hashes egg

Miscellaneous Hash Functions
Extension for Chicken Scheme
Version 1.9

Kon Lovett

mailto:klovett@pacbell.net

Table of Contents

1 Aboutthiseggcciiiiiiiia..

1.1 Version historyo
1.2 Requirements.......... ...
1.3 USA@e o ottt

2 Documentationo'eueeeeeeeeenenn

2.1 Hash Procedures
2.2 Hash Auxillary Procedures............
2.3 Digest Procedures..........
2.4 Miscellaneous Procedures

B N) o] = 0 1 =

Chapter 1: About this egg

1 About this egg

1.1 Version history

N S e

—
= N W 00 N 00 ©

1.

(@]

Rename of make-inexact -> make-real, bug fix tounsigned-int32
Exports

Fix for undeclared uint16_t [Thanks to Benedikt Rosenau]
Rename of unsigned-long to unsigned-int32, needs Chicken 2.3+
Minor implementation changes, needs box 1.1+

Added dependency on box

Added Fowler/Noll/Vo hash

Update doc & renamed string->unsigned-long

Added procs

Initial release

1.2 Requirements

This egg requires the following extensions:

message-digest, crc, box, misc-extn, miscmacros

1.3 Usage
Load this egg like so:

(require-extension hashes)

Chapter 2: Documentation 2

2 Documentation

2.1 Hash Procedures

A suite of hash procedures. All have the same signature. All return hash values in a 32-bit
range, so non-fixnum results possible! The HASH name refers to one of the hash algorithm
symbols below.

Though this egg is categorized as ’cryptographic’ not a one of these is suitable for
cryptographic work!

The hash values produced are not necessarily portable across big/little-endian machines.

HASH-prim [procedure]
(HASH-prim STRING LENGTH SEED)

Returns the HASH-prim of STRING of LENGTH, using SEED.

HASH [procedure]
(HASH STRING [LENGTH [SEED]])

Returns the HASH-prim of STRING. When LENGTH is missing (string-length
STRING) is assumed. When SEED is missing 0 is assumed.

RJMXHash
Bob Jenkins’ MIX hash function.

TWMXHash
Thomas Wang’s MIX hash function.

FNVHash
Fowler/Noll/Vo 1 hash function. Substitutes the algorithm’s initial value when
the seed is non-zero.
FNVAHash
Fowler/Noll/Vo 1a hash function. Substitutes the algorithm’s initial value when
the seed is non-zero.
PHSFHash
Paul Hsieh’s SuperFast hash function. Substitutes the algorithm’s initial value
when the seed is non-zero.
RSHash
Robert Sedgwick’s "Algorithms in C" hash function.
JSHash
A bitwise hash function written by Justin Sobel. Ignores the seed when 0.
PJWHash
Hash algorithm is based on work by Peter J. Weinberger of AT&T Bell Labs.
ELFHash

Similar to the PJW Hash function, but tweaked for 32-bit processors. It’s the
hash function widely used on most UNIX systems.

Chapter 2: Documentation 3

BKDRHash

This hash function comes from Brian Kernighan and Dennis Ritchie’s book
"The C Programming Language". It is a simple hash function using a strange
set of possible seeds which all constitute a pattern of 31....31...31 etc, it seems
to be very similar to the DJB hash function

SDBMHash

This is the algorithm of choice which is used in the open source SDBM project.
The hash function seems to have a good over-all distribution for many different
data sets. It seems to work well in situations where there is a high variance in
the MSBs of the elements in a data set.

DJBHash

An algorithm produced by Professor Daniel J. Bernstein and shown first to
the world on the usenet newsgroup comp.lang.c. It is one of the most efficient
hash functions ever published. Substitutes the algorithm’s initial value when
the seed is non-zero.

NDJBHash

Now favored by Bernstein. Substitutes the algorithm’s initial value when the
seed is non-zero.

DEKHash
An algorithm proposed by Donald E. Knuth in "The Art Of Computer Program-
ming, Volume 3", under the topic of sorting and search chapter 6.4. Substitutes
the algorithm’s initial value when the seed is non-zero.

APHash
Arash Partow’s hash function. A hybrid rotative and additive hash function
algorithm based around four primes 3, 5, 7, and 11.

CRCHash

The crc32 procedure wrapped as above. Ignores the seed when 0.

2.2 Hash Auxillary Procedures

current-hash-seed [parameter]
(current-hash-seed [NEW-SEED])

Returns or sets the current default hash seed. The initial value is 0.

make-seeded-hash [procedure]
(make-seeded-hash HASH-PROC [SEED])
Returns a curried HASH-PROC of 1 or 2 arguments with the supplied SEED. When the
seed is missing the (current-hash-seed) is assumed.

make-range-hash [procedure]
(make-range-hash HASH-PROC UPPER [LOWER])
Returns a HASH-PROC with the hash value restricted to the supplied exact interval,
[LOWER UPPER|. When LOWER is missing 0 is if (data == NULL) return initval. The
signature is that of the HASH-PROC.

Chapter 2: Documentation 4

make-real-hash [procedure]
(make-real-hash HASH-PROC)

Returns a HASH-PROC with the hash value restricted to the interval, [0.0 1.0]. The
signature is that of the HASH-PROC.

make-range-restriction [procedure]
(make-range-restriction UPPER [LOWER])

Returns a procedure of 1 argument, a number. The arguments will be swapped if
necessary so the range is [LOWER UPPER]. When LOWER missing 0 is assumed.

2.3 Digest Procedures
The acceptable input objects for the digest procedures are strings, input-ports, byte-vectors,
or anything that can be converted to a byte-vector. See message-digest for more information.

The HASH name below refers to one of the hash algorithm symbols above.

HASH:digest [procedure]
(HASH:digest OBJECT)

Returns the HASH of OBJECT as a hex string.

HASH:binary-digest [procedure]
(HASH:binary-digest OBJECT)

Returns the HASH of OBJECT as a string.

HASH:primitive [procedure]
(HASH:primitive)

Returns the HASH primitive object.

2.4 Miscellaneous Procedures

string-binary->unsigned-int32 [procedure]
(string-binary->unsigned-int32 STRING)

Returns the first 32-bits of STRING as an unsigned-int32, not guaranteed to be a
fixnum.

string-binary-unsigned-int32-set! [procedure]
(string-binary-unsigned-int32-set! STRING UNSIGNED_INT32)

Sets the first 32-bits of STRING to UNSIGNED_INT32.

UNSIGNED-INT32-SIZE [constant)]
Sizeof unsigned-int32 in bytes.

http://www.call-with-current-continuation.org/eggs/message-digest.html

Chapter 3: License

3 License
Copyright (c) 2006, Kon Lovett. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the Software),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ASIS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Does not supercede any restrictions found in the source code.

Index

Index

(3 make-range-restriction

current-hash-seed........................... 3 make-real-hash........................n.
make-seeded-hash............................

HASH. ..o 2 S

HASH-prim..........t 2

HASH:binary-digest.......................... 4 string-binary->unsigned-int32..............

HASH:digestt 4 string-binary-unsigned-int32-set!..........

HASH:primitive 4

M U

make-range-hash............................. 3 UNSIGNED-INT32-SIZE.........................

	About this egg
	Version history
	Requirements
	Usage

	Documentation
	Hash Procedures
	Hash Auxillary Procedures
	Digest Procedures
	Miscellaneous Procedures

	License
	Index

