aquaterm egg

Bindings to the C API for AquaTerm
Extension for Chicken Scheme
Version 1.0.0

Thomas Chust

http://www.chust.org/

Table of Contents

1 Aboutthiseggcciiiiiiiia.. 1
1.1 Version historyo 1
1.2 USAZe o oot 1

2 Documentation..................... ..., 2
2.1 Initializing and Deinitializing the Library 2
2.2 Controlling Plots......... ... 2
2.3 ClPPING - - oo et e 3
2.4 Managing Colorsooiiii 3
2.5 Managing the Colormap 4
2.6 Drawing Texto 4
2.7 Drawing Lines 5
2.8 Drawing Rectangles and Polygons 6
2.9 Drawing Bitmaps.o 7
2.10 Handling Events 8

3 Examples.........cooiiiiiiiiiiiiiiiiiiin., 9

4 LiCeNSEe......ceuuiiiiiiiiennnnnnnnnnneensns 11

Chapter 1: About this egg

1 About this egg

1.1 Version history

1.0.0 Initial release

1.2 Usage
Load this egg like so:

(require-extension aquaterm)

Chapter 2: Documentation 2

2 Documentation

This documentation page is acutally a rewrite of the documentation for the Objective C
AQTAdapter class. The C API this binding is relying on is not documented in its own
right.

For in-depth information on the functionality of the routines and general information
you should consult the original AquaTerm documentation as well as this manual.

Please not that the whole AquaTerm library is using the unit pt for its plot coordinates

and

sizes unless stated otherwise.

2.1 Initializing and Deinitializing the Library

aqt

aqt

tinit [procedure]
(aqt:init) => <boolean>

Initializes the library and return whether it was successful. You should call this
routine before using any of the other functions.

:terminate [procedure]
(aqt:terminate) => <void>

Deinitializes the library, call it as the last thing before terminating your program.

2.2 Controlling Plots

aqt

aqt:

aqt

aqt

aqt

:open-plot [procedure]
(aqt:open-plot (id <exact>)) => <void>

Creates a new plot with an arbitrary identification number that can be used in calls
to aqt:select-plot to reference that plot.

Note that the plot is not displayed before you call aqt:render-plot!

select-plot [procedure]
(agt:select-plot (id <exact>)) => <void>

Selects the plot identified by id as the target for subsequent commands.

:set-plot-size! [procedure]
(agqt:set-plot-size! (width <number>) (height <float>)) => <void>

Defines the limits of the current plot area.

This function must be called before any drawing command following an aqt:open-
plot or agt:clear-plot! command, otherwise behaviour is undefined.

:set-plot-title! [procedure]
(aqt:set-plot-title! (title <string>)) => <void>
Sets a title for the current plot, which will be displayed in the plot window’s titlebar
and will be used as a default filename when saving the plot from AquaTerm.

:render-plot! [procedure]
(agt:render-plot!) => <void>
Displays the current plot in an AquaTerm window rendering all drawing operations
performed so far.

http://aquaterm.sourceforge.net/

Chapter 2: Documentation 3

aqt:clear-plot! [procedure]
(agt:clear-plot!) => <void>

Clears the current plot and resets all its attributes. Remeber to call aqt:set-plot-
size! again after using this function.

To clear the plot without resetting it, use the aqt:erase-rect! procedure.

aqt:close-plot! [procedure]
(agt:close-plot!) => <void>

Closes the connection to the current plot and disables event handling.

Note that this function does not cause the plot window to disappear if it was shown
before.

2.3 Clipping

aqt:set-clip-rect! [procedure]
(agt:set-clip-rect! (x <number>) (y <number>) (width <number>) (height <number>))

Set a rectangular clipping region to apply to all subsequent operations, until changed
again by aqt:set-clip-rect! or aqt:set-default-clip-rect!
aqt:set-default-clip-rect! [procedure]
(aqt:set-default-clip-rect!) => <void>

Reset the clipping region to the entire plot for all subsequent operations, until changed
again by aqt:set-clip-rect! or aqt:set-default-clip-rect!

2.4 Managing Colors

aqt:set-color! [procedure]
(agt:set-color! (red <number>) (green <number>) (blue <number>)) => <void>

Set the drawing color in the active plot to the given red, green and blue intensities
between 0 and 1.

aqt:set-background-color! [procedure]
(aqt:set-background-color! (red <number>) (green <number>) (blue <number>)) => <v

Set the background color in the active plot to the given red, green and blue intensities
between 0 and 1.

aqt:get-color [procedure]
(agt:get-color) => <number>, <number>, <number>

Retrieves the drawing color of the active plot and returns three values for its red,
green and blue intensities between 0 and 1.

aqt:get-background-color [procedure]
(aqt:get-background-color) => <number>, <number>, <number>

Retrieves the background color of the active plot and returns three values for its red,
green and blue intensities between 0 and 1.

Chapter 2: Documentation 4

2.5 Managing the Colormap

aqt:

aqt:

aqt

aqt

aqt

colormap-size [procedure]
(aqt:colormap-size) => <exact>

Returns the number of colormap entries available for the programmer.

set-colormap-entry! [procedure]
(agt:set-colormap-entry! (idx <exact>) (red <number>) (green <number>) (blue <num

Set the entry at position idx in the colormap to the given red, green and blue

intensities between 0 and 1.

:get-colormap-entry [procedure]
(aqt:get-colormap-entry (idx <exact>)) => <number>, <number>, <number>

Retrieves the color at index idx in the colormap and returns three values for its red,
green and blue intensities between 0 and 1.

:take-color-from-colormap-entry! [procedure]
(aqt:take-color-from-colormap-entry! (idx <exact>)) => <void>
Set the drawing color in the active plot to the value of the colormap entry indicated
by idx.

:take-background-color-from-colormap-entry! [procedure]
(aqt:take-background-color-from-colormap-entry! (idx <exact>)) => <void>

Set the background color in the active plot to the value of the colormap entry indicated
by idx.

2.6 Drawing Text

aqt

aqt

aqt

:set-fontname! [procedure]
(aqt:set-fontname! (name <string>)) => <void>

Sets the font to be used for future operations.

The default font is "Times-Roman".

:set-fontsize! [procedure]
(aqt:set-fontsize! (size <number>)) => <void>

Sets the font size in points for future operations.
The default font size are 14 pt.

radd-label! [procedure]
(agt:add-label! (text <string>) (x <number>) (y <number>) (angle <number>) #!opti

Adds text at position x, y, rotated by angle degrees and aligned vertically and
horizontally (with respect to position and rotation) according to h-align and v-
align.

The following values are allowed for the alignment parameters:

h-align — Horizontal Alignment

Chapter 2: Documentation 5

left
center

right

v-align — Vertical Alignment
middle

baseline

bottom

top

aqt:add-sheared-label! [procedure]
(agt:add-sheared-label! (text <string>) (x <number>) (y <number>) (angle <number>

Works like aqt:add-1label! but additionally shears the text by shear-angle degrees
in order to look right in 3D images for example.

2.7 Drawing Lines

aqt:set-linewidth! [procedure]
(agt:set-linewidth! (width <number>)) => <void>

Sets the current linewidth to width points, used for all subsequent lines.

Any line currently being built by aqt:move-to! and aqt:add-line-to! will be con-
sidered finished since any coalesced sequence of line segments must share the same
linewidth.

The default linewidth is 1 pt.

aqt:set-linestyle-pattern! [procedure]
(agt:set-linestyle-pattern! (phase <number>) . pattern) => <void>

Set the current line style to pattern style, used for all subsequent lines. The linestyle
is specified as at most 8 numbers, where even positions in the list correspond to
dash-lengths and odd positions correspond to gap-lengths.

To produce e.g. a dash-dotted line, use the command (aqt:set-linestyle-
pattern! 0421 2).

aqt:set-linestyle-solid! [procedure]
(aqt:set-linestyle-solid!) => <void>

Sets the current line style to solid, used for all subsequent lines.
This is the default setting.

Chapter 2: Documentation 6

aqt:set-line-cap-style! [procedure]
(agqt:set-line-cap-style! (style <symbol>)) => <void>

Sets the current line cap style, used for all subsequent lines.

Any line currently being built by aqt:move-to! and aqt:add-line-to! will be con-
sidered finished since any coalesced sequence of line segments must share the same
cap style.

The style parameter can have the following values:

Style Meaning

butt Lines do not extend beyond their endpoint.

round Lines extend into a half-circle beyond their endpoint.

square Lines extend into a half-square beyond their end-
point.

The default line cap style is round.

aqt:move-to! [procedure]
(agt:move-to! (x <number>) (y <number>)) => <void>

Moves the current point to x, y in preparation for a new sequence of line segments.

aqt:add-line-to! [procedure]
(aqt:add-line-to! (x <number>) (y <number>)) => <void>

Adds a line segment from the current point (given by a previous aqt:move-to! or
aqt:add-line-to!) to x, y and sets the target position as the new current point.

aqt:add-polyline! [procedure]
(agt:add-polyline! (points <list>)) => <void>

Adds a sequence of line segments specified by a list of start-, join-, and endpoint(s)
in points, a list of two number lists.

2.8 Drawing Rectangles and Polygons

aqt:move-to-vertex! [procedure]
(agt:move-to-vertex! (x <number>) (y <number>)) => <void>

Moves the current point to x, y in preparation for a new sequence of polygon edges.

aqt:add-edge-to-vertex! [procedure]
(agt:add-edge-to-vertex! (x <number>) (y <number>)) => <void>

Adds a polygon edge from the current point (given by a previous aqt:move-to-
vertex! or aqt:add-edge-to-vertex!) to x, y and sets the target position as the
new current point.

Chapter 2: Documentation 7

aqt:add-polygon! [procedure]
(agt:add-polygon! (points <list>)) => <void>

Adds a polygon specified by a list of vertices in points, a list of two number lists.

aqt:add-filled-rect! [procedure]
(agt:add-filled-rect! (x <number>) (y <number>) (width <number>) (height <number>

Adds a filled rectangle and attempts to remove any objects that will be covered by
it.

aqt:erase-rect! [procedure]
(aqt:erase-rect! (x <number>) (y <number>) (width <number>) (height <number>)) =>

Removes any objects completely inside aRect. Does not force a redraw of the plot.

2.9 Drawing Bitmaps

agt:set-image-transform! [procedure]
(aqt:set-image-transform! (M-11 <number>) (M-12 <number>) (M-21 <number>) (M-22 <

Sets a transformation matrix for images added by aqt:add-transformed-image-
with-bitmap!, see the ADC Reference Documentation on Basic Drawing for more
information how this works.

aqt:reset-image-transform! [procedure]
(aqt:reset-image-transform!) => <void>

Sets the transformation matrix to unity, i.e. no transform.
aqt:add-image-with-bitmap! [procedure]
(aqt:add-image-with-bitmap! (data <string|byte-vector>) (data-width <exact>) (dat

Adds a bitmap image of size data-width * data-height pixels to the plot at position
X, ¥, scaling it to width x height plot units.

The bitmap must be stored in data as 24 bit per pixel, 8 bit per color channel raw
RGB data.

Does not apply transform.

aqt:add-transformed-image-with-bitmap! [procedure]
(aqt:add-transformed-image-with-bitmap! (data <string|byte-vector>) (data-width <

Adds a bitmap image of size data-width * data-height pixels to the plot at position
X, v, scaling it to width x height plot units and applying the stored transformation
matrix to it.

The bitmap must be stored in data as 24 bit per pixel, 8 bit per color channel raw
RGB data.

http://developer.apple.com/documentation/Cocoa/Conceptual/DrawBasic/Concepts/transforms.html#//apple_ref/doc/uid/20000887

Chapter 2: Documentation 8

2.10 Handling Events

aqt:set-accepting-events! [procedure]
(agt:set-accepting-events! (yes <boolean>)) => <void>

Inform AquaTerm whether or not events should be passed from the currently selected
plot. Deactivates event passing from any plot previously set to pass events.

aqt:get-last-event [procedure]
(aqt:get-last-event) => <list|boolean>

Reads the last event logged by the viewer. Will always return #f unless aqt:set-
accepting-events! was called with a #t argument.

The event is returned by AquaTerm as a string but is decoded internally and passed
back as follows:

Return value Meaning
#f No event was received.
(’mouse (x y) button) The mouse-button with the number button was

clicked at the position x, y in plot coordinates.

(Pkey (x y) key) The key corresponding to the character key was
clicked while the mouse was at the position x, y in
plot coordinates.

Should the event returned from the library encode an error, a continuable exception
of the composite kind (exn aquaterm) is thrown, which has an additional property
type holding either the symbol server or general depending on the source of the
error.

aqt:wait-next-event [procedure]
(agqt:wait-next-event) => <list|boolean>

Works analogous to agt:get-last-event but blocks and waits for an event instead
of returning immediately.

Chapter 3: Examples 9

3 Examples

The following code is a free translation of the C API demo program shipped with AquaTerm.
Most of the functionality of the library is demonstrated here.

;53 amb—-demo.scm

;555 A solution for the Kalotan puzzle using amb

(require-extension amb)

(define (xor a? b?)
(if (and a? b?) #f (or a? b?)))

(define (solve-kalotan-puzzle)
(let ((parentl (amb ’m ’f))
(parent2 (amb ’m ’f))
(kibi (amb ’m ’f))
(kibi-self-desc (amb ’m ’f))
(kibi-1lied? (amb #t #£f)))
(amb-assert
(not (eq? parentl parent2)))
(if kibi-lied?
(amb-assert
(xor
(and (eqv? kibi-self-desc ’m)
(equ? kibi ’f))
(and (eqv? kibi-self-desc ’f)
(eqv? kibi ’m)))))
(if (not kibi-lied?)
(amb-assert
(xor
(and (eqv? kibi-self-desc ’m)
(eqv? kibi ’m))
(and (eqv? kibi-self-desc ’f)
(eqv? kibi ’£)))))
(if (eqv? parentl ’m)
(amb-assert
(and
(eqv? kibi-self-desc ’m)
(xor
(and (eqv? kibi ’f)
(eqv? kibi-lied? #f))
(and (eqv? kibi ’m)
(eqv? kibi-lied? #t))))))
(if (eqv? parentl ’f)
(amb-assert
(and
(eqv? kibi ’f)

Chapter 3: Examples

(eqv? kibi-lied? #t))))
(1ist parentl parent2 kibi)))

(write (amb-collect (solve-kalotan-puzzle)))
(newline)

10

Chapter 4: License 11

4 License
Copyright (c) 2005, Thomas Chust <chust@web.de>. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. Redistributions in
binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. Neither the name of the
author nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

Index

aqt:add-edge-to-vertex! 6
aqt:add-filled-rect!........................ 7
aqt:add-image-with-bitmap! 7
aqt:add-label! 4
agt:add-line-to!........... 6
aqt:add-polygon! 7
aqt:add-polyline! 6
aqt:add-sheared-label! 5
aqt:add-transformed-image-with-bitmap! 7
agt:clear-plot! 3
aqt:close-plot! 3
aqt:colormap-size........................... 4
aqt:erase-rect!l 7
aqt:get-background-color 3
agt:get-color 3
aqt:get-colormap-entry 4
agt:get-last-event.......................... 8
agt:init. ... 2
agt:move-to! 6
aqt:move-to-vertex!......................... 6
aqt:open-plot, 2

agt:render-plot!............., 2

aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:
aqt:

aqt:
aqt:
aqt:

12
reset-image-transform! 7
select-plot, 2
set-accepting-events! 8
set-background-color! 3
set-clip-rect!......... 3
set-color!l 3
set-colormap-entry! 4
set-default-clip-rect! 3
set-fontname! 4
set-fontsize! Ll 4
set-image-transform! 7
set-line-cap-style! 6
set-linestyle-pattern! 5
set-linestyle-solid! 5
set-linewidth!.......................... 5
set-plot-size!......... 2
set-plot-title!............ 2
take-background-color-from-colormap-
entry!. 4
take-color-from-colormap-entry! 4
terminate 2
wait-next-event......................... 8

	About this egg
	Version history
	Usage

	Documentation
	Initializing and Deinitializing the Library
	Controlling Plots
	Clipping
	Managing Colors
	Managing the Colormap
	Drawing Text
	Drawing Lines
	Drawing Rectangles and Polygons
	Drawing Bitmaps
	Handling Events

	Examples
	License
	Index

