packedobjects egg

Cross-platform data encoding based on Packed Encoding Rules
Extension for Chicken Scheme
Version 0.5

John P. T. Moore

Table of Contents

1 Aboutthiseggcciiiiiiiia.. 1
L1 Version hiStory . ..ot 1
L2 USAZE « ot e 1

2 Documentation..................... ..., 2

3 Datatypes.....cooiiiiiiiiiiiiiiiiiinaa.. 3

4 Examples..........coiiiiiiiniiininnnnn. 5

5 Extended Example......................... 6

6 Limits..........ouiiiiiiiiiiiia, 7

7 Todo....ovviiiiiiiiiii i, 8

8 License..........coviiiiiiiiiiinnnnennnennn 9

Chapter 1: About this egg

1 About this egg

1.1 Version history

0.5 Alpha release

1.2 Usage
Load this egg like so:

(require-extension packedobjects)

Chapter 2: Documentation 2

2 Documentation

packedobjects is a highly portable, cross platform, data encoding tool. The project is
based on the telecommunications standard Packed Encoding Rules (PER). An abstract
syntax language is used to define a protocol specification. packedobjects uses the Scheme
programming language to represent the protocol specification within a symbolic expression
(s-expression). Using an s-expression provides a more dynamic approach over the traditional
method of parsing the specification and producing high level language code. The output
of applying packedobjects’ encoding rules to a protocol specification is a concisely encoded
bit stream suitable for application domains such as network games development and mobile
application development. The project has been released under the terms of the BSD license.

For a more detailed introduction refer to the following short paper.

packedobjects [procedure]
(packedobjects <protocol> #!key <pdusize> <strsize>)

Creates a packedobject using the supplied protocol specification. Optional values
for the PDU and string buffer sizes can be specified. They default to 5000 and 1000
respectively. The PDU buffer can grow dynamically, however, the string buffer is fixed
in size and therefore must handle the largest possible string. The PDU buffer must
be freed manually whereas the string buffer will be automatically garabage collected.

<packedobject> [procedure]
(<packedobject> ’pack <values>)

Encodes a list of values and returns the number of bytes used.

<packedobject> [procedure]
(<packedobject> ’unpack)

Returns a list of values.

<packedobject> [procedure]
(<packedobject> ’read <fd> <size>)

Reads a number of bytes from a file descriptor into the PDU buffer.

<packedobject> [procedure]
(<packedobject> ’write <fd> <size>)

Writes a number of bytes from the PDU buffer to a file descriptor.

<packedobject> [procedure]
(<packedobject> ’dump-buffer <filename> <size>)

Dumps a number of bytes from the PDU buffer to a file.

<packedobject> [procedure]
(<packedobject> ’free)

Frees the PDU buffer.

http://zedstar.org/papers/packedobjects.pdf

Chapter 3: Data types 3

3 Data types

string

desc: 7 bit string limited to 10 characters in length.
spec: (foobar string (size 1 10))

values: (foobar "foobar")

octet-string

desc: 8 bit string with no length restriction.
spec: (foobar string ())
values: (foobar "foobar")
bit-string
desc: Bitstring fixed in length.
spec: (foobar bit-string (size 8))
values: (foobar "10101010")
hex-string
desc: String of hexadecimal characters with no length restriction.
spec: (foobar hex-string (size 1 max))
values: (foobar "foobar")
integer
desc: Integer with a minimum allowed value of 1 and maximum allowed value of 10.
spec: (foobar integer (range 1 10))
values: (foobar 5)
boolean
desc: Boolean value.
spec: (foobar boolean)

values: (foobar #t)

enumerated
desc: List of alternative symbols.
spec: (foobar enumerated (mon tues wed thurs fri))
values: (foobar fri)
sequence
desc: Ordered sequence of types.

spec: (foobar sequence (foo string (size 1 10)) (bar string (size 1 10)))

Chapter 3: Data types

values: (foobar (foo "foo") (bar "bar"))

set
desc: Unordered sequence of types. Each element of a set is also optional.
spec: (foobar set (foo string (size 1 10)) (bar string (size 1 10)))

values: (foobar (bar "bar") (foo "foo"))

sequence-of

desc: Ordered sequence of types where the sequence may repeat.

spec: (foobar sequence-of (foo string (size 1 10)) (bar string (size 1 10)))

values: (foobar ((foo "foo") (bar "bar")) ((foo "anotherfoo") (bar "anotherbar")))
choice

desc: Single item from a series of types.

spec: (foobar choice (foo integer ()) (bar integer ()))

values: (foobar (bar 100))

Chapter 4: Examples

4 Examples
(require-extension packedobjects)

(define bbcard
> (bbcard sequence

(name string (size 1 60))

(team string (size 1 60))

(age integer (range 1 100))

(position string (size 1 60))

(handedness enumerated (left-handed right-handed ambidextrous))

(batting-average sequence
(mantissa integer ())
(base enumerated (2 10))
(exponent integer ()))))

(define bbcard-values
> (bbcard

(name "Casey")
(team "Mudville Nine")
(age 32)
(position "left field")
(handedness ambidextrous)
(batting-average
(mantissa 250)
(base 10)
(exponent -3))))

(define po (packedobjects bbcard))

(print* "encoded in " (po ’pack bbcard-values) " bytes.\n")
(print (po ’unpack))

(po ’free)

Chapter 5: Extended Example 6

5 Extended Example

The following example retrieves random numbers from random.org.

The client talks to a server process which in turn obtains the numbers using HT'TP. The
data transferred between client and server is significantly more efficient, in terms of bits on
the wire, than if the client talked directly to random.org using HT'TP.

Download the source files:
e http://www.call-with-current-continuation.org/eggs/tcpclient.scm

e http://www.call-with-current-continuation.org/eggs/tcpserver.scm

http://random.org
http://www.call-with-current-continuation.org/eggs/tcpclient.scm
http://www.call-with-current-continuation.org/eggs/tcpserver.scm

Chapter 6: Limits 7

6 Limits

e The length of strings, the number of elements in a set and the number of times a
sequence-of may repeat is restricted to 2730-1.

e The maximum integer (unsigned), the number of choices and the number of enumera-
tions is restricted to 2732-1.

Chapter 7: To do

7 To do

e Performance enhancements.
e Improvements to error/exception handling.

e Further testing.

Chapter 8: License

8 License

Copyright (c) 2006, John P. T. Moore
A1l rights reserved.

BSD license: http://www.opensource.org/licenses/bsd-license.php

Index

Index

<

<packedobject>

10

	About this egg
	Version history
	Usage

	Documentation
	Data types
	Examples
	Extended Example
	Limits
	To do
	License
	Index

