spiffy-utils egg

Utility library for the spiffy webserver
Extension for Chicken Scheme
Version 0.4

Peter Bex

mailto:peter.bex@xs4all.nl

Table of Contents

1 Aboutthiseggcciiiiiiiia..
1.1 Version historyo
1.2 Requirements.......... ...
1.3 USA@e o ottt

2 Documentation................ ..

3 Examples.........cciiiiiiiiiiiinnnnn.

4 LICeNSE...cvietine ittt neeeneeennenn

Chapter 1: About this egg 1

1 About this egg

1.1 Version history

0.4 Add link-to function for constructing URL with GET parameters. Add de-
fault and string-conversion optional arguments to variable-getters. Remove
assocval as it is equivalent to alist-ref.

0.3 Removed runtime-dependency on match-support unit [Felix].
0.2 Fixed cookie quoting bug [Thanks to Michele Simionato].
0.1 Initial version.

1.2 Requirements

This egg requires the following extensions:

spiffy, url

1.3 Usage
Load this egg like so:

(require-extension spiffy-utils)

Chapter 2: Documentation 2

2 Documentation

Utility library for spiffy to make advanced webprogramming more comfortable. Features
include:

e RFC 2109 cookies.
e EKasy accessor functions for GET-, POST- and cookie variables.

e Fasy construction of URLs with GET-arguments.

link-to [procedure]
(link-to url variable-alist)

Construct an URL string that links to url and has an association list of variable/value
pairs. These pairs can be extracted from the request arguments using get-var. Both
the name and the value objects of the alist are converted to strings using ->string.

get-var [procedure]
(get-var varname [string->type] [default])

Returns the value for the named variable from the GET argument list, or default if
it could not be found. (#f if not specified). The returned value is a string which can
optionally be converted to the desired type by supplying a string->type argument.

post-var [procedure]
(post-var varname [string->type] [default])

Same as get-var, but for http POST requestvariables instead.

cookie-var [procedure]
(cookie-var varname [string->type] [default])

Same as get-var, but for cookie variables instead. Cookies automatically get sent by
the user agent on each request, both GET and POST, so they’re always available.

string->bool [procedure]
(string->bool b)

Convenience function to convert the string value b to a <boolean>value. (useful in
combination with get-var, post-var and cookie-var.

string->boolean [procedure]
(string->boolean b)

An alias for string->bool

(write-cookie name value [comment] [max-age] [domain] [procedure]
[path] [secure]
Instruct Spiffy to write a cookie header in the current reply. Cookies are name/value
pairs of strings (but any value is ok; ->string is automatically called on the two
values). A cookie has an optional comment string for the user if he has a client which
allows him to view the cookies. Cookies will expire when the session ends (usually
when the browser closes) unless the max-age is supplied, which is an integer argument
declaring the maximum time the cookie can be stored on the client side, in seconds.
The domain string specifies for which domain the cookie is. The cookie will only

Chapter 2: Documentation 3

be returned on subsequent requests to that domain. By default, the domain is the
domain from which the cookie originates. The path string specifies the topmost path
from which this cookie is active. If there are multiple cookies with the same name,
the value from the cookie with the least generic ("deepest") path will be passed to the
server. Finally, the boolean secure can be set to #t if the cookie should be treated as
confidential information. If the user wishes to set one parameter, but not any other
optional parameters, the value #f can be used. These parameters will be ignored.

(delete-cookie name [domain] [path] [procedure]
Instruct Spiffy to write a cookie header constructed in such a way that the cookie
with the supplied name (also converted to a string with ->string) will be deleted.
The two optional parameters behave as with write-cookie. (See above.)

exec [procedure]
(exec cmd [disp])

Execute the commandline indicated by the cmd string and give its standard output
as a string result. The optional disp argument will be used to display each line,
so one can add HTML tags to every line of output if so desired. This allows one
to write simple one-liners like:Uptime: <? (exec "/usr/bin/uptime ") ?>Warning:
this function passes the commandline right to the shell, so never build it from user
input.

Chapter 3:

Examples 4

3 Examples

;5 A simple webpage which allows you to play with three different
;3 types of variables, which are submitted to the page itself via HTTP GET.
(use spiffy-utils sxml-transforms srfi-1 regex)

(define vars ‘((integer . ,(get-var ’integer string->number 0))
(boolean . ,(get-var ’boolean string->bool))
(string . ,(get-var ’string identity ""))))

(define (addfoo var)
(string-append var "foo "))

(define (delfoo var)
(string-substitute "foo " "" var))

(define (alist-replace var func)
(alist-cons var (func (alist-ref var vars))

(alist-delete var vars)))

(define my-rules
¢((url *macro* . ,(lambda (url target text)

‘(a (@ href ,target) ,text)))))

(define document

¢ ((html
(head

(title "GET-var and typing showcase"))

(body
(d1

(dt

(ad

(dt
(dd

(at
(dd

(SRV:send-

"Integer:")
(url ,(link-to "test.ssp" (alist-replace ’integer subl)) "subl")
" " ,(alist-ref ’integer vars) " "

(url ,(link-to "test.ssp" (alist-replace ’integer addl)) "addi"))
"Boolean:")

, (->string (alist-ref ’boolean vars)) " "

(url , (link-to "test.ssp" (alist-replace ’boolean not)) "Toggle"))
"String:")

(url ,(link-to "test.ssp" (alist-replace ’string delfoo)) "Delete foo")

" " (alist-ref ’string vars)

(url ,(link-to "test.ssp" (alist-replace ’string addfoo)) "Add fo00")))))))

reply (pre-post-order document (append my-rules universal-conversion-rules)))

Chapter 4: License

4 License

Copyright (c) 2004 - 2006, Peter Bex (peter.bex@xs4all.nl)
A1l rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of author nor the names of any contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢“AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

Index

(G

(delete—cookie name [domain] [pa’th] 3 get—var
(write-cookie name value [comment] [max-age]
[domain] [path] [secure]l................ 2 L
link-to.......
cookie-var 2 P
POSt-Var....... ...

EX@C . ottt 3 S
string->bool
string->boolean.............................

	About this egg
	Version history
	Requirements
	Usage

	Documentation
	Examples
	License
	Index

