sense in which they are ordered.

The signatures for the structures LtIntDict, LexStringDict, and DivIntDict

are determined by instantiating the result signature of the functor DictFun
according to the above procedure. Consider the application of DictFun to
LtIntDict. The augmented signature resulting from matching the signa-
ture of LtIntDict against the parameter signature ORDERED is the signature

ORDERED where type t=int

Assigning this to the parameter K, we deduce that the type K.t is equiva-
lent to int, and hence the result signature of DictFun is

DICT where type Key.t = int

so that IntLtDict.Key.t is equivalent to int, as desired. By a similar pro-
cess we deduce that the signature of LexStringDict is

DICT where type Key.t = string

and that the signature of DivIntDict is

DICT where type Key.t = int.

23.2 Functors and Sharing Specifications

In chapter 22 we developed a signature of geometric primitives that con-
tained sharing specifications to ensure that the constituent abstractions
may be combined properly. The signature GEOMETRY is defined as follows:

signature GEOMETRY =

sig

structure Point : POINT

structure Sphere : SPHERE

sharing Point = Sphere.Point

and Point.Vector = Sphere.Vector

and Sphere.Vector = Sphere.Point.Vector

end

APRIL 23, 2007 WORKING DRAFT

23.2 Functors and Sharing Specifications 187

The sharing clauses ensure that the Point and Sphere components are
compatible with each other.

Since we expect to define vectors, points, and spheres of various di-
mensions, it makes sense to implement these as functors, according to the
following scheme:

functor PointFun

(structure V : VECTOR) : POINT = ...

functor SphereFun

(structure V : VECTOR

structure P : POINT) : SPHERE =

struct

structure Vector = V

structure Point = P
...

end

functor GeomFun

(structure P : POINT

structure S : SPHERE) : GEOMETRY =

struct

structure Point = P

structure Sphere = S

end

A two-dimensional geometry package may then be defined as follows:

structure Vector2D : VECTOR = ...

structure Point2D : POINT =

PointFun (structure V = Vector2D)

structure Sphere2D : SPHERE =

SphereFun (structure V = Vector2D and P = Point2D)

structure Geom2D : GEOMETRY =

GeomFun (structure P = Point2D and S = Sphere2D)

A three-dimensional version is defined similarly.
There is only one problem: the functors SphereFun and GeomFun are

not well-typed! The reason is that in both cases their result signatures
require type equations that are not true of their parameters! For example,

APRIL 23, 2007 WORKING DRAFT

23.3 Avoiding Sharing Specifications 188

the signature SPHERE requires that Point.Vector be the same as Vector,
which is not satisfied by the body of SphereFun. For these to be true, the
structures P.Vector and V must be equivalent. This is not true in general,
because the functors might be applied to arguments for which this is false.
Similar problems plague the functor GeomFun. The solution is to include
sharing constraints in the parameter list of the functors, as follows:

functor SphereFun

(structure V : VECTOR

structure P : POINT

sharing P.Vector = V) : SPHERE =

struct

structure Vector = V

structure Point = P
...

end

functor GeomFun

(structure P : POINT

structure S : SPHERE

sharing P.Vector = S.Vector and P = S.Point) : GEOMETRY =

struct

structure Point = P

structure Sphere = S

end

These equations preclude instantiations for which the required equations
do not hold, and are sufficient to ensure that the requirements of the result
signatures of the functors are met.

23.3 Avoiding Sharing Specifications

As with sharing specifications in signatures, it is natural to wonder whether
they can be avoided in functor parameters. Once again, the answer is
“yes”, but doing so does violence to the structure of your program. The
chief virtue of sharing specifications is that they express directly and con-
cisely the required relationships without requiring that these relationships
be anticipated when defining the signatures of the parameters. This greatly

APRIL 23, 2007 WORKING DRAFT

23.3 Avoiding Sharing Specifications 189

facilitates re-use of off-the-shelf code, for which it is impossible to assume
any sharing relationships that one may wish to impose in an application.

To see what happens, let’s consider the best-case scenario from chap-
ter 22 in which we have minimized sharing specifications to one tying to-
gether the sphere and semispace components. That is, we’re to implement
the following signature:

signature EXTD GEOMETRY =

sig

structure Sphere : SPHERE

structure SemiSpace : SEMI SPACE

sharing Sphere.Point = SemiSpace.Point

end

The implementation is a functor of the form

functor ExtdGeomFun

(structure Sp : SPHERE

structure Ss : SEMI SPACE

sharing Sphere.Point = SemiSpace.Point) =

struct

structure Sphere = Sp

structure SemiSpace = Ss

end

To eliminate the sharing equation in the functor parameter, we must
arrange that the sharing equation in the signature EXTD GEOMETRY holds.
Simply dropping the sharing specification will not do, because then there
is no reason to believe that it will hold as required in the signature. A
natural move is to “factor out” the implementation of POINT, and use it to
ensure that the required equation is true of the functor body. There are
two methods for doing this, each with disadvtanges compared to the use
of sharing specifications.

One is to make the desired equation true by construction. Rather than
take implementations of SPHERE and SEMI SPACE as arguments, the functor
ExtdGeomFun takes only an implementation of POINT, then creates in the
functor body appropriate implementations of spheres and semi-spaces.

functor SphereFun

(structure P : POINT) : SPHERE =

APRIL 23, 2007 WORKING DRAFT

23.3 Avoiding Sharing Specifications 190

struct

structure Vector = P.Vector

structure Point = P
...

end

functor SemiSpaceFun

(structure P : POINT) : SEMI SPACE =

struct
...

end

functor ExtdGeomFun1

(structure P : POINT) : GEOMETRY =

struct

structure Sphere =

SphereFun (structure P = Point)

structure SemiSpace =

SemiSpaceFun (structure P = Point)

end

The problems with this solution are these:

• The body of ExtdGeomFun1 makes use of the functors SphereFun and
SemiSpaceFun. In effect we are limiting the geometry functor to argu-
ments that are built from these specific functors, and no other. This is
a significant loss of generality that is otherwise present in the func-
tor ExtdGeomFun, which may be applied to any implementations of
SPHERE and SEMI SPACE.

• The functor ExtdGeomFun1 must have as parameter the common el-
ement(s) of the components of its body, which is then used to build
up the appropriate substructures in a manner consistent with the re-
quired sharing. This approach does not scale well when many ab-
stractions are layered atop one another. We must reconstruct the
entire hierarchy, starting with the components that are conceptually
“furthest away” as arguments.

• There is no inherent reason why ExtdGeomFun1 must take an imple-
mentation of POINT as argument. It does so only so that it can recon-

APRIL 23, 2007 WORKING DRAFT

23.3 Avoiding Sharing Specifications 191

struct the hierarchy so as to satisfy the sharing requirements of the
result signature.

Another approach is to factor out the common component, and use
this to constrain the arguments to the functor to ensure that the possible
arguments are limited to situations for which the required sharing holds.

functor ExtdGeomFun2

(structure P : POINT

structure Sp : SPHERE where Point = P

structure Ss : SEMI SPACE where Point = P) =

struct

structure Sphere = Sp

structure SemiSpace = Ss

end

Now the required sharing requirements are met, but it is also clear that
this approach has no particular advantages over just using a sharing spec-
ification. It has the disadvantage of requiring a third argument, whose
only role is to make it possible to express the required sharing. An appli-
cation of this functor must provide not only implementations of SPHERE
and SEMI SPACE, but also an implementation of POINT that is used to build
these!

A slightly more sophisticated version of this solution is as follows:

functor ExtdGeomFun3

(structure Sp : SPHERE

structure Ss : SEMI SPACE where Point = Sp.Point) =

struct

structure Sphere = Sp

structure SemiSpace = Ss

end

The “extra” parameter to the functor has been eliminated by choosing one
of the components as a “representative” and insisting that the others be
compatible with it by using a where clause.2

2Officially, we must write where type Point.point = Sp.Point.point, but many
compilers accept the syntax above.

APRIL 23, 2007 WORKING DRAFT

23.4 Sample Code 192

This solution has all of the advantages of the direct use of sharing speci-
fications, and no further disadvantages. However, we are forced to violate
arbitrarily the inherent symmetry of the situation. We could just as well
have written

functor ExtdGeomFun4

(structure Ss : SEMI SPACE

structure Sp : SPHERE where Point = Sp.Point) =

struct

structure Sphere = Sp

structure SemiSpace = Ss

end

without changing the meaning.
Here is the point: sharing specifications allow a symmetric situation to be

treated in a symmetric manner. The compiler breaks the symmetry by choos-
ing representatives arbitrarily in the manner illustrated above. Sharing
specifications off-load the burden of making such tedious (because arbi-
trary) decisions to the compiler, rather than imposing it on the program-
mer.

23.4 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/parameterization.sml

Part IV

Programming Techniques

193

194

In this part of the book we will explore the use of Standard ML to build
elegant, reliable, and efficient programs. The discussion takes the form of
a series of worked examples illustrating various techniques for building
programs.

APRIL 23, 2007 WORKING DRAFT

Chapter 24

Specifications and Correctness

The most important tools for getting programs right are specification and
verification. In this Chapter we review the main ideas in preparation for
their subsequent use in the rest of the book.

24.1 Specifications

A specification is a description of the behavior of a piece of code. Specifica-
tions take many forms:

• Typing. A type specification describes the “form” of the value of an
expression, without saying anything about the value itself.

• Effect Behavior. An effect specification resembles a type specification,
but instead of describing the value of an expression, it describes the
effects it may engender when evaluated.

• Input-Output Behavior. An input-output specification is a mathemat-
ical formula, usually an implication, that describes the output of a
function for all inputs satisfying some assumptions.

• Time and Space Complexity. A complexity specification states the time
or space required to evaluate an expression. The specification is most
often stated asymptotically in terms of the number of execution steps
or the size of a data structure.

195

24.1 Specifications 196

• Equational Specifications. An equational specification states that one
code fragment is equivalent to another. This means that wherever
one is used we may replace it with the other without changing the
observable behavior of any program in which they occur.

This list by no means exhausts the possibilities. What specifications have
in common, however, is a descriptive, or declarative, flavor, rather than a
prescriptive, or operational, one. A specification states what a piece of code
does, not how it does it.

Good programmers use specifications to state precisely and concisely
their intentions when writing a piece of code. The code is written to solve
a problem; the specification records for future reference what problem the
code was intended to solve. The very act of formulating a precise spec-
ification of a piece of code is often the key to finding a good solution to
a tricky problem. The guiding principle is this: if you are unable to write
a clear specification, you do not understand the problem well enough to solve it
correctly.

The greatest difficulty in using specifications is in knowing what to
say. A common misunderstanding is that a given piece of code has one
specification stating all there is to know about it. Rather you should see
a specification as describing one of perhaps many properties of interest.
In ML every program comes with at least one specification, its type. But
we may also consider other specifications, according to interest and need.
Sometimes only relatively weak properties are important — the function
square always yields a non-negative result. Other times stronger proper-
ties are needed — the function fibb applied to n yields the nth and n-1st
Fibonacci number. It’s a matter of taste and experience to know what to
say and how best to say it.

Recall the following two ML functions from chapter 7:

fun fib 0 = 1

| fib 1 = 1

| fib n = fib (n-1) + fib (n-2)

fun fib’ 0 = (1, 0)

| fib’ 1 = (1, 1)

| fib’ n =

let

val (a, b) = fib’ (n-1)

APRIL 23, 2007 WORKING DRAFT

24.2 Correctness Proofs 197

in

(a+b, a)

end

Here are some specifications pertaining to these functions:

• Type specifications:

– val fib : int -> int

– val fib’ : int -> int * int

• Effect specifications:

– The application fib n may raise the exception Overflow.

– The application fib’ n may raise the exception Overflow.

• Input-output specifications:

– If n ≥ 0, then fib n evaluates to the nth Fibonacci number.

– If n ≥ 0, then fib’ n evaluates the nth and n − 1st Fibonacci
number, in that order.

• Time complexity specifications:

– If n ≥ 0, then fib n terminates in O(2n) steps.

– If n ≥ 0, then fib’ n terminates in O(n) steps.

• Equivalence specification:

For all n ≥ 0, fib n is equivalent to #1(fib’ n)

24.2 Correctness Proofs

A program satisfies, or meets, a specification iff its execution behavior is
as described by the specification. Verification is the process of checking
that a program satisfies a specification. This takes the form of proving a
mathematical theorem (by hand or with machine assistance) stating that
the program implements a specification.

APRIL 23, 2007 WORKING DRAFT

24.2 Correctness Proofs 198

There are many misunderstandings in the literature about specification
and verification. It is worthwhile to take time out to address some of them
here.

It is often said that a program is correct if it meets a specification. The
verification of this fact is then called a correctness proof. While there is noth-
ing wrong with this usage, it invites misinterpretation. As we remarked
in section 24.1, there is in general no single preferred specification of a
piece of code. Verification is always relative to a specification, and hence
so is correctness. In particular, a program can be “correct” with respect to
one specification, and “incorrect” with respect to another. Consequently,
a program is never inherently correct or incorrect; it is only so relative to a
particular specification.

A related misunderstanding is the inference that a program “works”
from the fact that it is “correct” in this sense. Specifications usually make
assumptions about the context in which the program is used. If these as-
sumptions are not satisfied, then all bets are off — nothing can be said
about its behavior. For this reason it is entirely possible that a correct pro-
gram will malfunction when used, not because the specification is not met,
but rather because the specification is not relevant to the context in which
the code is used.

Another common misconception about specifications is that they can
always be implemented as run-time checks.1 There are at least two falla-
cies here:

1. The specification is stated at the level of the source code. It may
not even be possible to test it at run-time. See chapter 32 for further
discussion of this point.

2. The specification may not be mechanically checkable. For example,
we might specify that a function f of type int->int always yields a
non-negative result. But there is no way to implement this as a run-
time check — this is an undecidable, or uncomputable, problem.

For this reason specifications are strictly more powerful than run-time
checks. Correspondingly, it takes more work than a mere conditional

1This misconception is encouraged by the C assert macro, which introduces an ex-
ecutable test that a certain computable condition holds. This is a fine thing, but from
this many people draw the conclusion that assertions (specifications) are simply boolean
tests. This is false.

APRIL 23, 2007 WORKING DRAFT

24.2 Correctness Proofs 199

branch to ensure that a program satisfies a specification.
Finally, it is important to note that specification, implementation, and

verification go hand-in-hand. It is unrealistic to propose to verify that an
arbitrary piece of code satisfies an arbitrary specification. Fundamental
computability and complexity results make clear that we can never suc-
ceed in such an endeavor. Fortunately, it is also completely artificial. In
practice we specify, code, and verify simultaneously, with each activity in-
forming the other. If the verification breaks down, re-consider the code
or the specification (or both). If the code is difficult to write, look for in-
sights from the specification and verification. If the specification is com-
plex, rough out the code and proof to see what it should be. There is no
“magic bullet”, but these are some of the most important, and useful, tools
for building elegant, robust programs.

Verifications of specifications take many different forms.

• Type specifications are verified automatically by the ML compiler.
If you put type annotations on a function stating the types of the
parameters or results of that function, the correctness of these anno-
tations is ensured by the compiler. For example, we may state the
intended typing of fib as follows:

fun fib (n:int):int =

case n

of 0 => 1

| 1 => 1

| n => fib (n-1) + fib (n-2)

This ensures that the type of fib is int->int.

• Effect specifications must be checked by hand. These generally state
that a piece of code “may raise” one or more exceptions. If an excep-
tion is not mentioned in such a specification, we cannot conclude that
the code does not raise it, only that we have no information. Notice
that a handler serves to eliminate a “may raise” specification. For ex-
ample, the following function may not raise the exception Overflow,
even though fib might:

fun protected fib n =

(fib n) handle Overflow => 0

APRIL 23, 2007 WORKING DRAFT

24.3 Enforcement and Compliance 200

A handler makes it possible to specify that an exception may not be
raised by a given expression (because the handler traps it).

• Input-output specifications require proof, typically using some form
of induction. For example, in chapter 7 we proved that fib n yields
the nth Fibonacci number by complete induction on n.

• Complexity specifications are often verified by solving a recurrence
describing the execution time of a program. In the case of fib we
may read off the following recurrence:

T(0) = 1
T(1) = 1

T(n + 2) = T(n) + T(n + 1) + 1

Solving this recurrence yields the proof that T(n) = O(2n).

• Equivalence specifications also require proof. Since equivalence of
expressions must account for all possible uses of them, these proofs
are, in general, very tricky. One method that often works is “induc-
tion plus hand-simulation”. For example, it is not hard to prove by
induction on n that fib n is equivalent to #1(fib’ n). First, plug in
n = 0 and n = 1, and calculate using the definitions. Then assume
the result for n and n + 1, and consider n + 2, once again calculating
based on the definitions, to obtain the result.

24.3 Enforcement and Compliance

Most specifications have the form of an implication: if certain conditions
are met, then the program behaves a certain way. For example, type spec-
ifications are conditional on the types of its free variables. For example,
if x has type int, then x+1 has type int. Input-output specifications are
characteristically of this form. For example, if x is non-negative, then so is
x+1.

Just as in ordinary mathematical reasoning, if the premises of such
a specification are not true, then all bets are off — nothing can be said
about the behavior of the code. The premises of the specification are pre-
conditions that must be met in order for the program to behave in the man-
ner described by the conclusion, or post-condition, of the specification. This

APRIL 23, 2007 WORKING DRAFT

24.3 Enforcement and Compliance 201

means that the pre-conditions impose obligations on the caller, the user
of the code, in order for the callee, the code itself, to be well-behaved. A
conditional specification is a contract between the caller and the callee: if
the caller meets the pre-conditions, the caller promises to fulfill the post-
condition.

In the case of type specifications the compiler enforces this obligation
by ruling out as ill-typed any attempt to use a piece of code in a con-
text that does not fulfill its typing assumptions. Returning to the example
above, if one attempts to use the expression x+1 in a context where x is not
an integer, one can hardly expect that x+1 will yield an integer. Therefore
it is rejected by the type checker as a violation of the stated assumptions
governing the types of its free variables.

What about specifications that are not mechanically enforced? For ex-
ample, if x is negative, then we cannot infer anything about x+1 from the
specification given above.2 To make use of the specification in reasoning
about its used in a larger program, it is essential that this pre-condition be
met in the context of its use.

Lacking mechanical enforcement of these obligations, it is all too easy
to neglect them when writing code. Many programming mistakes can be
traced to violation of assumptions made by the callee that are not met by
the caller.3 What can be done about this?

A standard method, called bullet-proofing, is to augment the callee with
run-time checks that ensure that its pre-conditions are met, raising an ex-
ception if they are not. For example, we might write a “bullet-proofed”
version of fib that ensures that its argument is non-negative as follows:

local

exception PreCond

fun unchecked fib 0 = 1

| unchecked fib 1 = 1

| unchecked fib n =

unchecked fib (n-1) + unchecked fib (n-2)

in

2There are obviously other specifications that carry more information, but we’re only
concerned here with the one given. Moreover, if f is an unknown function, then we will,
in general, only have the specification, and not the code, to reason about.

3Sadly, these assumptions are often unstated and can only be culled from the code
with great effort, if at all.

APRIL 23, 2007 WORKING DRAFT

24.3 Enforcement and Compliance 202

fun checked fib n =

if n < 0 then

raise PreCond

else

unchecked fib n

end

It is worth noting that we have structured this program to take the
pre-condition check out of the loop. It would be poor practice to define
checked fib as follows:

fun bad checked fib n =

if n < 0 then

raise PreCond

else

case n

of 0 => 1

| 1 => 1

| n => bad checked fib (n-1) + bad checked fib (n-2)

Once we know that the initial argument is non-negative, it is assured that
recursive calls also satisfy this requirement, provided that you’ve done the
inductive reasoning to validate the specification of the function.

However, bullet-proofing in this form has several drawbacks. First, it
imposes the overhead of checking on all callers, even those that have en-
sured that the desired pre-condition is true. In truth the run-time overhead
is minor; the real overhead is requiring that the implementor of the callee
take the trouble to impose the checks.

Second, and far more importantly, bullet-proofing only applies to speci-
fications that can be checked at run-time. As we remarked earlier, not all
specifications are amenable to run-time checks. For these cases there is
no question of inserting run-time checks to enforce the pre-condition. For
example, we may wish to impose the requirement that a function argu-
ment of type int->int always yields a non-negative result. There is no
run-time check for this condition — we cannot write a function nonneg of
type (int->int)->bool that determines whether or not a function f al-
ways yields a non-negative result. In chapter 32 we will consider the use
of data abstraction to enforce at compile time specifications that may not
be checked at run-time.

APRIL 23, 2007 WORKING DRAFT

Chapter 25

Induction and Recursion

This chapter is concerned with the close relationship between recursionand
induction in programming. If a function is recursively-defined, an induc-
tive proof is required to show that it meets a specification of its behavior.
The motto is

when programming recursively, think inductively.

Doing so significantly reduces the time spent debugging, and often leads
to more efficient, robust, and elegant programs.

25.1 Exponentiation

Let’s start with a very simple series of examples, all involving the compu-
tation of the integer exponential function. Our first example is to compute
2n for integers n ≥ 0. We seek to define the function exp of type int->int

satisfying the specification

if n ≥ 0, then exp n evaluates to 2n.

The precondition, or assumption, is that the argument n is non-negative. The
postcondition, or guarantee, is that the result of applying exp to n is the num-
ber 2n. The caller is required to establish the precondition before applying
exp; in exchange, the caller may assume that the result is 2n.

Here’s the code:

fun exp 0 = 1

| exp n = 2 * exp (n-1)

203

25.1 Exponentiation 204

Does this function satisfy the specification? It does, and we can prove
this by induction on n. If n = 0, then exp n evaluates to 1 (as you can
see from the first line of its definition), which is, of course, 20. Otherwise,
assume that exp is correct for n − 1 ≥ 0, and consider the value of exp
n. From the second line of its definition we can see that this is the value
of 2 × p, where p is the value of exp (n − 1). Inductively, p ≥ 2n−1, so
2 × p = 2 × 2n−1 = 2n, as desired. Notice that we need not consider
arguments n < 0 since the precondition of the specification requires that
this be so. We must, however, ensure that each recursive call satisfies this
requirement in order to apply the inductive hypothesis.

That was pretty simple. Now let us consider the running time of exp
expressed as a function of n. Assuming that arithmetic operations are ex-
ecuted in constant time, then we can read off a recurrence describing its
execution time as follows:

T(0) = O(1)
T(n + 1) = O(1) + T(n)

We are interested in solving a recurrence by finding a closed-form expres-
sion for it. In this case the solution is easily obtained:

T(n) = O(n)

Thus we have a linear time algorithm for computing the integer exponen-
tial function.

What about space? This is a much more subtle issue than time be-
cause it is much more difficult in a high-level language such as ML to see
where the space is used. Based on our earlier discussions of recursion and
iteration we can argue informally that the definition of exp given above
requires space given by the following recurrence:

S(0) = O(1)
S(n + 1) = O(1) + S(n)

The justification is that the implementation requires a constant amount of
storage to record the pending multiplication that must be performed upon
completion of the recursive call.

Solving this simple recurrence yields the equation

S(n) = O(n)

APRIL 23, 2007 WORKING DRAFT

25.1 Exponentiation 205

expressing that exp is also a linear space algorithm for the integer exponen-
tial function.

Can we do better? Yes, on both counts! Here’s how. Rather than count
down by one’s, multiplying by two at each stage, we use successive squar-
ing to achieve logarithmic time and space requirements. The idea is that
if the exponent is even, we square the result of raising 2 to half the given
power; otherwise, we reduce the exponent by one and double the result,
ensuring that the next exponent will be even. Here’s the code:

fun square (n:int) = n*n

fun double (n:int) = n+n

fun fast exp 0 = 1

| fast exp n =

if n mod 2 = 0 then

square (fast exp (n div 2))

else

double (fast exp (n-1))

Its specification is precisely the same as before. Does this code satisfy
the specification? Yes, and we can prove this by using complete induction,
a form of mathematical induction in which we may prove that n > 0 has
a desired property by assuming not only that the predecessor has it, but
that all preceding numbers have it, and arguing that therefore n must have
it. Here’s how it’s done. For n = 0 the argument is exactly as before.
Suppose, then, that n > 0. If nis even, the value of exp n is the result
of squaring the value of exp (n ÷ 2). Inductively this value is 2(n÷2), so
squaring it yields 2(ndiv2) × 2(n÷2) = 22×(n÷2) = 2n, as required. If, on
the other hand, n is odd, the value is the result of doubling exp (n − 1).
Inductively the latter value is 2(n−1), so doubling it yields 2n, as required.

Here’s a recurrence governing the running time of fast exp as a func-
tion of its argument:

T(0) = O(1)
T(2n) = O(1) + T(n)

T(2n + 1) = O(1) + T(2n)
= O(1) + T(n)

Solving this recurrence using standard techniques yields the solution

T(n) = O(lgn)

APRIL 23, 2007 WORKING DRAFT

25.1 Exponentiation 206

You should convince yourself that fast exp also requires logarithmic space
usage.

Can we do better? Well, it’s not possible to improve the time require-
ment (at least not asymptotically), but we can reduce the space required to
O(1) by putting the function into iterative (tail recursive) form. However,
this may not be achieved in this case by simply adding an accumulator ar-
gument, without also increasing the running time! The obvious approach
is to attempt to satisfy the specification

if n ≥ 0, then skinny fast exp (n, a) evaluates to 2n × a.

Here’s some code that achieves this specification:

fun skinny fast exp (0, a) = a

| skinny fast exp (n, a) =

if n mod 2 = 0 then

skinny fast exp (n div 2,

skinny fast exp (n div 2, a))

else

skinny fast exp (n-1, 2*a)

It is easy to see that this code works properly for n = 0 and for n > 0
when n is odd, but what if n > 0 is even? Then by induction we compute
2(n÷2) × 2(n÷2)× a by two recursive calls to skinny fast exp.

This yields the desired result, but what is the running time? Here’s a
recurrence to describe its running time as a function of n:

T(0) = 1
T(2n) = O(1) + 2T(n)

T(2n + 1) = O(1) + T(2n)
= O(1) + 2T(n)

Here again we have a standard recurrence whose solution is

T(n) = O(nlgn).

Yuck! Can we do better? The key is to recall the following important fact:

2(2n) = (22)n = 4n.

We can achieve a logarithmic time and exponential space bound by a
change of base. Here’s the specification:

APRIL 23, 2007 WORKING DRAFT

25.1 Exponentiation 207

if n ≥ 0, then gen skinny fast exp (b, n, a) evaluates to bn ×
a.

Here’s the code:

fun gen skinny fast exp (b, 0, a) = a

| gen skinny fast exp (b, n, a) =

if n mod 2 = 0 then

gen skinny fast exp (b*b, n div 2, a)

else

gen skinny fast exp (b, n - 1, b * a)

Let’s check its correctness by complete induction on n. The base case
is obvious. Assume the specification for arguments smaller than n > 0.
If n is even, then by induction the result is (b × b)(n÷2) × a = bn × a, and
if n is odd, we obtain inductively the result b(n−1) × b × a = bn × a. This
completes the proof.

The trick to achieving an efficient implementation of the exponential
function was to compute a more general function that can be implemented
using less time and space. Since this is a trick employed by the implemen-
tor of the exponential function, it is important to insulate the client from
it. This is easily achieved by using a local declaration to “hide” the gen-
eralized function, making available to the caller a function satisfying the
original specification. Here’s what the code looks like in this case:

local

fun gen skinny fast exp (b, 0, a) =

| gen skinny fast exp (b, n, a) = ...

in

fun exp n = gen skinny fast exp (2, n, 1)

end

(The ellided code is the same as above.) The point here is to see how
induction and recursion go hand-in-hand, and how we used induction
not only to verify programs after-the-fact, but, more importantly, to help
discover the program in the first place. If the verification is performed
simultaneously with the coding, it is far more likely that the proof will go
through and the program will work the first time you run it.

It is important to notice the correspondence between strengthening
the specification by adding additional assumptions (and guarantees) and

APRIL 23, 2007 WORKING DRAFT

25.2 The GCD Algorithm 208

adding accumulator arguments. What we observe is the apparent para-
dox that it is often easier to do something (superficially) harder! In terms
of proving, it is often easier to push through an inductive argument for a
stronger specification, precisely because we get to assume the result as the
inductive hypothesis when arguing the inductive step(s). We are limited
only by the requirement that the specification be proved outright at the
base case(s); no inductive assumption is available to help us along here. In
terms of programming, it is often easier to compute a more complicated
function involving accumulator arguments, precisely because we get to
exploit the accumulator when making recursive calls. We are limited only
by the requirement that the result be defined outright for the base case(s);
no recursive calls are available to help us along here.

25.2 The GCD Algorithm

Let’s consider a more complicated example, the computation of the great-
est common divisor of a pair of non-negative integers. Recall that m is
a divisor of n, written m|n, iff n is a multiple of m, which is to say that
there is some k ≥ 0 such that n = k × m. The greatest common divisor of
non-negative integers m and n is the largest p such that p|m and p|n. (By
convention the g.c.d. of 0 and 0 is taken to be 0.) Here’s the specification
of the gcdfunction:

if m, n ≥ 0, then gcd(m,n) evaluates to the g.c.d. of m and n.

Euclid’s algorithm for computing the g.c.d. of m andn is defined by
complete induction on the product mn. Here’s the algorithm, written in
ML:

fun gcd (m:int, 0):int = m

| gcd (0, n:int):int = n

| gcd (m:int, n:int):int =

if m>n then

gcd (m mod n, n)

else

gcd (m, n mod m)

Why is this algorithm correct? We may prove that gcd satisfies the
specification by complete induction on the product m× n. If m× n is zero,

APRIL 23, 2007 WORKING DRAFT

25.2 The GCD Algorithm 209

then either mor n is zero, in which case the answer is, correctly, the other
number. Otherwise the product is positive, and we proceed according to
whether m > n or m ≤ n. Suppose that m > n. Observe that mmodn =
m − (m ÷ n) × n, so that (mmodn) × n = m × n − (m ÷ n)n2 < m × n,
so that by induction we return the g.c.d. of mmodn and n. It remains to
show that this is the g.c.d. of m and n. If d divides both mmodn and n,
then k × d = (mmodn) = (m − (m ÷ n)× n)and l × d = n for some non-
negative k and l. Consequently, k × d = m − (m ÷ n) × l × d, so m =
(k + (m ÷ n) × l) × d, which is to say that d divides m. Now if d’ is any
other divisor of m and n, then it is also a divisor of (mmodn) and n, so
d > d′. That is, d is the g.c.d. of m and n. The other case, m ≤ n, follows
similarly. This completes the proof.

At this point you may well be thinking that all this inductive reasoning
is surely helpful, but it’s no replacement for good old-fashioned “bullet-
proofing” — conditional tests inserted at critical junctures to ensure that
key invariants do indeed hold at execution time. Sure, you may be think-
ing, these checks have a run-time cost, but they can be turned off once
the code is in production, and anyway the cost is minimal compared to,
say, the time required to read and write from disk. It’s hard to complain
about this attitude, provided that sufficiently cheap checks can be put into
place and provided that you know where to put them to maximize their
effectiveness. For example, there’s no use checking i > 0 at the start of the
then clause of a test for i > 0. Barring compiler bugs, it can’t possibly be
anything other than the case at that point in the program. Or it may be
possible to insert a check whose computation is more expensive (or more
complicated) than the one we’re trying to perform, in which case we’re
defeating the purpose by including them!

This raises the question of where should we put such checks, and what
checks should be included to help ensure the correct operation (or, at least,
graceful malfunction) of our programs? This is an instance of the general
problem of writing self-checking programs. We’ll illustrate the idea by elab-
orating on the g.c.d. example a bit further. Suppose we wish to write a
self-checking g.c.d. algorithm that computes the g.c.d., and then checks
the result to ensure that it really is the greatest common divisor of the two
given non-negative integers before returning it as result. The code might
look something like this:

exception GCD ERROR

APRIL 23, 2007 WORKING DRAFT

25.2 The GCD Algorithm 210

fun checked gcd (m, n) =

let

val d = gcd (m, n)

in

if m mod d = 0 andalso

n mod d = 0 andalso ???

then

d

else

raise GCD ERROR

end

It’s obviously no problem to check that putative g.c.d., d, is in fact a com-
mon divisor of mand n, but how do we check that it’s the greatest common
divisor? Well, one choice is to simply try all numbers between d and the
smaller of m and n to ensure that no intervening number is also a divi-
sor, refuting the maximality of d. But this is clearly so inefficient as to be
impractical. But there’s a better way, which, it has to be emphasized, re-
lies on the kind of mathematical reasoning we’ve been considering right
along. Here’s an important fact:

d is the g.c.d. of m and n iff d divides both m and n and can be written
as a linear combination of m and n.

That is, d is the g.c.d. of mand n iff m = k× d for some k ≥ 0, n = l × d for
some l ≥ 0, and d = a×m + b× n for some integers (possibly negative!)
a and b. We’ll prove this constructively by giving a program to compute
not only the g.c.d. d of m and n, but also the coefficients a and b such that
d = a×m + b× n. Here’s the specification:

if m, n ≥ 0, then ggcd (m, n) evaluates to (d, a, b) such that
d divides m, d divides n, and d = a×m + b× n; consequently, d is
the g.c.d. of m and n.

And here’s the code to compute it:

fun ggcd (0, n) = (n, 0, 1)

| ggcd (m, 0) = (m, 1, 0)

| ggcd (m, n) =

if m>n then

APRIL 23, 2007 WORKING DRAFT

25.2 The GCD Algorithm 211

let

val (d, a, b) = ggcd (m mod n, n)

in

(d, a, b - a * (m div n))

end

else

let

val (d, a, b) = ggcd (m, n mod m)

in

(d, a - b*(n div m), b)

end

We may easily check that this code satisfies the specification by induction
on the product m× n. If m× n = 0, then either m or n is 0, in which case
the result follows immediately. Otherwise assume the result for smaller
products, and show it for m × n > 0. Suppose m > n; the other case
is handled analogously. Inductively we obtain d, a, and b such that d is
the g.c.d. of mmodn and n, and hence is the g.c.d. of m and n, and d =
a × (mmodn) + b × n. Since mmodn = m − (m ÷ n) × n, it follows that
d = a×m + (b− a× (m÷ n))× n, from which the result follows.

Now we can write a self-checking g.c.d. as follows:

exception GCD ERROR

fun checked gcd (m, n) =

let

val (d, a, b) = ggcd (m, n)

in

if m mod d = 0 andalso

n mod d = 0 andalso d = a*m+b*n

then

d

else

raise GCD ERROR

end

This algorithm takes no more time (asymptotically) than the original, and,
moreover, ensures that the result is correct. This illustrates the power of
the interplay between mathematical reasoning methods such as induction
and number theory and programming methods such as bulletproofing to
achieve robust, reliable, and, what is more important, elegant programs.

APRIL 23, 2007 WORKING DRAFT

25.3 Sample Code 212

25.3 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/recind.sml

Chapter 26

Structural Induction

The importance of induction and recursion are not limited to functions
defined over the integers. Rather, the familiar concept of mathematical in-
duction over the natural numbers is an instance of the more general notion
of structural induction over values of an inductively-defined type. Rather than
develop a general treatment of inductively-defined types, we will rely on a
few examples to illustrate the point. Let’s begin by considering the natural
numbers as an inductively defined type.

26.1 Natural Numbers

The set of natural numbers, N, may be thought of as the smallest set con-
taining 0 and closed under the formation of successors. In other words,
n is an element of N iff either n = 0 or n = m + 1 for some min N. Still
another way of saying it is to define N by the following clauses:

1. 0 is an element of N.

2. If m is an element of N, then so is m + 1.

3. Nothing else is an element of N.

(The third clause is sometimes called the extremal clause; it ensures that
we are talking about N and not just some superset of it.) All of these
definitions are equivalent ways of saying the same thing.

213

26.1 Natural Numbers 214

Since N is inductively defined, we may prove properties of the natural
numbers by structural induction, which in this case is just ordinary math-
ematical induction. Specifically, to prove that a property P(n) holds of
every n in N, it suffices to demonstrate the following facts:

1. Show that P(0) holds.

2. Assuming that P(m) holds, show that P(m + 1) holds.

The pattern of reasoning follows exactly the structure of the inductive def-
inition — the base case is handled outright, and the inductive step is han-
dled by assuming the property for the predecessor and show that it holds
for the numbers.

The principal of structural induction also licenses the definition of func-
tions by structural recursion. To define a function f with domain N, it suf-
fices to proceed as follows:

1. Give the value of f (0).

2. Give the value of f (m + 1) in terms of the value of f (m).

Given this information, there is a unique function f with domain N
satisfying these requirements. Specifically, we may show by induction on
n ≥ 0 that the value of f is uniquely determined on all values m ≤ n. If
n = 0, this is obvious since f (0) is defined by the first clause. If n = m + 1,
then by induction the value of f is determined for all values k ≤ m. But the
value of f at n is determined as a function of f (m), and hence is uniquely
determined. Thus f is uniquely determined for all values of n in N, as was
to be shown.

The natural numbers, viewed as an inductively-defined type, may be
represented in ML using a datatype declaration, as follows:

datatype nat = Zero | Succ of nat

The constructors correspond one-for-one with the clauses of the induc-
tive definition. The extremal clause is implicit in the datatype declaration
since the given constructors are assumed to be all the ways of building
values of type nat. This assumption forms the basis for exhaustiveness
checking for clausal function definitions.

(You may object that this definition of the type nat amounts to a unary
(base 1) representation of natural numbers, an unnatural and space-wasting

APRIL 23, 2007 WORKING DRAFT

26.2 Lists 215

representation. This is indeed true; in practice the natural numbers are
represented as non-negative machine integers to avoid excessive over-
head. Note, however, that this representation places a fixed upper bound
on the size of numbers, whereas the unary representation does not. Hy-
brid representations that enjoy the benefits of both are, of course, possible
and occasionally used when enormous numbers are required.)

Functions defined by structural recursion are naturally represented by
clausal function definitions, as in the following example:

fun double Zero = Zero

| double (Succ n) = Succ (Succ (double n))

fun exp Zero = Succ(Zero)

| exp (Succ n) = double (exp n)

The type checker ensures that we have covered all cases, but it does not en-
sure that the pattern of structural recursion is strictly followed — we may
accidentally define f (m + 1) in terms of itself or some f (k) where k > m,
breaking the pattern. The reason this is admitted is that the ML compiler
cannot always follow our reasoning: we may have a clever algorithm in
mind that isn’t easily expressed by a simple structural induction. To avoid
restricting the programmer, the language assumes the best and allows any
form of definition.

Using the principle of structure induction for the natural numbers, we
may prove properties of functions defined over the naturals. For example,
we may easily prove by structural induction over the type nat that for
every n ∈ N, exp n evaluates to a positive number. (In previous chapters
we carried out proofs of more interesting program properties.)

26.2 Lists

Generalizing a bit, we may think of the type ’a list as inductively de-
fined by the following clauses:

1. nil is a value of type ’a list

2. If h is a value of type ’a, and t is a value of type ’a list, then h::t
is a value of type ’a list.

3. Nothing else is a value of type ’a list.

APRIL 23, 2007 WORKING DRAFT

26.3 Trees 216

This definition licenses the following principle of structural induction
over lists. To prove that a property P holds of all lists l, it suffices to pro-
ceed as follows:

1. Show that P holds for nil.

2. Show that P holds for h::t, assuming that P holds for t.

Similarly, we may define functions by structural recursion over lists as
follows:

1. Define the function for nil.

2. Define the function for h::t in terms of its value for t.

The clauses of the inductive definition of lists correspond to the follow-
ing (built-in) datatype declaration in ML:

datatype ’a list = nil | :: of ’a * ’a list

(We are neglecting the fact that :: is regarded as an infix operator.)
The principle of structural recursion may be applied to define the re-

verse function as follows:

fun reverse nil = nil

| reverse (h::t) = reverse t @ [h]

There is one clause for each constructor, and the value of reverse for h::t is
defined in terms of its value for t. (We have ignored questions of time and
space efficiency to avoid obscuring the induction principle underlying the
definition of reverse.)

Using the principle of structural induction over lists, we may prove
that reverse l evaluates to the reversal of l. First, we show that reverse
nil yields nil, as indeed it does and ought to. Second, we assume that
reverse t yields the reversal of t, and argue that reverse (h::t) yields
the reversal of h::t, as indeed it does since it returns reverse (t @ [h]).

26.3 Trees

Generalizing even further, we can introduce new inductively-defined types
such as 2-3 trees in which interior nodes are either binary (have two chil-
dren) or ternary (have three children). Here’s a definition of 2-3 trees in
ML:

APRIL 23, 2007 WORKING DRAFT

26.4 Generalizations and Limitations 217

datatype ’a twth tree =

Empty |

Bin of ’a * ’a twth tree * ’a twth tree |

Ter of ’a * ’a twth tree * ’a twth tree * ’a twth tree

How might one define the “size” of a value of this type? Your first
thought should be to write down a template like the following:

fun size Empty = ???

| size (Bin (, t1, t2)) = ???

| size (Ter (, t1, t2, t3)) = ???

We have one clause per constructor, and will fill in the ellided expressions
to complete the definition. In many cases (including this one) the function
is defined by structural recursion. Here’s the complete definition:

fun size Empty = 0

| size (Bin (, t1, t2)) =

1 + size t1 + size t2

| size (Ter (, t1, t2, t3)) =

1 + size t1 + size t2 + size t3

Obviously this function computes the number of nodes in the tree, as you
can readily verify by structural induction over the type ’a twth tree.

26.4 Generalizations and Limitations

Does this pattern apply to every datatype declaration? Yes and no. No
matter what the form of the declaration it always makes sense to define a
function over it by a clausal function definition with one clause per con-
structor. Such a definition is guaranteed to be exhaustive (cover all cases),
and serves as a valuable guide to structuring your code. (It is especially
valuable if you change the datatype declaration, because then the compiler
will inform you of what clauses need to be added or removed from func-
tions defined over that type in order to restore it to a sensible definition.)
The slogan is:

To define functions over a datatype, use a clausal definition
with one clause per constructor

APRIL 23, 2007 WORKING DRAFT

26.5 Abstracting Induction 218

The catch is that not every datatype declaration supports a principle
of structural induction because it is not always clear what constitutes the
predecessor(s) of a constructed value. For example, the declaration

datatype D = Int of int | Fun of D->D

is problematic because a value of the form Fun(f) is not constructed di-
rectly from another value of type D, and hence it is not clear what to regard
as its predecessor. In practice this sort of definition comes up only rarely;
in most cases datatypes are naturally viewed as inductively defined.

26.5 Abstracting Induction

It is interesting to observe that the pattern of structural recursion may be
directly codified in ML as a higher-order function. Specifically, we may
associate with each inductively-defined type a higher-order function that
takes as arguments values that determine the base case(s) and step case(s)
of the definition, and defines a function by structural induction based on
these arguments. An example will illustrate the point. The pattern of
structural induction over the type nat may be codified by the following
function:

fun nat rec base step =

let

fun loop Zero = base

| loop (Succ n) = step (loop n)

in

loop

end

This function has the type ’a -> (’a -> ’a) -> nat -> ’a.
Given the first two arguments, nat rec yields a function of type nat

-> ’a whose behavior is determined at the base case by the first argument
and at the inductive step by the second. Here’s an example of the use of
nat rec to define the exponential function:

val double =

nat rec Zero (fn result => Succ (Succ result))

val exp =

nat rec (Succ Zero) double

APRIL 23, 2007 WORKING DRAFT

26.5 Abstracting Induction 219

Note well the pattern! The arguments to nat rec are

1. The value for Zero.

2. The value for Succ n defined in terms of its value for n.

Similarly, the pattern of list recursion may be captured by the following
functional:

fun list recursion base step =

let

fun loop nil = base

| loop (h::t) = step (h, loop t)

in

loop

end

The type of the function list recursion is

’a -> (’b * ’a -> ’a) -> ’b list -> ’a

It may be instantiated to define the reverse function as follows:

val reverse = list recursion nil (fn (h, t) => t @ [h])

Finally, the principle of structural recursion for values of type ’a twth tree

is given as follows:

fun twth rec base bin step ter step =

let

fun loop Empty = base

| loop (Bin (v, t1, t2)) =

bin step (v, loop t1, loop t2)

| loop (Ter (v, t1, t2, t3)) =

ter step (v, loop t1, loop t2, loop t3)

in

loop

end

Notice that we have two inductive steps, one for each form of node.
The type of twth rec is

APRIL 23, 2007 WORKING DRAFT

26.6 Sample Code 220

’a -> (’b * ’a * ’a -> ’a) -> (’b * ’a * ’a * ’a -> ’a) -> ’b twth tree -> ’a

We may instantiate it to define the function size as follows:

val size =

twth rec 0

(fn (, s1, s2)) => 1+s1+s2)

(fn (, s1, s2, s3)) => 1+s1+s2+s3)

Summarizing, the principle of structural induction over a recursive
datatype is naturally codified in ML using pattern matching and higher-
order functions. Whenever you’re programming with a datatype, you
should use the techniques outlined in this chapter to structure your code.

26.6 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/strind.sml

Chapter 27

Proof-Directed Debugging

In this chapter we’ll put specification and verification techniques to work
in devising a regular expression matcher. The code is similar to that sketched
in chapter 1, but we will use verification techiques to detect and correct a
subtle error that may not be immediately apparent from inspecting or even
testing the code. We call this process proof-directed debugging.

The first task is to devise a precise specification of the regular expres-
sion matcher. This is a difficult problem in itself. We then attempt to verify
that the matching program developed in chapter 1 satisfies this specifica-
tion. The proof attempt breaks down. Careful examination of the failure
reveals a counterexample to the specification — the program does not sat-
isfy it. We then consider how best to resolve the problem, not by change of
implementation, but instead by change of specification.

27.1 Regular Expressions and Languages

Before we begin work on the matcher, let us first define the set of regu-
lar expressions and their meaning as a set of strings. The set of regular
expressions is given by the following grammar:

r ::= 0 | 1 | a | r1 r2 | r1 + r2 | r∗

Here a ranges over a given alphabet, a set of primitive “letters” that may
be used in a regular expression. A string is a finite sequence of letters of
the alphabet. We write ε for the null string, the empty sequence of letters.
We write s1 s2 for the concatenation of the strings s1 and s2, the string s

221

27.1 Regular Expressions and Languages 222

consisting of the letters in s1 followed by those in s2. The length of a string
is the number of letters in it. We do no distinguish between a character and
the unit-length string consisting solely of that character. Thus we write a s
for the extension of s with the letter a at the front.

A language is a set of strings. Every regular expression r stands for a
particular language L(r), the language of r, which is defined by induction
on the structure of r as follows:

L(0) = 0
L(1) = 1
L(a) = { a }

L(r1 r2) = L(r1) L(r2)
L(r1 + r2) = L(r1) + L(r2)

L(r∗) = L(r)∗

This definition employs the following operations on languages:

0 = ∅
1 = { ε }

L1 + L2 = L1 ∪ L2
L1 L2 = { s1 s2 | s1 ∈ L1, s2 ∈ L2 }

L(0) = 1
L(i+1) = L L(i)

L∗ =
⋃

i≥0 L(i)

An important fact about L∗ is that it is the smallest language L′ such
that 1 + L L′ ⊆ L′. Spelled out, this means two things:

1. 1 + L L∗ ⊆ L∗, which is to say that

(a) ε ∈ L∗, and

(b) if s ∈ L and s′ ∈ L∗, then s s′ ∈ L∗.

2. If 1 + L L′ ⊆ L′, then L∗ ⊆ L′.

This means that L∗ is the smallest language (with respect to language con-
tainment) that contains the null string and is closed under concatenation
on the left by L.

Let’s prove that this is the case. First, since L(0) = 1, it follows immedi-
ately that ε ∈ L∗. Second, if l ∈ L and l′ ∈ L∗, then l′ ∈ L(i) for some i ≥ 0,

APRIL 23, 2007 WORKING DRAFT

27.2 Specifying the Matcher 223

and hence l l′ ∈ L(i+1) by definition of concatentation of languages. This
completes the first step. Now suppose that L′ is such that 1 + L L′ ⊆ L′.
We are to show that L∗ ⊆ L′. We show by induction on i ≥ 0 that L(i) ⊆ L′,
from which the result follows immediately. If i = 0, then it suffices to show
that ε ∈ L′. But this follows from the assumption that 1 + L L′ ⊆ L′, which
implies that 1 ⊆ L′. To show that L(i+1) ⊆ L′, we observe that, by defini-
tion, L(i+1) = L L(i). By induction L(i) ⊆ L′, and hence L L(i) ⊆ L′, since
L L′ ⊆ L′ by assumption.

Having proved that L∗ is the smallest language L′ such that 1 + L L′ ⊆
L′, it is not hard to prove that L∗ satisfies the recurrence L∗ = 1 + L L∗.
We just proved the right to left containment. For the converse, it suffices
to observe that 1 + L (1 + L L∗) ⊆ 1 + L L∗, for then the result follows by
minimality the result. This is easily established by a simple case analysis.

Exercise 1
Give a full proof of the fact that L∗ = 1 + L L∗.

Finally, a word about implementation. We will assume in what follows
that the alphabet is given by the type char of characters, that strings are
elements of the type string, and that regular expressions are defined by
the following datatype declaration:

datatype regexp =

Zero | One | Char of char |

Plus of regexp * regexp |

Times of regexp * regexp |

Star of regexp

We will also work with lists of characters, values of type char list, using
ML notation for primitive operations on lists such as concatenation and
extension. Occasionally we will abuse notation and not distinguish (in the
informal discussion) between a string and a list of characters. In particular
we will speak of a character list as being a member of a language, when in
fact we mean that the corresponding string is a member of that language.

27.2 Specifying the Matcher

Let us begin by devising a specification for the regular expression matcher.
As a first cut we write down a type specification. We seek to define a func-

APRIL 23, 2007 WORKING DRAFT

27.2 Specifying the Matcher 224

tion match of type regexp -> string -> bool that determines whether or
not a given string matches a given regular expression. More precisely, we
wish to satisfy the following specification:

For every regular expression r and every string s, match r s
terminates, and evaluates to true iff s ∈ L(r).

We saw in chapter 1 that a natural way to define the procedure match

is to use a technique called continuation passing. We defined an auxiliary
function match is with the type

regexp -> char list -> (char list -> bool) -> bool

that takes a regular expression, a list of characters (essentially a string, but
in a form suitable for incremental processing), and a continuation, and
yields a boolean. The idea is that match is takes a regular expression r, a
character list cs, and a continuation k, and determines whether or not some
initial segment of cs matches r, passing the remaining characters cs′ to k in
the case that there is such an initial segment, and yields false otherwise.
Put more precisely,

For every regular expression r, character list cs, and contin-
uation k, if cs = cs′@cs′′ with cs′ ∈ L(r) and k cs′′ evalu-
ates to true, then match is r cs k evaluates true; otherwise,
match is r cs k evaluates to false.

Unfortunately, this specification is too strong to ever be satisfied by any
program! Can you see why? The difficulty is that if k is not guaranteed to
terminate for all inputs, then there is no way that match is can behave as
required. For example, if there is no input on which k terminates, the spec-
ification requires that match is return false. It should be intuitively clear
that we can never implement such a function. Instead, we must restrict
attention to total continuations, those that always terminate with true or
false on any input. This leads to the following revised specification:

For every regular expression r, character list cs, and total con-
tinuation k, if cs = cs′ cs′′ with cs′ ∈ L(r) and k cs′′ evalu-
ates to true, then match is r cs k evaluates to true; other-
wise, match is r cs k evaluates to false.

APRIL 23, 2007 WORKING DRAFT

27.2 Specifying the Matcher 225

Observe that this specification makes use of an implicit existential quan-
tification. Written out in full, we might say “For all . . . , if there exists cs′

and cs′′ such that cs = cs′ cs′′ with . . . , then . . . ”. This observation makes
clear that we must search for a suitable splitting of cs into two parts such
that the first part is in L(r) and the second is accepted by k. There may,
in general, be many ways to partition the input to as to satisfy both of
these requirements; we need only find one such way. Note, however, that
if cs = cs′@cs′′ with cs′ ∈ L(r) but k cs′′ yielding false, we must reject
this partitioning and search for another. In other words we cannot simply
accept any partitioning whose initial segment matches r, but rather only
those that also induce k to accept its corresponding final segment. We may
return false only if there is no such splitting, not merely if a particular
splitting fails to work.

Suppose for the moment that match is satisfies this specification. Does
it follow that match satisfies the original specification? Recall that the func-
tion match is defined as follows:

fun match r s =

match is r

(String.explode s)

(fn nil => true | false)

Notice that the initial continuation is indeed total, and that it yields true

(accepts) iff it is applied to the null string. Therefore match satisfies the fol-
lowing property obtained from the specification of mathc is by plugging
in the initial continuation:

For every regular expression r and string s, if s ∈ L(r), then
match r s evaluates to true, and otherwise match r s evalu-
ates to false.

This is precisely the property that we desire for match. Thus match is cor-
rect (satisfies its specification) if match is is correct.

So far so good. But does match is satisfy its specification? If so, we are
done. How might we check this? Recall the definition of match is given
in the overview:

fun match is Zero k = false

| match is One cs k = k cs

| match is (Char c) nil k = false

APRIL 23, 2007 WORKING DRAFT

27.2 Specifying the Matcher 226

| match is (Char c) (d::cs) k =

if c=d then k cs else false

| match is (Times (r1, r2)) cs k =

match is r1 cs (fn cs’ => match is r2 cs’ k)

| match is (Plus (r1, r2)) cs k =

match is r1 cs k orelse match is r2 cs k

| match is (Star r) cs k =

k cs orelse

match is r cs (fn cs’ => match is (Star r) cs’ k)

Since match is is defined by a recursive analysis of the regular expression
r, it is natural to proceed by induction on the structure of r. That is, we treat
the specification as a conjecture about match is, and attempt to prove it by
structural induction on r.

We first consider the three base cases. Suppose that r is 0. Then no
string is in L(r), so match is must return false, which indeed it does.
Suppose that r is 1. Since the null string is an initial segment of every
string, and the null string is in L(1), we must yield true iff k cs yields true,
and false otherwise. This is precisely how match is is defined. Suppose
that r is a. Then to succeed cs must have the form a cs′ with k cs′ evaluating
to true; otherwise we must fail. The code for match is checks that cs has
the required form and, if so, passes cs′ to k to determine the outcome, and
otherwise yields false. Thus match is behaves correctly for each of the
three base cases.

We now consider the three inductive steps. For r = r1 + r2, we observe
that some initial segment of cs matches r and causes k to accept the corre-
sponding final segment of cs iff either some initial segment matches r1 and
drives k to accept the rest or some initial segment matches r2 and drives k
to accept the rest. By induction match is works as specified for r1 and r2,
which is sufficient to justify the correctness of match is for r = r1 + r2.

For r = r1 r2, the proof is slightly more complicated. By induction
match is behaves according to the specification if it is applied to either
r1 or r2, provided that the continuation argument is total. Note that the
continuation k′ given by fn cs’ => match is r2 cs’ k is total, since by
induction the inner recursive call to match is always terminates. Suppose
that there exists a partitioning cs = cs′@cs′′ with cs′ ∈ L(r)and k cs′′ eval-
uating to true. Then cs′ = cs′1 cs′2 with cs′1 ∈ L(r1) and cs′2 ∈ L(r2), by
definition of L(r1 r2). Consequently, match is r2 (cs′2 cs′′) k evaluates to

APRIL 23, 2007 WORKING DRAFT

27.2 Specifying the Matcher 227

true, and hence match is r1 cs′1 cs′2 cs′′ k′ evaluates to true, as required.
If, however, no such partitioning exists, then one of three situations occurs:

1. either no initial segment of cs matches r1, in which case the outer
recursive call yields false, as required, or

2. for every initial segment matching r1, no initial segment of the corre-
sponding final segment matches r2, in which case the inner recursive
call yields false on every call, and hence the outer call yields false,
as required, or

3. every pair of successive initial segments of cs matching r1 and r2
successively results in k evaluating to false, in which case the inner
recursive call always yields false, and hence the continuation k′ al-
ways yields false, and hence the outer recursive call yields false,
as required.

Be sure you understand the reasoning involved here, it is quite tricky to
get right!

We seem to be on track, with one more case to consider, r = r1
∗. This

case would appear to be a combination of the preceding two cases for al-
ternation and concatenation, with a similar argument sufficing to estab-
lish correctness. But there is a snag: the second recursive call to match is

leaves the regular expression unchanged! Consequently we cannot apply
the inductive hypothesis to establish that it behaves correctly in this case,
and the obvious proof attempt breaks down.

What to do? A moment’s thought suggests that we proceed by an in-
ner induction on the length of the string, based on the idea that if some
initial segment of cs matches L(r), then either that initial segment is the
null string (base case), or cs = cs′@cs′′ with cs′ ∈ L(r1) and cs′′ ∈ L(r)
(induction step). We then handle the base case directly, and handle the
inductive case by assuming that match is behaves correctly for cs′′ and
showing that it behaves correctly for cs. But there is a flaw in this argu-
ment — the string cs′′ need not be shorter than cs in the case that cs′ is the
null string! In that case the inductive hypothesis does not apply, and we
are once again unable to complete the proof.

This time we can use the failure of the proof to obtain a counterexam-
ple to the specification! For if r = 1∗, for example, then match is r cs k
does not terminate! In general if r = r1

∗ with ε ∈ L(r1), then match is r

APRIL 23, 2007 WORKING DRAFT

27.2 Specifying the Matcher 228

cs k fails to terminate. In other words, match is does not satisfy the speci-
fication we have given for it. Our conjecture is false!

Our failure to establish that match is satisfies its specification lead to a
counterexample that refuted our conjecture and uncovered a genuine bug
in the program — the matcher may not terminate for some inputs. What
to do? One approach is to explicitly check for looping behavior during
matching by ensuring that each recursive calls matches some non-empty
initial segment of the string. This will work, but at the expense of clut-
tering the code and imposing additional run-time overhead. You should
write out a version of the matcher that works this way, and check that it
indeed satisfies the specification we’ve given above.

An alternative is to observe that the proof goes through under the ad-
ditional assumption that no iterated regular expression matches the null
string. Call a regular expression r standard iff whenever r′∗ occurs within
r, the null string is not an element of L(r′). It is easy to check that the proof
given above goes through under the assumption that the regular expres-
sion r is standard.

This says that the matcher works correctly for standard regular expres-
sions. But what about the non-standard ones? The key observation is that
every regular expression is equivalent to one in standard form. By “equivalent”
we mean “accepting the same language”. For example, the regular expres-
sions r + 0 and r are easily seen to be equivalent. Using this observation
we may avoid the need to consider non-standard regular expressions. In-
stead we can pre-process the regular expression to put it into standard
form, then call the matcher on the standardized regular expression.

The required pre-processing is based on the following definitions. We
will associate with each regular expression r two standard regular expres-
sions δ(r) and r− with the following properties:

1. L(δ(r)) = 1 iff ε ∈ L(δ(r)) and L(δ(r)) = 0 otherwise.

2. L(r−) = L(r) \ 1.

With these equations in mind, we see that every regular expression r may
be written in the form δ(r) + r−, which is in standard form.

APRIL 23, 2007 WORKING DRAFT

27.3 Sample Code 229

The function δ mapping regular expressions to regular expressions is
defined by induction on regular expressions by the following equations:

δ(0) = 0
δ(1) = 1
δ(a) = 0

δ(r1 + r2) = δ(r1)⊕ δ(r2)
δ(r1 r2) = δ(r1)⊗ δ(r2)

δ(r∗) = 1

Here we define 0 ⊕ 1 = 1 ⊕ 0 = 1 ⊕ 1 = 1 and 0 ⊕ 0 = 0 and 0 ⊗ 1 =
1⊗ 0 = 0⊗ 0 = 0 and 1⊗ 1 = 1.

Exercise 2
Show that L(δ(r)) = 1 iff ε ∈ L(r).

The definition of r− is given by induction on the structure of r by the
following equations:

0− = 0
1− = 0
a− = 0

(r1 + r2)− = r−1 + r−2
(r1 r2)− = δ(r1) r−2 + r1 δ(r2) + r−1 r−2

(r∗)− = δ(r) + r−∗

The only tricky case is the one for concatenation, which must take account
of the possibility that r1 or r2 accepts the null string.

Exercise 3
Show that L(r−) = L(r) \ 1.

27.3 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/regexp.sml

Chapter 28

Persistent and Ephemeral Data
Structures

This chapter is concerned with persistent and ephemeral abstract types. The
distinction is best explained in terms of the logical future of a value. When-
ever a value of an abstract type is created it may be subsequently acted
upon by the operations of the type (and, since the type is abstract, by no
other operations). Each of these operations may yield (other) values of that
abstract type, which may themselves be handed off to further operations
of the type. Ultimately a value of some other type, say a string or an inte-
ger, is obtained as an observable outcome of the succession of operations
on the abstract value. The sequence of operations performed on a value of
an abstract type constitutes a logical future of that type — a computation
that starts with that value and ends with a value of some observable type.
We say that a type is ephemeral iff every value of that type has at most one
logical future, which is to say that it is handed off from one operation of
the type to another until an observable value is obtained from it. This is
the normal case in familiar imperative programming languages because
in such languages the operations of an abstract type destructively modify
the value upon which they operate; its original state is irretrievably lost by
the performance of an operation. It is therefore inherent in the imperative
programming model that a value have at most one logical future. In con-
trast, values of an abstract type in functional languages such as ML may
have many different logical futures, precisely because the operations do
not “destroy” the value upon which they operate, but rather create fresh
values of that type to yield as results. Such values are said to be persistent

230

231

because they persist after application of an operation of the type, and in
fact may serve as arguments to further operations of that type.

Some examples will help to clarify the distinction. The primitive list
types of ML are persistent because the performance of an operation such
as cons’ing, appending, or reversing a list does not destroy the original
list. This leads naturally to the idea of multiple logical futures for a given
value, as illustrated by the following code sequence:

(* original list *)

val l = [1,2,3]

val m1 = hd l

(* first future of l *)

val n1 = rev m1

(* second future of l *)

val m2 = l @ [4,5,6]

Notice that the original list value, [1,2,3], has two distinct logical futures,
one in which we remove its head, then reverse the tail, and the other in
which we append the list [4,5,6] to it. The ability to easily handle multi-
ple logical futures for a data structure is a tremendous source of flexibility
and expressive power, alleviating the need to perform tedious bookkeep-
ing to manage “versions” or “copies” of a data structure to be passed to
different operations.

The prototypical ephemeral data structure in ML is the reference cell.
Performing an assignment operation on a reference cell changes it irrevo-
cably; the original contents of the cell are lost, even if we keep a handle on
it.

val r = ref 0

(* original cell *)

val s = r

val = (s := 1)

val x = !r

(* 1! *)

Notice that the contents of (the cell bound to) r changes as a result of per-
forming an assignment to the underlying cell. There is only one future
for this cell; a reference to its original binding does not yield its original
contents.

APRIL 23, 2007 WORKING DRAFT

232

More elaborate forms of ephemeral data structures are certainly possi-
ble. For example, the following declaration defines a type of lists whose
tails are mutable. It is therefore a singly-linked list, one whose predecessor
relation may be changed dynamically by assignment:

datatype ’a mutable list =

Nil |

Cons of ’a * ’a mutable list ref

Values of this type are ephemeral in the sense that some operations
on values of this type are destructive, and hence are irreversible (so to
speak!). For example, here’s an implementation of a destructive reversal
of a mutable list. Given a mutable list l, this function reverses the links in
the cell so that the elements occur in reverse order of their occurrence in l.

local

fun ipr (Nil, a) = a

| ipr (this as (Cons (, r as ref next)), a) =

ipr (next, (r := a; this))

in

(* destructively reverse a list *)

fun inplace reverse l = ipr (l, Nil)

end

As you can see, the code is quite tricky to understand! The idea is the
same as the iterative reverse function for pure lists, except that we re-use
the nodes of the original list, rather than generate new ones, when moving
elements onto the accumulator argument.

The distinction between ephemeral and persistent data structures is
essentially the distinction between functional (effect-free) and imperative
(effect-ful) programming — functional data structures are persistent; im-
perative data structures are ephemeral. However, this characterization is
oversimplified in two respects. First, it is possible to implement a persis-
tent data structure that exploits mutable storage. Such a use of mutation
is an example of what is called a benign effect because for all practical pur-
poses the data structure is “purely functional” (i.e., persistent), but is in
fact implemented using mutable storage. As we will see later the exploita-
tion of benign effects is crucial for building efficient implementations of
persistent data structures. Second, it is possible for a persistent data type

APRIL 23, 2007 WORKING DRAFT

28.1 Persistent Queues 233

to be used in such a way that persistence is not exploited — rather, ev-
ery value of the type has at most one future in the program. Such a type
is said to be single-threaded, reflecting the linear, as opposed to branch-
ing, structure of the future uses of values of that type. The significance
of a single-threaded type is that it may as well have been implemented as
an ephemeral data structure (e.g., by having observable effects on values)
without changing the behavior of the program.

28.1 Persistent Queues

Here is a signature of persistent queues:

signature QUEUE = sig

type ’a queue

exception Empty

val empty : ’a queue

val insert : ’a * ’a queue -> ’a queue

val remove : ’a queue -> ’a * ’a queue

end

This signature describes a structure providing a representation type for
queues, together with operations to create an empty queue, insert an ele-
ment onto the back of the queue, and to remove an element from the front
of the queue. It also provides an exception that is raised in response to
an attempt to remove an element from the empty queue. Notice that re-
moving an element from a queue yields both the element at the front of
the queue, and the queue resulting from removing that element. This is
a direct reflection of the persistence of queues implemented by this signa-
ture; the original queue remains available as an argument to further queue
operations.

By a sequence of queue operations we shall mean a succession of uses
of empty, insert, and remove operations in such a way that the queue
argument of one operation is obtained as a result of the immediately pre-
ceding queue operation. Thus a sequence of queue operations represents
a single-threaded time-line in the life of a queue value. Here is an example
of a sequence of queue operations:

val q0 : int queue = empty

APRIL 23, 2007 WORKING DRAFT

28.1 Persistent Queues 234

val q1 = insert (1, q0)

val q2 = insert (2, q1)

val (h1, q3) = remove q2 (* h1 = 1, q3 = q1 *)

val (h2, q4) = remove q3 (* h2 = 2, q4 = q0 *)

By contrast the following operations do not form a single thread, but
rather a branching development of the queue’s lifetime:

val q0 : int queue = empty

val q1 = insert (1, q0)

val q2 = insert (2, q0) (* NB: q0, not q1! *)

val (h1, q3) = remove q1 (* h1 = 1, q3 = q0 *)

val (h2, q4) = remove q3 (* raise Empty *)

val (h2, q4) = remove q2 (* h2 = 2,, q4 = q0 *)

In the remainder of this section we will be concerned with single-threaded
sequences of queue operations.

How might we implement the signature QUEUE? The most obvious ap-
proach is to represent the queue as a list with, say, the head element of
the list representing the “back” (most recently enqueued element) of the
queue. With this representation enqueueing is a constant-time operation,
but dequeuing requires time proportional to the number of elements in
the queue. Thus in the worst case a sequence of n enqueue and dequeue
operations will take time O(n2), which is clearly excessive. We can make
dequeue simpler, at the expense of enqueue, by regarding the head of the
list as the “front” of the queue, but the time bound for n operations re-
mains the same in the worst case.

Can we do better? A well-known “trick” achieves an O(n) worst-case
performance for any sequence of n operations, which means that each op-
eration takes O(1) steps if we amortize the cost over the entire sequence.
Notice that this is a worst-case bound for the sequence, yielding an amortized
bound for each operation of the sequence. This means that some operations
may be relatively expensive, but, in compensation, many operations will
be cheap.

How is this achieved? By combining the two naive solutions sketched
above. The idea is to represent the queue by twolists, one for the back
“half” consisting of recently inserted elements in the order of arrival, and
one for the front “half” consisting of soon-to-be-removed elements in re-
verse order of arrival (i.e., in order of removal). We put “half” in quotes

APRIL 23, 2007 WORKING DRAFT

28.1 Persistent Queues 235

because we will not, in general, maintain an even split of elements be-
tween the front and the back lists. Rather, we will arrange things so that
the following representation invariants holds true:

1. The elements of the queue listed in order of removal are the elements
of the front followed by the elements of the back in reverse order.

2. The front is empty only if the back is empty.

These invariants are maintained by using a “smart constructor” that
creates a queue from two lists representing the back and front parts of the
queue. This constructor ensures that the representation invariant holds
by ensuring that condition (2) is always true of the resulting queue. The
constructor proceeds by a case analysis on the back and fron parts of the
queue. If the front list is non-empty, or both the front and back are empty,
the resulting queue consists of the back and front parts as given. If the
front is empty and the back is non-empty, the queue constructor yields
the queue consisting of an empty back part and a front part equal to the
reversal of the given back part. Observe that this is sufficient to ensure
that the representation invariant holds of the resulting queue in all cases.
Observe also that the smart constructor either runs in constant time, or in
time proportional to the length of the back part, according to whether the
front part is empty or not.

Insertion of an element into a queue is achieved by cons’ing the ele-
ment onto the back of the queue, then calling the queue constructor to
ensure that the result is in conformance with the representation invari-
ant. Thus an insert can either take constant time, or time proportional to
the size of the back of the queue, depending on whether the front part is
empty. Removal of an element from a queue requires a case analysis. If
the front is empty, then by condition (2) the queue is empty, so we raise an
exception. If the front is non-empty, we simply return the head element
together with the queue created from the original back part and the front
part with the head element removed. Here again the time required is ei-
ther constant or proportional to the size of the back of the queue, according
to whether the front part becomes empty after the removal. Notice that if
an insertion or removal requires a reversal of k elements, then the next k
operations are constant-time. This is the fundamental insight as to why
we achieve O(n) time complexity over any sequence of n operations. (We
will give a more rigorous analysis shortly.)

APRIL 23, 2007 WORKING DRAFT

28.2 Amortized Analysis 236

Here’s the implementation of this idea in ML:

structure Queue :> QUEUE = struct

type ’a queue = ’a list * ’a list

fun make queue (q as (nil, nil)) = q

| make queue (bs, nil) = (nil, rev bs)

| make queue (q as (bs, fs)) = q

val empty = make queue (nil, nil)

fun insert (x, (back,front)) =

make queue (x::back, front)

exception Empty

fun remove (, nil) = raise Empty

| remove (bs, f::fs) = (f, make queue (bs, fs))

end

Notice that we call the “smart constructor” make queue whenever we
wish to return a queue to ensure that the representation invariant holds.
Consequently, some queue operations are more expensive than others, ac-
cording to whether or not the queue needs to be reorganized to satisfy the
representation invariant. However, each such reorganization makes a cor-
responding number of subsequent queue operations “cheap” (constant-
time), so the overall effort required evens out in the end to constant-time
per operation. More precisely, the running time of a sequence of n queue
operations is now O(n), rather than O(n2), as it was in the naive imple-
mentation. Consequently, each operation takes O(1) (constant) time “on
average,” i.e., when the total effort is evenly apportioned among each of
the operations in the sequence. Note that this is a worst-case time bound
for each operation, amortized over the entire sequence, not an average-case time
bound based on assumptions about the distribution of the operations.

28.2 Amortized Analysis

How can we prove this claim? First we given an informal argument, then
we tighten it up with a more rigorous analysis. We are to account for the
total work performed by a sequence of n operations by showing that any
sequence of noperations can be executed in cn steps for some constant
c. Dividing by n, we obtain the result that each operations takes c steps
when amortized over the entire sequence. The key is to observe first that

APRIL 23, 2007 WORKING DRAFT

28.2 Amortized Analysis 237

the work required to execute a sequence of queue operations may be ap-
portioned to the elements themselves, then that only a constant amount of
work is expended on each element. The “life” of a queue element may be
divided into three stages: it’s arrival in the queue, it’s transit time in the
queue, and it’s departure from the queue. In the worst case each element
passes through each of these stages (but may “die young”, never partic-
ipating in the second or third stage). Arrival requires constant time to
add the element to the back of the queue. Transit consists of being moved
from the back to the front by a reversal, which takes constant time per
element on the back. Departure takes constant time to pattern match and
extract the element. Thus at worst we require three steps per element to ac-
count for the entire effort expended to perform a sequence of queue oper-
ations. This is in fact a conservative upper bound in the sense that we may
need less than 3n steps for the sequence, but asymptotically the bound is
optimal — we cannot do better than constant time per operation! (You
might reasonably wonder whether there is a worst-case, non-amortized
constant-time implementation of persistent queues. The answer is “yes”,
but the code is far more complicated than the simple implementation we
are sketching here.)

This argument can be made rigorous as follows. The general idea is to
introduce the notion of a charge scheme that provides an upper bound on
the actual cost of executing a sequence of operations. An upper bound on
the charge will then provide an upper bound on the actual cost. Let T(n)
be the cumulative time required (in the worst case) to execute a sequence
of n queue operations. We will introduce a charge function, C(n), repre-
senting the cumulative charge for executing a sequence of n operations and
show that T(n) ≤ C(n) = O(n). It is convenient to express this in terms
of a function R(n) = C(n)− T(n) representing the cumulative residual, or
overcharge, which is the amount that the charge for n operations exceeds
the actual cost of executing them. We will arrange things so that R(n) ≥ 0
and that C(n) = O(n), from which the result follows immediately.

Down to specifics. By charging 2 for each insert operation and 1 for
each remove, it follows that C(n) ≤ 2n for any sequence of n inserts and
removes. Thus C(n) = O(n). After any sequence of n ≥ 0 operations
have been performed, the queue contains 0 ≤ b ≤ n elements on the back
“half” and 0 ≤ f ≤ n elements on the front “half”. We claim that for every
n ≥ 0, R(n) = b. We prove this by induction on n ≥ 0. The condition
clearly holds after performing 0 operations, since T(0) = 0, C(0) = 0,

APRIL 23, 2007 WORKING DRAFT

28.2 Amortized Analysis 238

and hence R(0) = C(0) − T(0) = 0. Consider the n + 1st operation. If
it is an insert, and f > 0, T(n + 1) = T(n) + 1, C(n + 1) = C(n) + 2,
and hence R(n + 1) = R(n) + 1 = b + 1. This is correct because an insert
operation adds one element to the back of the queue. If, on the other hand,
f = 0, then T(n + 1) = T(n) + b + 2 (charging one for the cons and one
for creating the new pair of lists), C(n + 1) = C(n) + 2, so R(n + 1) =
R(n) + 2− b − 2 = b + 2− b − 2 = 0. This is correct because the back is
now empty; we have used the residual overcharge to pay for the cost of the
reversal. If the n + 1st operation is a remove, and f > 0, then T(n + 1) =
T(n) + 1 and C(n + 1) = C(n) + 1 and hence R(n + 1) = R(n) = b. This
is correct because the remove doesn’t disturb the back in this case. Finally,
if we are performing a remove with f = 0, then T(n + 1) = T(n) + b + 1,
C(n + 1) = C(n) + 1, and hence R(n + 1) = R(n)− b = b − b = 0. Here
again we use of the residual overcharge to pay for the reversal of the back
to the front. The result follows immediately since R(n) = b ≥ 0, and hence
C(n) ≥ T(n).

It is instructive to examine where this solution breaks down in the
multi-threaded case (i.e., where persistence is fully exploited). Suppose
that we perform a sequence of n insert operations on the empty queue,
resulting in a queue with n elements on the back and none on the front.
Call this queue q. Let us suppose that we have n independent “futures”
for q, each of which removes an element from it, for a total of 2n opera-
tions. How much time do these 2n operations take? Since each indepen-
dent future must reverse all n elements onto the front of the queue before
performing the removal, the entire collection of 2n operations takes n + n2

steps, or O(n) steps per operation, breaking the amortized constant-time
bound just derived for a single-threaded sequence of queue operations.
Can we recover a constant-time amortized cost in the persistent case? We
can, provided that we share the cost of the reversal among all futures of
q — as soon as one performs the reversal, they all enjoy the benefit of its
having been done. This may be achieved by using a benign side effect to
cache the result of the reversal in a reference cell that is shared among all
uses of the queue. We will return to this once we introduce memoization
and lazy evaluation.

APRIL 23, 2007 WORKING DRAFT

28.3 Sample Code 239

28.3 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/perseph.sml

Chapter 29

Options, Exceptions, and
Continuations

In this chapter we discuss the close relationships between option types,
exceptions, and continuations. They each provide the means for handling
failure to produce a value in a computation. Option types provide the
means of explicitly indicating in the type of a function the possibility that
it may fail to yield a “normal” result. The result type of the function forces
the caller to dispatch explicitly on whether or not it returned a normal
value. Exceptions provide the means of implicitly signalling failure to re-
turn a normal result value, without sacrificing the requirement that an ap-
plication of such a function cannot ignore failure to yield a value. Continu-
ations provide another means of handling failure by providing a function
to invoke in the case that normal return is impossible.

29.1 The n-Queens Problem

We will explore the trade-offs between these three approaches by consid-
ering three different implementations of the n-queens problem: find a way
to place n queens on an n× n chessboard in such a way that no two queens
attack one another. The general strategy is to place queens in successive
columns in such a way that it is not attacked by a previously placed queen.
Unfortunately it’s not possible to do this in one pass; we may find that we
can safely place k < n queens on the board, only to discover that there is
no way to place the next one. To find a solution we must reconsider earlier

240

29.1 The n-Queens Problem 241

decisions, and work forward from there. If all possible reconsiderations of
all previous decisions all lead to failure, then the problem is unsolvable.
For example, there is no safe placement of three queens on a 3x3 chess-
board. This trial-and-error approach to solving the n-queens problem is
called backtracking search.

A solution to the n-queens problem consists of an n × n chessboard
with n queens safely placed on it. The following signature defines a chess-
board abstraction:

signature BOARD =

sig

type board

val new : int -> board

val complete : board -> bool

val place : board * int -> board

val safe : board * int -> bool

val size : board -> int

val positions : board -> (int * int) list

end

The operation new creates a new board of a given dimension n ≥ 0. The
operation complete checks whether the board contains a complete safe
placement of n queens. The function safe checks whether it is safe to
place a queen at row i in the next free column of a board B. The operation
place puts a queen at row i in the next available column of the board.
The function size returns the size of a board, and the function positions

returns the coordinates of the queens on the board.
The board abstraction may be implemented as follows:

structure Board :> BOARD =

struct

(* rep: size, next free column, number placed, placements

inv: size>=0, 1<=next free<=size,

length(placements) = number placed

*)

type board = int * int * int * (int * int) list

fun new n = (n, 1, 0, nil)

fun size (n, , ,) = n

APRIL 23, 2007 WORKING DRAFT

29.2 Solution Using Options 242

fun complete (n, , k,) = (k=n)

fun positions (, , , qs) = qs

fun place ((n, i, k, qs),j) =

(n, i+1, k+1, (i,j)::qs)

fun threatens ((i,j), (i’,j’)) =

i=i’ orelse j=j’ orelse

i+j = i’+j’ orelse

i-j = i’-j’

fun conflicts (q, nil) =

false

| conflicts (q, q’::qs) =

threatens (q, q’) orelse conflicts (q, qs)

fun safe ((, i, , qs), j) =

not (conflicts ((i,j), qs))

end

The representation type contains “redundant” information in order to make
the individual operations more efficient. The representation invariant en-
sures that the components of the representation are properly related to one
another (e.g., the claimed number of placements is indeed the length of the
list of placed queens, and so on.)

Our goal is to define a function

val queens : int -> Board.board option

such that if n ≥ 0, then queens n evaluates either to NONE if there is no safe
placement of n queens on an n× n board, or to SOME B otherwise, with B a
complete board containing a safe placement of n queens. We will consider
three different solutions, one using option types, one using exceptions,
and one using a failure continuation.

29.2 Solution Using Options

Here’s a solution based on option types:

(* addqueen bd yields SOME bd’ with bd’ a

complete safe placement extending bd,

APRIL 23, 2007 WORKING DRAFT

29.3 Solution Using Exceptions 243

if one exists, and yields NONE otherwise

*)

fun addqueen bd =

let

fun try j =

if j > Board.size bd then

NONE

else if Board.safe (bd, j) then

case addqueen (Board.place (bd, j))

of NONE => try (j+1)

| r as (SOME bd’) => r

else

try (j+1)

in

if Board.complete bd then

SOME bd

else

try 1

end

fun queens n = addqueen (Board.new n)

The characteristic feature of this solution is that we must explicitly check
the result of each recursive call to addqueen to determine whether a safe
placement is possible from that position. If so, we simply return it; if not,
we must reconsider the placement of a queen in row j of the next available
column. If no placement is possible in the current column, the function
yields NONE, which forces reconsideration of the placement of a queen in
the preceding row. Eventually we either find a safe placement, or yield
NONE indicating that no solution is possible.

29.3 Solution Using Exceptions

The explicit check on the result of each recursive call can be replaced by
the use of exceptions. Rather than have addqueen return a value of type
Board.board option, we instead have it return a value of type Board.board,
if possible, and otherwise raise an exception indicating failure. The case
analysis on the result is replaced by a use of an exception handler. Here’s
the code:

APRIL 23, 2007 WORKING DRAFT

29.3 Solution Using Exceptions 244

exception Fail

(* addqueen bd yields bd’, where bd’ is a complete safe

placement extending bd, if one exists, and raises Fail otherwise

*)

fun addqueen bd =

let

fun try j =

if j > Board.size bd then

raise Fail

else if Board.safe (bd, j) then

addqueen (Board.place (bd, j))

handle Fail => try (j+1)

else

try (j+1)

in

if Board.complete bd then

bd

else

try 1

end

fun queens n =

SOME (addqueen (Board.new n))

handle Fail => NONE

The main difference between this solution and the previous one is that
both calls to addqueen must handle the possibility that it raises the excep-
tion Fail. In the outermost call this corresponds to a complete failure to
find a safe placement, which means that queens must return NONE. If a safe
placement is indeed found, it is wrapped with the constructor SOME to in-
dicate success. In the recursive call within try, an exception handler is
required to handle the possibility of there being no safe placement start-
ing in the current position. This check corresponds directly to the case
analysis required in the solution based on option types.

What are the trade-offs between the two solutions?

1. The solution based on option types makes explicit in the type of
the function addqueen the possibility of failure. This forces the pro-
grammer to explicitly test for failure using a case analysis on the re-
sult of the call. The type checker will ensure that one cannot use a

APRIL 23, 2007 WORKING DRAFT

29.4 Solution Using Continuations 245

Board.board option where a Board.board is expected. The solution
based on exceptions does not explicitly indicate failure in its type.
However, the programmer is nevertheless forced to handle the fail-
ure, for otherwise an uncaught exception error would be raised at
run-time, rather than compile-time.

2. The solution based on option types requires an explicit case analysis
on the result of each recursive call. If “most” results are successful,
the check is redundant and therefore excessively costly. The solution
based on exceptions is free of this overhead: it is biased towards the
“normal” case of returning a board, rather than the “failure” case
of not returning a board at all. The implementation of exceptions
ensures that the use of a handler is more efficient than an explicit
case analysis in the case that failure is rare compared to success.

For the n-queens problem it is not clear which solution is preferable. In
general, if efficiency is paramount, we tend to prefer exceptions if failure
is a rarity, and to prefer options if failure is relatively common. If, on
the other hand, static checking is paramount, then it is advantageous to
use options since the type checker will enforce the requirement that the
programmer check for failure, rather than having the error arise only at
run-time.

29.4 Solution Using Continuations

We turn now to a third solution based on continuation-passing. The idea is
quite simple: an exception handler is essentially a function that we invoke
when we reach a blind alley. Ordinarily we achieve this invocation by
raising an exception and relying on the caller to catch it and pass control
to the handler. But we can, if we wish, pass the handler around as an
additional argument, the failure continuation of the computation. Here’s
how it’s done in the case of the n-queens problem:

(* addqueen bd yields bd’, where bd’ is a complete safe

placement extending bd, if one exists, and otherwise,

yields the value of fc ()

*)

fun addqueen (bd, fc) =

APRIL 23, 2007 WORKING DRAFT

29.4 Solution Using Continuations 246

let

fun try j =

if j > Board.size bd then

fc ()

else if Board.safe (bd, j) then

addqueen

(Board.place (bd, j),

fn () => try (j+1))

else

try (j+1)

in

if Board.complete bd then

SOME bd

else

try 1

end

fun queens n =

addqueen (Board.new n, fn () => NONE)

Here again the differences are small, but significant. The initial continua-
tion simply yields NONE, reflecting the ultimate failure to find a safe place-
ment. On a recursive call we pass to addqueen a continuation that resumes
search at the next row of the current column. Should we exceed the num-
ber of rows on the board, we invoke the failure continuation of the most
recent call to addqueen.

The solution based on continuations is very close to the solution based
on exceptions, both in form and in terms of efficiency. Which is preferable?
Here again there is no easy answer, we can only offer general advice. First
off, as we’ve seen in the case of regular expression matching, failure con-
tinuations are more powerful than exceptions; there is no obvious way to
replace the use of a failure continuation with a use of exceptions in the
matcher. However, in the case that exceptions would suffice, it is gener-
ally preferable to use them since one may then avoid passing an explicit
failure continuation. More significantly, the compiler ensures that an un-
caught exception aborts the program gracefully, whereas failure to invoke
a continuation is not in itself a run-time fault. Using the right tool for the
right job makes life easier.

APRIL 23, 2007 WORKING DRAFT

29.5 Sample Code 247

29.5 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/optexcont.sml

Chapter 30

Higher-Order Functions

Higher-order functions — those that take functions as arguments or re-
turn functions as results — are powerful tools for building programs. An
interesting application of higher-order functions is to implement infinite
sequences of values as (total) functions from the natural numbers (non-
negative integers) to the type of values of the sequence. We will develop a
small package of operations for creating and manipulating sequences, all
of which are higher-order functions since they take sequences (functions!)
as arguments and/or return them as results. A natural way to define many
sequences is by recursion, or self-reference. Since sequences are functions,
we may use recursive function definitions to define such sequences. Al-
ternatively, we may think of such a sequence as arising from a “loopback”
or “feedback” construct. We will explore both approaches.

Sequences may be used to simulate digital circuits by thinking of a
“wire” as a sequence of bits developing over time. The ith value of the
sequence corresponds to the signal on the wire at time i. For simplicity
we will assume a perfect waveform: the signal is always either high or
low (or is undefined); we will not attempt to model electronic effects such
as attenuation or noise. Combinational logic elements (such as and gates
or inverters) are operations on wires: they take in one or more wires as
input and yield one or more wires as results. Digital logic elements (such
as flip-flops) are obtained from combinational logic elements by feedback,
or recursion — a flip-flop is a recursively-defined wire!

248

30.1 Infinite Sequences 249

30.1 Infinite Sequences

Let us begin by developing a sequence package. Here is a suitable signa-
ture defining the type of sequences:

signature SEQUENCE =

sig

type ’a seq = int -> ’a

(* constant sequence *)

val constantly : ’a -> ’a seq

(* alternating values *)

val alternately : ’a * ’a -> ’a seq

(* insert at front *)

val insert : ’a * ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val zip : ’a seq * ’b seq -> (’a * ’b) seq

val unzip : (’a * ’b) seq -> ’a seq * ’b seq

(* fair merge *)

val merge : (’a * ’a) seq -> ’a seq

val stretch : int -> ’a seq -> ’a seq

val shrink : int -> ’a seq -> ’a seq

val take : int -> ’a seq -> ’a list

val drop : int -> ’a seq -> ’a seq

val shift : ’a seq -> ’a seq

val loopback : (’a seq -> ’a seq) -> ’a seq

end

Observe that we expose the representation of sequences as functions. This
is done to simplify the definition of recursive sequences as recursive func-
tions. Alternatively we could have hidden the representation type, at the
expense of making it a bit more awkward to define recursive sequences.
In the absence of this exposure of representation, recursive sequences may
only be built using the loopback operation which constructs a recursive
sequence by “looping back” the output of a sequence transformer to its
input. Most of the other operations of the signature are adaptations of
familiar operations on lists. Two exceptions to this rule are the functions
stretch and shrink that dilate and contract the sequence by a given time

APRIL 23, 2007 WORKING DRAFT

30.1 Infinite Sequences 250

parameter — if a sequence is expanded by k, its value at i is the value of
the original sequence at i/k, and dually for shrinking.

Here’s an implementation of sequences as functions.

structure Sequence :> SEQUENCE =

struct

type ’a seq = int -> ’a

fun constantly c n = c

fun alternately (c,d) n =

if n mod 2 = 0 then c else d

fun insert (x, s) 0 = x

| insert (x, s) n = s (n-1)

fun map f s = f o s

fun zip (s1, s2) n = (s1 n, s2 n)

fun unzip (s : (’a * ’b) seq) =

(map #1 s, map #2 s)

fun merge (s1, s2) n =

(if n mod 2 = 0 then s1 else s2) (n div 2)

fun stretch k s n = s (n div k)

fun shrink k s n = s (n * k)

fun drop k s n = s (n+k)

fun shift s = drop 1 s

fun take 0 = nil

| take n s = s 0 :: take (n-1) (shift s)

fun loopback loop n = loop (loopback loop) n

end

Most of this implementation is entirely straightforward, given the ease
with which we may manipulate higher-order functions in ML. The only
tricky function is loopback, which must arrange that the output of the
function loop is “looped back” to its input. This is achieved by a simple
recursive definition of a sequence whose value at n is the value at n of the
sequence resulting from applying the loop to this very sequence.

The sensibility of this definition of loopback relies on two separate
ideas. First, notice that we may not simplify the definition of loopback
as follows:

APRIL 23, 2007 WORKING DRAFT

30.1 Infinite Sequences 251

(* bad definition *)

fun loopback loop = loop (loopback loop)

The reason is that any application of loopback will immediately loop for-
ever! In contrast, the original definition is arranged so that application of
loopback immediately returns a function. This may be made more appar-
ent by writing it in the following form, which is entirely equivalent to the
definition given above:

fun loopback loop =

fn n => loop (loopback loop) n

This format makes it clear that loopback immediately returns a function
when applied to a loop functional.

Second, for an application of loopback to a loop to make sense, it must
be the case that the loop returns a sequence without “touching” the ar-
gument sequence (i.e., without applying the argument to a natural num-
ber). Otherwise accessing the sequence resulting from an application of
loopback would immediately loop forever. Some examples will help to
illustrate the point.

First, let’s build a few sequences without using the loopback function,
just to get familiar with using sequences:

val evens : int seq = fn n => 2*n

val odds : int seq = fn n => 2*n+1

val nats : int seq = merge (evens, odds)

fun fibs n =

(insert

(1, insert

(1, map (op +)

(zip (drop 1 fibs, fibs)))))(n)

We may “inspect” the sequence using take and drop, as follows:

take 10 nats (* [0,1,2,3,4,5,6,7,8,9] *)

take 5 (drop 5 nats) (* [5,6,7,8,9] *)

take 5 fibs (* [1,1,2,3,5] *)

Now let’s consider an alternative definition of fibs that uses the loopback
operation:

APRIL 23, 2007 WORKING DRAFT

30.2 Circuit Simulation 252

fun fibs loop s =

insert (1, insert (1,

map (op +) (zip (drop 1 s, s))))

val fibs = loopback fibs loop;

The definition of fibs loop is exactly like the original definition of fibs,
except that the reference to fibs itself is replaced by a reference to the
argument s. Notice that the application of fibs loop to an argument s
does not inspect the argument s!

One way to understand loopback is that it solves a system of equations
for an unknown sequence. In the case of the second definition of fibs, we
are solving the following system of equations for f :

f 0 = 1
f 1 = 1

f (n + 2) = f (n + 1) + f (n)

These equations are derived by inspecting the definitions of insert, map,
zip, and drop given earlier. It is obvious that the solution is the Fibonacci
sequence; this is precisely the sequence obtained by applying loopback to
fibs loop.

Here’s an example of a loop that, when looped back, yields an unde-
fined sequence — any attempt to access it results in an infinite loop:

fun bad loop s n = s n + 1

val bad = loopback bad loop

val = bad 0 (* infinite loop! *)

In this example we are, in effect, trying to solve the equation sn = sn + 1
for s, which has no solution (except the totally undefined sequence). The
problem is that the “next” element of the output is defined in terms of the
next element itself, rather than in terms of “previous” elements. Conse-
quently, no solution exists.

30.2 Circuit Simulation

With these ideas in mind, we may apply the sequence package to build
an implementation of digital circuits. Let’s start with wires, which are
represented as sequences of levels:

APRIL 23, 2007 WORKING DRAFT

30.2 Circuit Simulation 253

datatype level = High | Low | Undef

type wire = level seq

type pair = (level * level) seq

val Zero : wire = constantly Low

val One : wire = constantly High

(* clock pulse with given duration of each pulse *)

fun clock (freq:int):wire =

stretch freq (alternately (Low, High))

We include the “undefined” level to account for propagation delays and
settling times in circuit elements.

Combinational logic elements (gates) may be defined as follows. We in-
troduce an explicit unit time propagation delay for each gate — the output
is undefined initially, and is then determined as a function of its inputs. As
we build up layers of circuit elements, it takes longer and longer (propor-
tional to the length of the longest path through the circuit) for the output
to settle, exactly as in “real life”.

(* apply two functions in parallel *)

infixr **;

fun (f ** g) (x, y) = (f x, g y)

(* hardware logical and *)

fun logical and (Low,) = Low

| logical and (, Low) = Low

| logical and (High, High) = High

| logical and = Undef

fun logical not Undef = Undef

| logical not High = Low

| logical not Low = High

fun logical nop l = l

(* a nor b = not a and not b *)

val logical nor =

logical and o (logical not ** logical not)

type unary gate = wire -> wire

type binary gate = pair -> wire

fun gate f w 0 = Undef

(* logic gate with unit propagation delay *)

APRIL 23, 2007 WORKING DRAFT

30.2 Circuit Simulation 254

| gate f w i = f (w (i-1))

val delay : unary gate = gate logical nop (* unit delay *)

val inverter : unary gate = gate logical not

val nor gate : binary gate = gate logical nor

It is a good exercise to build a one-bit adder out of these elements, then
to string them together to form an n-bit ripple-carry adder. Be sure to
present the inputs to the adder with sufficient pulse widths to ensure that
the circuit has time to settle!

Combining these basic logic elements with recursive definitions allows
us to define digital logic elements such as the RS flip-flop. The propaga-
tion delay inherent in our definition of a gate is fundamental to ensuring
that the behavior of the flip-flop is well-defined! This is consistent with
“real life” — flip-flop’s depend on the existence of a hardware propagation
delay for their proper functioning. Note also that presentation of “illegal”
inputs (such as setting both the R and the S leads high results in metastable
behavior of the flip-flop, here as in real life Finally, observe that the flip-
flop exhibits a momentary “glitch” in its output before settling, exactly as
in the hardware case. (All of these behaviors may be observed by using
take and drop to inspect the values on the circuit.)

fun RS ff (S : wire, R : wire) =

let

fun X n = nor gate (zip (S, Y))(n)

and Y n = nor gate (zip (X, R))(n)

in

Y

end

(* generate a pulse of b’s n wide, followed by w *)

fun pulse b 0 w i = w i

| pulse b n w 0 = b

| pulse b n w i = pulse b (n-1) w (i-1)

val S = pulse Low 2 (pulse High 2 Zero);

val R = pulse Low 6 (pulse High 2 Zero);

val Q = RS ff (S, R);

val = take 20 Q;

val X = RS ff (S, S); (* unstable! *)

val = take 20 X;

APRIL 23, 2007 WORKING DRAFT

30.3 Sample Code 255

It is a good exercise to derive a system of equations governing the RS flip-
flop from the definition we’ve given here, using the implementation of the
sequence operations given above. Observe that the delays arising from
the combinational logic elements ensure that a solution exists by ensuring
that the “next” element of the output refers only the “previous” elements,
and not the “current” element.

Finally, we consider a variant implementation of an RS flip-flop using
the loopback operation:

fun loopback2 (f : wire * wire -> wire * wire) =

unzip (loopback (zip o f o unzip))

fun RS ff’ (S : wire, R : wire) =

let

fun RS loop (X, Y) =

(nor gate (zip (S, Y)),

nor gate (zip (X, R)))

in

loopback2 RS loop

end

Here we must define a “binary loopback” function to implement the flip-
flop. This is achieved by reducing binary loopback to unary loopback by
composing with zip and unzip.

30.3 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/seq.sml

Chapter 31

Memoization

In this chapter we will discuss memoization, a programming technique for
cacheing the results of previous computations so that they can be quickly
retrieved without repeated effort. Memoization is fundamental to the im-
plementation of lazy data structures, either “by hand” or using the provi-
sions of the SML/NJ compiler.

31.1 Cacheing Results

We begin with a discussion of memoization to increase the efficiency of
computing a recursively-defined function whose pattern of recursion in-
volves a substantial amount of redundant computation. The problem is
to compute the number of ways to parenthesize an expression consisting
of a sequence of n multiplications as a function of n. For example, the
expression 2 ∗ 3 ∗ 4 ∗ 5 can be parenthesized in 5 ways:

((2∗ 3) ∗ 4) ∗ 5, (2∗ (3∗ 4)) ∗ 5, (2∗ 3) ∗ (4∗ 5), 2∗ (3∗ (4∗ 5)), 2∗ ((3∗ 4) ∗ 5).

A simple recurrence expresses the number of ways of parenthesizing a
sequence of n multiplications:

fun sum f 0 = 0

| sum f n = (f n) + sum f (n-1)

fun p 1 = 1

| p n = sum (fn k => (p k) * (p (n-k))) (n-1)

256

31.1 Cacheing Results 257

where sum f ncomputes the sum of values of a function f (k) with 1 ≤ k ≤
n. This program is extremely inefficient because of the redundancy in the
pattern of the recursive calls.

What can we do about this problem? One solution is to be clever and
solve the recurrence. As it happens this recurrence has a closed-form so-
lution (the Catalan numbers). But in many cases there is no known closed
form, and something else must be done to cut down the overhead. In this
case a simple cacheing technique proves effective. The idea is to maintain
a table of values of the function that is filled in whenever the function is
applied. If the function is called on an argument n, the table is consulted
to see whether the value has already been computed; if so, it is simply
returned. If not, we compute the value and store it in the table for future
use. This ensures that no redundant computations are performed. We will
maintain the table as an array so that its entries can be accessed in constant
time. The penalty is that the array has a fixed size, so we can only record
the values of the function at some pre-determined set of arguments. Once
we exceed the bounds of the table, we must compute the value the “hard
way”. An alternative is to use a dictionary (e.g., a balanced binary search
tree) which has no a priori size limitation, but which takes logarithmic time
to perform a lookup. For simplicity we’ll use a solution based on arrays.

Here’s the code to implement a memoized version of the parenthesiza-
tion function:

local

val limit = 100

val memopad = Array.array (100, NONE)

in

fun p’ 1 = 1

| p’ n = sum (fn k => (p k) * (p (n-k))) (n-1)

and p n =

if n < limit then

case Array.sub of

SOME r => r

| NONE =>

let

val r = p’ n

in

APRIL 23, 2007 WORKING DRAFT

31.2 Laziness 258

Array.update (memopad, n, SOME r);

r

end

else

p’ n

end

The main idea is to modify the original definition so that the recursive
calls consult and update the memopad. The “exported” version of the
function is the one that refers to the memo pad. Notice that the definitions
of p and p’ are mutually recursive!

31.2 Laziness

Lazy evaluation is a combination of delayed evaluation and memoization.
Delayed evaluation is implemented using thunks, functions of type unit

-> ’a. To delay the evaluation of an expression exp of type’a, simply write
fn () => exp. This is a value of type unit -> ’a; the expression exp is ef-
fectively “frozen” until the function is applied. To “thaw” the expression,
simply apply the thunk to the null tuple, (). Here’s a simple example:

val thunk =

fn () => print "hello" (* nothing printed *)

val = thunk () (* prints hello *)

While this example is especially simple-minded, remarkable effects can
be achieved by combining delayed evaluation with memoization. To do
so, we will consider the following signature of suspensions:

signature SUSP =

sig

type ’a susp

val force : ’a susp -> ’a

val delay : (unit -> ’a) -> ’a susp

end

The function delay takes a suspended computation (in the form of a
thunk) and yields a suspension. It’s job is to “memoize” the suspension

APRIL 23, 2007 WORKING DRAFT

31.2 Laziness 259

so that the suspended computation is evaluated at most once — once the
result is computed, the value is stored in a reference cell so that subsequent
forces are fast. The implementation is slick. Here’s the code to do it:

structure Susp :> SUSP =

struct

type ’a susp = unit -> ’a

fun force t = t ()

fun delay (t : ’a susp) =

let

exception Impossible

val memo : ’a susp ref =

ref (fn () => raise Impossible)

fun t’ () =

let val r = t ()

in memo := (fn () => r); r end

in

memo := t’;

fn () => (!memo)()

end

end

It’s worth discussing this code in detail because it is rather tricky. Sus-
pensions are just thunks; force simply applies the suspension to the null
tuple to force its evaluation. What about delay? When applied, delay al-
locates a reference cell containing a thunk that, if forced, raises an internal
exception. This can never happen for reasons that will become apparent in
a moment; it is merely a placeholder with which we initialize the reference
cell. We then define another thunk t’ that, when forced, does three things:

1. It forces the thunk t to obtain its value r.

2. It replaces the contents of the memopad with the constant function
that immediately returns r.

3. It returns r as result.

We then assign t’ to the memo pad (hence obliterating the placeholder),
and return a thunk dt that, when forced, simply forces the contents of the
memo pad. Whenever dt is forced, it immediately forces the contents of

APRIL 23, 2007 WORKING DRAFT

31.3 Lazy Data Types in SML/NJ 260

the memo pad. However, the contents of the memo pad changes as a result
of forcing it so that subsequent forces exhibit different behavior. Specifi-
cally, the first time dt is forced, it forces the thunk t’, which then forces
t its value r, “zaps” the memo pad, and returns r. The second time dt is
forced, it forces the contents of the memo pad, as before, but this time the
it contains the constant function that immediately returns r. Altogether
we have ensured that t is forced at most once by using a form of “self-
modifying” code.

Here’s an example to illustrate the effect of delaying a thunk:

val t = Susp.delay (fn () => print "hello")

val = Susp.force t (* prints hello *)

val = Susp.force t (* silent *)

Notice that hello is printed once, not twice! The reason is that the sus-
pended computation is evaluated at most once, so the message is printed
at most once on the screen.

31.3 Lazy Data Types in SML/NJ

The lazy datatype declaration1

datatype lazy ’a stream = Cons of ’a * ’a stream

expands into the following pair of type declarations

datatype ’a stream! = Cons of ’a * ’a stream

withtype ’a stream = ’a stream! Susp.susp

The first defines the type of stream values, the result of forcing a stream
computation, the second defines the type of stream computations, which
are suspensions yielding stream values. Thus streams are represented
by suspended (unevaluated, memoized) computations of stream values,
which are formed by applying the constructor Cons to a value and another
stream.

The value constructor Cons, when used to build a stream, automatically
suspends computation. This is achieved by regarding Cons e as shorthand
for Cons (Susp.susp (fn () => e). When used in a pattern, the value
constructor Cons induces a use of force. For example, the binding

1Please see chapter 15 for a description of the SML/NJ lazy data type mechanism.

APRIL 23, 2007 WORKING DRAFT

31.3 Lazy Data Types in SML/NJ 261

val Cons (h, t) = e

becomes

val Cons (h, t) = Susp.force e

which forces the right-hand side before performing pattern matching.
A similar transformation applies to non-lazy function definitions — the

argument is forced before pattern matching commences. Thus the “eager”
tail function

fun stl (Cons (, t)) = t

expands into

fun stl! (Cons (, t)) = t

and stl s = stl! (Susp.force s)

which forces the argument as soon as it is applied.
On the other hand, lazy function definitions defer pattern matching

until the result is forced. Thus the lazy tail function

fun lstl (Cons (, t)) = t

expands into

fun lstl! (Cons (, t)) =

t

and lstl s =

Susp.delay (fn () => lstl! (Susp.force s))

which a suspension that, when forced, performs the pattern match.
Finally, the recursive stream definition

val rec lazy ones = Cons (1, ones)

expands into the following recursive function definition:

val rec ones = Susp.delay (fn () => Cons (1, ones))

Unfortunately this is not quite legal in SML since the right-hand side
involves an application of a a function to another function. This can either
be provided by extending SML to admit such definitions, or by extending
the Susp package to include an operation for building recursive suspen-
sions such as this one. Since it is an interesting exercise in itself, we’ll
explore the latter alternative.

APRIL 23, 2007 WORKING DRAFT

31.4 Recursive Suspensions 262

31.4 Recursive Suspensions

We seek to add a function to the Susp package with signature

val loopback : (’a susp -> ’a susp) -> ’a susp

that, when applied to a function f mapping suspensions to suspensions,
yields a suspension s whose behavior is the same as f (s), the application
of f to the resulting suspension. In the above example the function in
question is

fun ones loop s = Susp.delay (fn () => Cons (1, s))

We use loopback to define ones as follows:

val ones = Susp.loopback ones loop

The idea is that ones should be equivalent to Susp.delay (fn () => Cons

(1, ones)), as in the original definition and which is the result of evaluat-
ing Susp.loopback ones loop, assuming Susp.loopback is implemented
properly.

How is loopback implemented? We use a technique known as back-
patching. Here’s the code

fun loopback f =

let

exception Circular

val r = ref (fn () => raise Circular)

val t = fn () => (!r)()

in

r := f t ; t

end

First we allocate a reference cell which is initialized to a placeholder
that, if forced, raises the exception Circular. Then we define a thunk that,
when forced, forces the contents of this reference cell. This will be the
return value of loopback. But before returning, we assign to the reference
cell the result of applying the given function to the result thunk. This “ties
the knot” to ensure that the output is “looped back” to the input. Observe
that if the loop function touches its input suspension before yielding an
output suspension, the exception Circular will be raised.

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/memo.sml

31.5 Sample Code 263

31.5 Sample Code

APRIL 23, 2007 WORKING DRAFT

Chapter 32

Data Abstraction

An abstract data type (ADT) is a type equipped with a set of operations for
manipulating values of that type. An ADT is implemented by providing
a representation type for the values of the ADT and an implementation for
the operations defined on values of the representation type. What makes
an ADT abstract is that the representation type is hidden from clients of the
ADT. Consequently, the only operations that may be performed on a value
of the ADT are the given ones. This ensures that the representation may be
changed without affecting the behavior of the client — since the represen-
tation is hidden from it, the client cannot depend on it. This also facilitates
the implementation of efficient data structures by imposing a condition,
called a representation invariant, on the representation that is preserved by
the operations of the type. Each operation that takes a value of the ADT as
argument may assume that the representation invariant holds. In compen-
sation each operation that yields a value of the ADT as result must guar-
antee that the representation invariant holds of it. If the operations of the
ADT preserve the representation invariant, then it must truly be invariant
— no other code in the system could possibly disrupt it. Put another way,
any violation of the representation invariant may be localized to the im-
plementation of one of the operations. This significantly reduces the time
required to find an error in a program.

264

32.1 Dictionaries 265

32.1 Dictionaries

To make these ideas concrete we will consider the abstract data type of
dictionaries. A dictionary is a mapping from keys to values. For simplic-
ity we take keys to be strings, but it is possible to define a dictionary for
any ordered type; the values associated with keys are completely arbitrary.
Viewed as an ADT, a dictionary is a type ’a dict of dictionaries mapping
strings to values of type ’a together with empty, insert, and lookup op-
erations that create a new dictionary, insert a value with a given key, and
retrieve the value associated with a key (if any). In short a dictionary is an
implementation of the following signature:

signature DICT =

sig

type key = string

type ’a entry = key * ’a

type ’a dict

exception Lookup of key

val empty : ’a dict

val insert : ’a dict * ’a entry -> ’a dict

val lookup : ’a dict * key -> ’a

end

Notice that the type ’a dict is not specified in the signature, whereas the
types key and ’a entry are defined to be string and string * ’a, respec-
tively.

32.2 Binary Search Trees

A simple implementation of a dictionary is a binary search tree. A binary
search tree is a binary tree with values of an ordered type at the nodes
arranged in such a way that for every node in the tree, the value at that
node is greater than the value at any node in the left child of that node,
and smaller than the value at any node in the right child. It follows imme-
diately that no two nodes in a binary search tree are labelled with the same
value. The binary search tree property is an example of a representation
invariant on an underlying data structure. The underlying structure is a

APRIL 23, 2007 WORKING DRAFT

32.2 Binary Search Trees 266

binary tree with values at the nodes; the representation invariant isolates
a set of structures satisfying some additional, more stringent, conditions.

We may use a binary search tree to implement a dictionary as follows:

structure BinarySearchTree :> DICT =

struct

type key = string

type ’a entry = key * ’a

(* Rep invariant: ’a tree is a binary search tree *)

datatype ’a tree =

Empty |

Node of ’a tree * ’a entry * ’a tree

type ’a dict = ’a tree

exception Lookup of key

val empty = Empty

fun insert (Empty, entry) =

Node (Empty, entry, Empty)

| insert (n as Node (l, e as (k,), r), e’ as (k’,)) =

(case String.compare (k’, k)

of LESS => Node (insert (l, e’), e, r)

| GREATER => Node (l, e, insert (r, e’))

| EQUAL => n)

fun lookup (Empty, k) = raise (Lookup k)

| lookup (Node (l, (k, v), r), k’) =

(case String.compare (k’, k)

of EQUAL => v

| LESS => lookup (l, k’)

| GREATER => lookup (r, k’))

end

Notice that empty is defined to be a valid binary search tree, that insert
yields a binary search tree if its argument is one, and that lookup relies
on its argument being a binary search tree (if not, it might fail to find a
key that in fact occurs in the tree!). The structure BinarySearchTree is
sealed with the signature DICT to ensure that the representation type is
held abstract.

APRIL 23, 2007 WORKING DRAFT

32.3 Balanced Binary Search Trees 267

32.3 Balanced Binary Search Trees

The difficulty with binary search trees is that they may become unbal-
anced. In particular if we insert keys in ascending order, the represen-
tation is essentially just a list! The left child of each node is empty; the
right child is the rest of the dictionary. Consequently, it takes O(n) time in
the worse case to perform a lookup on a dictionary containing n elements.
Such a tree is said to be unbalanced because the children of a node have
widely varying heights. Were it to be the case that the children of every
node had roughly equal height, then the lookup would take O(lg n) time,
a considerable improvement.

Can we do better? Many approaches have been suggested. One that we
will consider here is an instance of what is called a self-adjusting tree, called
a red-black tree (the reason for the name will be apparent shortly). The gen-
eral idea of a self-adjusting tree is that operations on the tree may cause a
reorganization of its structure to ensure that some invariant is maintained.
In our case we will arrange things so that the tree is self-balancing, mean-
ing that the children of any node have roughly the same height. As we just
remarked, this ensures that lookup is efficient.

How is this achieved? By imposing a clever representation invariant on
the binary search tree, called the red-black tree condition. A red-black tree
is a binary search tree in which every node is colored either red or black
(with the empty tree being regarded as black) and such that the following
properties hold:

1. The children of a red node are black.

2. For any node in the tree, the number of black nodes on any two paths
from that node to a leaf is the same. This number is called the black
height of the node.

These two conditions ensure that a red-black tree is a balanced binary
search tree. Here’s why. First, observe that a red-black tree of black height
h has at least 2h− 1 nodes. We may prove this by induction on the structure
of the red-black tree. The empty tree has black-height 1 (since we consider
it to be black), which is at least 21 − 1, as required. Suppose we have a red
node. The black height of both children must be h, hence each has at most
2h − 1 nodes, yielding a total of 2× (2h − 1) + 1 = 2h+1− 1 nodes, which is
at least 2h − 1. If, on the other hand, we have a black node, then the black

APRIL 23, 2007 WORKING DRAFT

32.3 Balanced Binary Search Trees 268

height of both children is h− 1, and each have at most 2h−1 − 1 nodes, for
a total of 2× (2h−1 − 1) + 1 = 2h − 1 nodes. Now, observe that a red-black
tree of height h with n nodes has black height at least h/2, and hence has at
least 2h/2 − 1 nodes. Consequently, lg(n + 1) ≥ h/2, so h ≤ 2× lg(n + 1).
In other words, its height is logarithmic in the number of nodes, which
implies that the tree is height balanced.

To ensure logarithmic behavior, all we have to do is to maintain the red-
black invariant. The empty tree is a red-black tree, so the only question is
how to perform an insert operation. First, we insert the entry as usual for
a binary search tree, with the fresh node starting out colored red. In doing
so we do not disturb the black height condition, but we might introduce a
red-red violation, a situation in which a red node has a red child. We then
remove the red-red violation by propagating it upwards towards the root
by a constant-time transformation on the tree (one of several possibilities,
which we’ll discuss shortly). These transformations either eliminate the
red-red violation outright, or, in logarithmic time, push the violation to
the root where it is neatly resolved by recoloring the root black (which
preserves the black-height invariant!).

The violation is propagated upwards by one of four rotations. We will
maintain the invariant that there is at most one red-red violation in the
tree. The insertion may or may not create such a violation, and each prop-
agation step will preserve this invariant. It follows that the parent of a
red-red violation must be black. Consequently, the situation must look
like this. This diagram represents four distinct situations, according to
whether the uppermost red node is a left or right child of the black node,
and whether the red child of the red node is itself a left or right child. In
each case the red-red violation is propagated upwards by transforming it
to look like this. Notice that by making the uppermost node red we may be
introducing a red-red violation further up the tree (since the black node’s
parent might have been red), and that we are preserving the black-height
invariant since the great-grand-children of the black node in the original
situation will appear as children of the two black nodes in the re-organized
situation. Notice as well that the binary search tree conditions are also pre-
served by this transformation. As a limiting case if the red-red violation is
propagated to the root of the entire tree, we re-color the root black, which
preserves the black-height condition, and we are done re-balancing the
tree.

Let’s look in detail at two of the four cases of removing a red-red vio-

APRIL 23, 2007 WORKING DRAFT

images/rbt-red-red.gif
images/rbt-resolve.gif

32.3 Balanced Binary Search Trees 269

lation, those in which the uppermost red node is the left child of the black
node; the other two cases are handled symmetrically. If the situation looks
like this, we reorganize the tree to look like this. You should check that the
black-height and binary search tree invariants are preserved by this trans-
formation. Similarly, if the situation looks like this, then we reorganize the
tree to look like this (precisely as before). Once again, the black-height and
binary search tree invariants are preserved by this transformation, and the
red-red violation is pushed further up the tree.

Here is the ML code to implement dictionaries using a red-black tree.
Notice that the tree rotations are neatly expressed using pattern matching.

structure RedBlackTree :> DICT =
struct
type key = string
type ’a entry = string * ’a

(* Inv: binary search tree + red-black conditions *)
datatype ’a dict =
Empty |
Red of ’a entry * ’a dict * ’a dict |
Black of ’a entry * ’a dict * ’a dict

val empty = Empty

exception Lookup of key

fun lookup (dict, key) =
let

fun lk (Empty) = raise (Lookup key)
| lk (Red tree) = lk’ tree
| lk (Black tree) = lk’ tree

and lk’ ((key1, datum1), left, right) =
(case String.compare(key,key1)
of EQUAL => datum1
| LESS => lk left
| GREATER => lk right)

in
lk dict

end

fun restoreLeft
(Black (z, Red (y, Red (x, d1, d2), d3), d4)) =

Red (y, Black (x, d1, d2), Black (z, d3, d4))
| restoreLeft

APRIL 23, 2007 WORKING DRAFT

images/rbt-ll.gif
images/rbt-rot.gif
images/rbt-lr.gif
images/rbt-rot.gif

32.3 Balanced Binary Search Trees 270

(Black (z, Red (x, d1, Red (y, d2, d3)), d4)) =
Red (y, Black (x, d1, d2), Black (z, d3, d4))

| restoreLeft dict = dict

fun restoreRight
(Black (x, d1, Red (y, d2, Red (z, d3, d4)))) =

Red (y, Black (x, d1, d2), Black (z, d3, d4))
| restoreRight

(Black (x, d1, Red (z, Red (y, d2, d3), d4))) =
Red (y, Black (x, d1, d2), Black (z, d3, d4))

| restoreRight dict = dict

fun insert (dict, entry as (key, datum)) =
let

(* val ins : ’a dict->’a dict insert entry *)
(* ins (Red) may have red-red at root *)
(* ins (Black) or ins (Empty) is red/black *)
(* ins preserves black height *)
fun ins (Empty) = Red (entry, Empty, Empty)
| ins (Red (entry1 as (key1, datum1), left, right)) =
(case String.compare (key, key1)

of EQUAL => Red (entry, left, right)
| LESS => Red (entry1, ins left, right)
| GREATER => Red (entry1, left, ins right))

| ins (Black (entry1 as (key1, datum1), left, right)) =
(case String.compare (key, key1)

of EQUAL => Black (entry, left, right)
| LESS => restoreLeft (Black (entry1, ins left, right))
| GREATER => restoreRight (Black (entry1, left, ins right)))

in
case ins dict
of Red (t as (, Red ,)) => Black t (* re-color *)
| Red (t as (, , Red)) => Black t (* re-color *)
| dict => dict

end

end

It is worthwhile to contemplate the role played by the red-black invariant
in ensuring the correctness of the implementation and the time complexity
of the operations.

APRIL 23, 2007 WORKING DRAFT

32.4 Abstraction vs. Run-Time Checking 271

32.4 Abstraction vs. Run-Time Checking

You might wonder whether we could equally well use run-time checks to
enforce representation invariants. The idea would be to introduce a “de-
bug flag” that, when set, causes the operations of the dictionary to check
that the representation invariant holds of their arguments and results. In
the case of a binary search tree this is surely possible, but at considerable
expense since the time required to check the binary search tree invariant
is proportional to the size of the binary search tree itself, whereas an in-
sert (for example) can be performed in logarithmic time. But wouldn’t we
turn off the debug flag before shipping the production copy of the code?
Yes, indeed, but then the benefits of checking are lost for the code we care
about most! (To paraphrase Tony Hoare, it’s as if we used our life jackets
while learning to sail on a pond, then tossed them away when we set out
to sea.) By using the type system to enforce abstraction, we can confine the
possible violations of the representation invariant to the dictionary pack-
age itself, and, moreover, we need not turn off the check for production
code because there is no run-time penalty for doing so.

A more subtle point is that it may not always be possible to enforce data
abstraction at run-time. Efficiency considerations aside, you might think
that we can always replace static localization of representation errors by
dynamic checks for violations of them. But this is false! One reason is that
the representation invariant might not be computable. As an example,
consider an abstract type of total functions on the integers, those that are
guaranteed to terminate when called, without performing any I/O or hav-
ing any other computational effect. It is a theorem of recursion theory that
no run-time check can be defined that ensures that a given integer-valued
function is total. Yet we can define an abstract type of total functions that,
while not admitting every possible total function on the integers as val-
ues, provides a useful set of such functions as elements of a structure. By
using these specified operations to create a total function, we are in effect
encoding a proof of totality in the code itself.

Here’s a sketch of such a package:

signature TIF = sig

type tif

val apply : tif -> (int -> int)

val id : tif

APRIL 23, 2007 WORKING DRAFT

32.5 Sample Code 272

val compose : tif * tif -> tif

val double : tif
...

end

structure Tif :> TIF = struct

type tif = int->int

fun apply t n = t n

fun id x = x

fun compose (f, g) = f o g

fun double x = 2 * x
...

end

Should the application of such some value of type Tif.tif fail to termi-
nate, we know where to look for the error. No run-time check can assure
us that an arbitrary integer function is in fact total.

Another reason why a run-time check to enforce data abstraction is im-
possible is that it may not be possible to tell from looking at a given value
whether or not it is a legitimate value of the abstact type. Here’s an exam-
ple. In many operating systems processes are “named” by integer-value
process identifiers. Using the process identifier we may send messages to
the process, cause it to terminate, or perform any number of other opera-
tions on it. The thing to notice here is that any integer at all is a possible
process identifier; we cannot tell by looking at the integer whether it is
indeed valid. No run-time check on the value will reveal whether a given
integer is a “real” or “bogus” process identifier. The only way to know is
to consider the “history” of how that integer came into being, and what
operations were performed on it. Using the abstraction mechanisms just
described, we can enforce the requirement that a value of type pid, whose
underlying representation is int, is indeed a process identifier. You are
invited to imagine how this might be achieved in ML.

32.5 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/repinv.sml

Chapter 33

Representation Independence and
ADT Correctness

This chapter is concerned with proving correctness of ADT implementa-
tions by exhibiting a simulation relation between a reference implemen-
tation (taken, or known, to be correct) and a candidate implementation
(whose correctness is to be established). The methodology generalizes
Hoare’s notion of abstraction functions to an arbitrary relation, and relies
on Reynolds’ notion of parametricity to conclude that related implemen-
tations engender the same observable behavior in all clients.

33.1 Sample Code

Here is the code for this chapter.

273

examples/adtsim.sml

Chapter 34

Modularity and Reuse

1. Naming conventions.

2. Exploiting structural subtyping (type t convention).

3. Impedance-matching functors.

34.1 Sample Code

Here is the code for this chapter.

274

examples/mod.sml

Chapter 35

Dynamic Typing and Dynamic
Dispatch

This chapter is concerned with dynamic typing in a statically typed lan-
guage. It is commonly thought that there is an “opposition” between
statically-typed languages (such as Standard ML) and dynamically-typed
languages (such as Scheme). In fact, dynamically typed languages are a
special case of statically-typed languages! We will demonstrate this by
exhibiting a faithful representation of Scheme inside of ML.

35.1 Sample Code

Here is the code for this chapter.

275

examples/dyn.sml

Chapter 36

Concurrency

In this chapter we consider some fundamental techniques for concurrent
programming using CML.

36.1 Sample Code

Here is the code for this chapter.

276

examples/conc.sml

Part V

Appendices

277

The Standard ML Basis Library

The Standard ML Basis Library is a collection of modules providing a basic
collection of abstract types that are shared by all implementations of Stan-
dard ML. All of the primitive types of Standard ML are defined in struc-
tures in the Standard Basis. It also defines a variety of other commonly-
used abstract types.

Most implementations of Standard ML include module libraries imple-
menting a wide variety of services. These libraries are usually not portable
across implementations, particularly not those that are concerned with the
internals of the compiler or its interaction with the host computer system.
Please refer to the documentation of your compiler for information on its
libraries.

278

http://cm.bell-labs.com/cm/cs/what/smlnj/basis/pages/sml-std-basis.html

Compilation Management

All program development environments provide tools to support building
systems out of collections of separately-developed modules. These tools
usually provide services such as:

1. Source code management such as version and revision control.

2. Separate compilation and linking to support simultaneous development
and to reduce build times.

3. Libraries of re-usable modules with consistent conventions for identify-
ing modules and their components.

4. Release management for building and disseminating systems for gen-
eral use.

Different languages, and different vendors, support these activities in dif-
ferent ways. Some rely on generic tools, such as the familiar Unix tools,
others provide proprietary tools, commonly known as IDE’s (integrated
development environments).

Most implementations of Standard ML rely on a combination of generic
program development tools and tools specific to that implementation of
the language. Rather than attempt to summarize all of the known im-
plementations, we will instead consider the SML/NJ Compilation Manager
(CM) as a representative program development framework for ML. Other
compilers provide similar tools; please consult your compiler’s documen-
tation for details of how to use them.

279

36.2 Overview of CM 280

36.2 Overview of CM

36.3 Building Systems with CM

36.4 Sample Code

Here is the code for this chapter.

APRIL 23, 2007 WORKING DRAFT

examples/cm.sml

Sample Programs

A number of example programs illustrating the concepts discussed in the
preceding chapters are available in the Sample Code directory on the world-
wide web.

281

Bibliography

[1] Emden R. Gansner and John H. Reppy, editors. The Standard ML Basis
Library. Cambridge University Press, 2000.

[2] Peter Lee. Standard ML at Carnegie Mellon. Available within CMU at
http://www.cs.cmu.edu/afs/cs/local/sml/common/smlguide.

[3] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

282

	Preface
	I Overview
	1 Programming in Standard ML
	1.1 A Regular Expression Package
	1.2 Sample Code

	II The Core Language
	2 Types, Values, and Effects
	2.1 Evaluation and Execution
	2.2 The ML Computation Model
	2.2.1 Type Checking
	2.2.2 Evaluation

	2.3 Types, Types, Types
	2.4 Type Errors
	2.5 Sample Code

	3 Declarations
	3.1 Variables
	3.2 Basic Bindings
	3.2.1 Type Bindings
	3.2.2 Value Bindings

	3.3 Compound Declarations
	3.4 Limiting Scope
	3.5 Typing and Evaluation
	3.6 Sample Code

	4 Functions
	4.1 Functions as Templates
	4.2 Functions and Application
	4.3 Binding and Scope, Revisited
	4.4 Sample Code

	5 Products and Records
	5.1 Product Types
	5.1.1 Tuples
	5.1.2 Tuple Patterns

	5.2 Record Types
	5.3 Multiple Arguments and Multiple Results
	5.4 Sample Code

	6 Case Analysis
	6.1 Homogeneous and Heterogeneous Types
	6.2 Clausal Function Expressions
	6.3 Booleans and Conditionals, Revisited
	6.4 Exhaustiveness and Redundancy
	6.5 Sample Code

	7 Recursive Functions
	7.1 Self-Reference and Recursion
	7.2 Iteration
	7.3 Inductive Reasoning
	7.4 Mutual Recursion
	7.5 Sample Code

	8 Type Inference and Polymorphism
	8.1 Type Inference
	8.2 Polymorphic Definitions
	8.3 Overloading
	8.4 Sample Code

	9 Programming with Lists
	9.1 List Primitives
	9.2 Computing With Lists
	9.3 Sample Code

	10 Concrete Data Types
	10.1 Datatype Declarations
	10.2 Non-Recursive Datatypes
	10.3 Recursive Datatypes
	10.4 Heterogeneous Data Structures
	10.5 Abstract Syntax
	10.6 Sample Code

	11 Higher-Order Functions
	11.1 Functions as Values
	11.2 Binding and Scope
	11.3 Returning Functions
	11.4 Patterns of Control
	11.5 Staging
	11.6 Sample Code

	12 Exceptions
	12.1 Exceptions as Errors
	12.1.1 Primitive Exceptions
	12.1.2 User-Defined Exceptions

	12.2 Exception Handlers
	12.3 Value-Carrying Exceptions
	12.4 Sample Code

	13 Mutable Storage
	13.1 Reference Cells
	13.2 Reference Patterns
	13.3 Identity
	13.4 Aliasing
	13.5 Programming Well With References
	13.5.1 Private Storage
	13.5.2 Mutable Data Structures

	13.6 Mutable Arrays
	13.7 Sample Code

	14 Input/Output
	14.1 Textual Input/Output
	14.2 Sample Code

	15 Lazy Data Structures
	15.1 Lazy Data Types
	15.2 Lazy Function Definitions
	15.3 Programming with Streams
	15.4 Sample Code

	16 Equality and Equality Types
	16.1 Sample Code

	17 Concurrency
	17.1 Sample Code

	III The Module Language
	18 Signatures and Structures
	18.1 Signatures
	18.1.1 Basic Signatures
	18.1.2 Signature Inheritance

	18.2 Structures
	18.2.1 Basic Structures
	18.2.2 Long and Short Identifiers

	18.3 Sample Code

	19 Signature Matching
	19.1 Principal Signatures
	19.2 Matching
	19.3 Satisfaction
	19.4 Sample Code

	20 Signature Ascription
	20.1 Ascribed Structure Bindings
	20.2 Opaque Ascription
	20.3 Transparent Ascription
	20.4 Transparency, Opacity, and Dependency
	20.5 Sample Code

	21 Module Hierarchies
	21.1 Substructures
	21.2 Sample Code

	22 Sharing Specifications
	22.1 Combining Abstractions
	22.2 Sample Code

	23 Parameterization
	23.1 Functor Bindings and Applications
	23.2 Functors and Sharing Specifications
	23.3 Avoiding Sharing Specifications
	23.4 Sample Code

	IV Programming Techniques
	24 Specifications and Correctness
	24.1 Specifications
	24.2 Correctness Proofs
	24.3 Enforcement and Compliance

	25 Induction and Recursion
	25.1 Exponentiation
	25.2 The GCD Algorithm
	25.3 Sample Code

	26 Structural Induction
	26.1 Natural Numbers
	26.2 Lists
	26.3 Trees
	26.4 Generalizations and Limitations
	26.5 Abstracting Induction
	26.6 Sample Code

	27 Proof-Directed Debugging
	27.1 Regular Expressions and Languages
	27.2 Specifying the Matcher
	27.3 Sample Code

	28 Persistent and Ephemeral Data Structures
	28.1 Persistent Queues
	28.2 Amortized Analysis
	28.3 Sample Code

	29 Options, Exceptions, and Continuations
	29.1 The n-Queens Problem
	29.2 Solution Using Options
	29.3 Solution Using Exceptions
	29.4 Solution Using Continuations
	29.5 Sample Code

	30 Higher-Order Functions
	30.1 Infinite Sequences
	30.2 Circuit Simulation
	30.3 Sample Code

	31 Memoization
	31.1 Cacheing Results
	31.2 Laziness
	31.3 Lazy Data Types in SML/NJ
	31.4 Recursive Suspensions
	31.5 Sample Code

	32 Data Abstraction
	32.1 Dictionaries
	32.2 Binary Search Trees
	32.3 Balanced Binary Search Trees
	32.4 Abstraction vs. Run-Time Checking
	32.5 Sample Code

	33 Representation Independence and ADT Correctness
	33.1 Sample Code

	34 Modularity and Reuse
	34.1 Sample Code

	35 Dynamic Typing and Dynamic Dispatch
	35.1 Sample Code

	36 Concurrency
	36.1 Sample Code

	V Appendices
	The Standard ML Basis Library
	Compilation Management
	36.2 Overview of CM
	36.3 Building Systems with CM
	36.4 Sample Code

	Sample Programs

