
openssl egg
Bindings to the OpenSSL SSL/TLS library

Extension for Chicken Scheme
Version 1.1.1

Thomas Chust

http://www.chust.org/

i

Table of Contents

1 About this egg . 1
1.1 Version history . 1
1.2 Usage . 1

2 Documentation . 2
2.1 Client procedures. 3
2.2 Server procedures . 3
2.3 Certificate procedures . 4

3 License . 6

Index . 7

Chapter 1: About this egg 1

1 About this egg

1.1 Version history

1.1.1 Output that would block properly suspends threads now

1.1.0 ##sys#tcp-port->fileno and tcp-addresses are now supported on SSL ports

1.0.0 Corrections, tests against openssl s_server, openssl s_client and compar-
ison with the PLT module

0.4.0 Server functionality added

0.3.1 Client-only with certificate functions

0.2.0 Client-only prerelease

1.2 Usage

Load this egg like so:
(require-extension openssl)

Chapter 2: Documentation 2

2 Documentation

This reference is basically a copy of the documentation of PLT Scheme’s openssl module.
The API provided here is largely compatible with that one. The exceptions are the missing
.../enable-break and ssl-available? procedures and the missing reuse? argument to
ssl-listen.

Please note that all the procedures described here may fail and raise a non-continuable
exception of the composite type (exn i/o net openssl). The openssl property condition
contains a property called status which will be bound to a symbol corresponding to the
OpenSSL error code that was encountered. It may have the following values:

Symbol Meaning

’zero-return The SSL/TLS connection was shut down unexpect-
edly but in a controlled way

’want-read The operation didn’t finish because data must be
read from a nonblocking socket. This error condition
only occurs though, when it could not be handled
automatically because there is actually no socket in-
volved or some other strange thing happended in the
OpenSSL library.

’want-write The operation didn’t finish because data must be
read from a nonblocking socket. The same comment
as for ’want-read applies.

’want-connect The operation didn’t finish because a nonblocking
socket must first be connected. The same comment
as for ’want-read applies.

’want-accept The operation didn’t finish because a nonblocking
socket must first be acepted. The same comment as
for ’want-read applies.

’want-X509-lookup The operation failed because an application callback
that could not even have been registered through
this API was apparently registered anyway and has
asked to be called again.

’syscall Some low-level I/O error occurred.

’ssl Something went wrong in the OpenSSL library itself.

#f The error is not classified

http://www.plt-scheme.org/

Chapter 2: Documentation 3

Of course the exception that is thrown also has an appropriate message set.
If you feel that this documentation lacks some information, please also consider the

manual pages of OpenSSL.

2.1 Client procedures

[procedure]ssl-connect
(ssl-connect (hostname <string>) #!optional (port <exact>) ((ctx <ssl-client-context|symbol>) ’sslv2-or-v3)) => <input-port>, <output-port>

Connect to the given host on the given port (a number from 1 to 65535). This
connection will be encrypted using SSL. The return values are as tcp-connect; an
input port and an output port.
The optional ctx argument determines which encryption protocol is used, whether the
server’s certificate is checked, etc. The argument can be either a client context created
by ssl-make-client-context (see below), or one of the following symbols: ’sslv2-
or-v3 (the default), ’sslv2, ’sslv3, or ’tls. See ssl-make-client-context for
further details, including the meanings of the protocol symbols.

[procedure]ssl-make-client-context
(ssl-make-client-context #!optional ((protocol <symbol>) ’sslv2-or-v3)) => <ssl-client-context>

Creates a context to be supplied to ssl-connect. The context identifies a commu-
nication protocol (as selected by protocol), and also holds certificate information
(i.e., the client’s identity, its trusted certificate authorities, etc.). See the "Certificate
procedures" section below for more information on certificates.
The protocol must be one of the following:

Symbol Meaning

’sslv2-or-v3 SSL protocol versions 2 or 3, as appropriate

’sslv2 SSL protocol version 2

’sslv3 SSL protocol version 3

’tls the TLS protocol version 1

By default, the context returned by ssl-make-client-context does not request
verification of a server’s certificate. Use ssl-set-verify! to enable such verification.

[procedure]ssl-client-context?
(ssl-client-context? (obj <top>)) => <bool>

Returns #t if obj is a value produced by ssl-make-client-context, #f otherwise.

2.2 Server procedures

[procedure]ssl-listen
(ssl-listen (port <exact>) #!optional ((backlog <exact>) 4) ((hostname <string>) #f) ((ctx <ssl-client-context|symbol>) ’sslv2-or-v3)) => <ssl-listener>

http://www.openssl.org/docs/ssl/ssl.html

Chapter 2: Documentation 4

Like tcp-listen, but the result is an SSL listener. The extra optional ctx argument
is as for ssl-connect.
Call ssl-load-certificate-chain! and ssl-load-private-key! to avoid a "no
shared cipher" error on accepting connections.

[procedure]ssl-close
[procedure]ssl-listener?
[procedure]ssl-listener-port
[procedure]ssl-listener-fileno
[procedure]ssl-listener-accept-ready?
[procedure]ssl-accept

(ssl-close (listener <ssl-listener>)) => <void>
(ssl-listener? (obj <top>)) => <bool>
(ssl-listener-port (listener <ssl-listener>)) => <exact>
(ssl-listener-fileno (listener <ssl-listener>)) => <exact>
(ssl-listener-accept-ready? (listener <ssl-listener>)) => <bool>
(ssl-accept (listener <ssl-listener>)) => <input-port>, <output-port>

Analogous to tcp-close, tcp-listener?, tcp-listener-port, tcp-listener-
fileno, tcp-accept-ready? and tcp-accept.

2.3 Certificate procedures

[procedure]ssl-load-certificate-chain!
(ssl-load-certificate-chain! (obj <ssl-client-context|ssl-listener>) (pathname <string>)) => <void>

Loads a PEM-format certification chain file for connections to be made with the given
context (created by ssl-make-context) or listener (created by ssl-listener).
This chain is used to identify the client or server when it connects or accepts connec-
tions. Loading a chain overwrites the old chain. Also call ssl-load-private-key!
to load the certificate’s corresponding key.

[procedure]ssl-load-private-key!
(ssl-load-private-key! (obj <ssl-client-context|ssl-listener>) (pathname <string>) #!optional ((rsa? <bool>) #t) ((asn1? <bool>) #f)) => <void>

Loads the first private key from pathname for the given client context or listener. The
key goes with the certificate that identifies the client or server.
If rsa? is #t, the first RSA key is read (i.e., non-RSA keys are skipped). If asn1? is
#t, the file is parsed as ASN1 format instead of PEM.

[procedure]ssl-set-verify!
(ssl-set-verify! (obj <ssl-client-context|ssl-listener>) (v <bool>)) => <void>

Enables or disables verification of a connection peer’s certificates. By default, verifi-
cation is disabled.
Enabling verification also requires, at a minimum, designating trusted certificate au-
thorities with ssl-load-verify-root-certificates!.

[procedure]ssl-load-verify-root-certificates!
(ssl-load-verify-root-certificates! (obj <ssl-client-context|ssl-listener>) (pathname <string>) #!optional ((dirname <string>) #f)) => <void>

Chapter 2: Documentation 5

Loads a PEM-format file containing trusted certificates that are used to verify the
certificates of a connection peer. Call this procedure multiple times to load multiple
sets of trusted certificates.
The optional second argument specifies a directory in which certificates are automat-
ically looked up. You may also only pass a path in this argument and pass #f as
the first argument to this procedure. See the OpenSSL documentation on SSL_CTX_
load_verify_locations for more details.

[procedure]ssl-load-suggested-certificate-authorities!
(ssl-load-suggested-certificate-authorities! (obj <ssl-client-context|ssl-listener>) (pathname <string>)) => <void>

Loads a PEM-format file containing certificates that are used by a server. The cer-
tificate list is sent to a client when the server requests a certificate as an indication
of which certificates the server trusts.
Loading the suggested certificates does not imply trust, however; any certificate pre-
sented by the client will be checked using the trusted roots loaded by ssl-load-
verify-root-certificates!.

http://www.openssl.org/docs/ssl/SSL_CTX_load_verify_locations.html
http://www.openssl.org/docs/ssl/SSL_CTX_load_verify_locations.html

Chapter 3: License 6

3 License

Copyright (c) 2005, Thomas Chust <chust@web.de>. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. Redistributions in
binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. Neither the name of the
author nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index 7

Index

ssl-accept . 4
ssl-client-context? . 3
ssl-close. 4
ssl-connect . 3
ssl-listen . 3
ssl-listener-accept-ready? 4
ssl-listener-fileno . 4
ssl-listener-port . 4

ssl-listener? . 4
ssl-load-certificate-chain! 4
ssl-load-private-key! . 4
ssl-load-suggested-certificate-authorities!

. 5
ssl-load-verify-root-certificates!. 4
ssl-make-client-context . 3
ssl-set-verify! . 4

	About this egg
	Version history
	Usage

	Documentation
	Client procedures
	Server procedures
	Certificate procedures

	License
	Index

