fp egg

An interpreter/translator for a dialect of John Backus’ FP language
Extension for Chicken Scheme

Version 1.1

felix

mailto:felix@call-with-current-continuation.org

Table of Contents

1 Aboutthiseggcciiiiiiiia..

1.1 Version historyo
1.2 Requirements.......... ...
1.3 USA@e o ottt

2 Documentationo'eueeeeeeeeenenn

2.1 Introduction
2.2 ODbJeCtS . oot
2.3 Builtin functions
2.4 GUamInaTttt et e e e e e e
2.5 Example.
2.6 API ..
2.7 Interfacing to/from Scheme
2.8 Standard library

Chapter 1: About this egg

1 About this egg

1.1 Version history

1.1 Added some builtin functions, extended atom syntax

1.0 Initial release

1.2 Requirements

This egg requires the following extensions:

silex, lalr

1.3 Usage
Load this egg like so:

(require-extension fp)

Chapter 2: Documentation 2

2 Documentation

2.1 Introduction

This extension translates programs in a dialect of the FP programming language into
Scheme. You can use the translator interactively, as a library or as a compiler extension
(the latter allows you to compile FP code into executables and/or libraries).

To use it interactively, invoke the fp-repl procedure (see below). To use it as a library,
call fp-eval.

If you want to compile FP programs, pass the -X fp option to the CHICKEN compiler
driver, like this:
% csc -X fp myprogram.fp

A program consists of a list of definitions separated by semicolons, like this:
square == (id, ~2]1;
main == square tonum

The left hand side of a definition specifies a name and the right hand side should be a
functional form. A definition may be followed by auxilliary definitions enclosed in { ... }
which are only visible in the preceding definition.

Identifiers may consist of lowercase letters or an underscore. Any character with an
ASCII/ISO-8859-1 code below or equal 32 is ignored. Any other character is treated as an
identifier of length 1.

Comments follow C-style (/* ... */) and may not be nested. #! is also parsed as a
comment and ignores everything up to the next line.

2.2 Objects

An object is an atom (a symbol consisting of uppercase characters or _, a character (‘char)
a sequence (<x1, ...>), a character sequence " ... " or a number. The atom F is also used
as the boolean false value. Atoms may also be given as | ... | when they should contain
special characters.

If the numbers extension is loaded, then FP programs are capable of calcuating with
bignums and exact rationals.

2.3 Builtin functions

(f > g; h): x if f:x then g:x else h:x [conditional]
(f g): x f:(g:x) [composition]
fx f:x [application]
/fi<xl, x2, ...> fi<xl, f:<x2, ...>> [insertion]
ef:<x1, x2, ...> <f:x1, f:x2, ...> [mapping]
N:<x1, x2, ...> xN (negative number select from the [selection]
right)
0P:<x, y> x OP y, where OP is "+", "-", "x" (multiply),

" (divide), "bior" (bitwise or), "band" (bitwise

http://www.call-with-current-continuation.org/eggs/numbers.html

Chapter 2: Documentation

bnot:x
("0):x
[f1, f2,
id:x
hd:<x1, x2, ...>
tl:<x1, x2, ...>
null:x

atom:x

apndl:<x, <yl, ...>>
apndr:<<x1, ...>, y>
cat:<kx1, ...>, <yi,
reverse:<x1l, x2, ...>
length:<x1, ., xXN>
eq:<x, y>

1t:<x, y>

gt:<x, y>

not:x

tonum:x

tochar:x

tostring:x

tosym:x

(error "..."):x
(debug "..."):x
show:x

read:s

write:<sl, s2>

(xf) :<x1, %2, ...>

L]ix

(bu £ x):y
7:n

system:s
load:s

(while p f):x
and:<x, y>
or:<x, y>
f&g

f " n

gensym: symbol

3
and), or "bxor" (bitwise xor)
bitwise not
0, where 0O is an object [constant]
<f1:x, f2:x, ...> [construction]
X [identity]
x1
<x2, ...>
if x = <> then T else F
if x = <...> then F else T
<x, yi1, ...>
<x1, .,y
D>> <x1, ., yl, o>
<xN, ., X2, x1>
N
if x =y then T else F

less than (numbers only)

greater than (numbers only)

if x !'= F then T else F

converts character sequence to number
converts number to char

converts number into character sequence
converts character sequence to atom

prints error message and argument and exits
prints debug message and argument

prints x and returns it

read contents for file with the name s
write string s2 into file with the name si
removes elements from the sequence for which
f:xI is false

f:<y, x>, x must be an object

returns a random integer between 0 and x-1

execute shell command and return status code

load FP source code or compiled .so/.dll

if p(x) is true, (while p f) : f(x), otherwise p(x)
if x !'= F then y else F

if x !'= F then x else y

f >g; °F

ff... (n times)

return fresh symbol with name "xN", where "N" is some
number

(Alternative symbols are "." for "" and "%" for "")

.4 Grammar

PROGRAM
DEFINITION

--> DEFINITION |
—-=> ID "==" EXPR [u{u PROGRAM n}n] [n;n]

APPLICATION ...

Chapter 2: Documentation

APPLICATION
EXPR

EXPRO

EXPR1

EXPR2

VALUE

0OBJECT

CHAR
SEQUENCE
CONSTRUCTION

-—>
-=>

2.5 Example

/* fac.fp */
fac == eq0 —>
{ eq0 == ¢

subl == -

main == fac

2.6 API

fp-parse

“1; x [id, fac subil]

ID "==" EXPR [";"]

EXPR ":" OBJECT ...

EXPRO "->" EXPRO ";" EXPR
"while" EXPR2 EXPR

EXPRO

EXPR1 "&" EXPR

EXPR1

EXPR2 "" EXPR1
EXPR2 [EXPR1]
"/" EXPR2

"@" EXPR2

"x" EXPR2

EXPR2 """ NUMBER
"bu" EXPR2 OBJECT

n (ll EXPR ||) n
CONSTRUCTION
VALUE

NUMBER

"~ OBJECT
"debug" STRING
"error" STRING
BUILTIN

0OBJECT

CHAR

NUMBER
SEQUENCE

ATOM

STRING

"¢n CHARACTER

"<" [OBJECT {"," OBJECTZ}]
n [Il [EXPR {Il s n EXPR] } II] n

q [id, ~0];
[id, ~1] }
tonum

(fp-parse INPUT)

H>H

[procedure]

Chapter 2: Documentation 5

Parses the FP code given in INPUT, which should be a string or an input port and
returns its Scheme representation as a list of Scheme toplevel expressions.

This Scheme code can be directly evaluated.

fp-eval [procedure]
(fp-eval INPUT)

Parses and evaluates the FP code given in INPUT.

fp-repl [procedure]
(fp-repl [PROMPT])

Executes a read-eval-print-loop that prints PROMPT, reads a line of FP code and eval-
uates it, printing the returned result.

2.7 Interfacing to/from Scheme

All top-level definitions in FP will result in a Scheme procedure definition of a procedure
of one argument, with the name prefixed with fp:, so for example

fac == /x !

will result in a procedure named fp:fac that you can call from Scheme like any other
procedure.

FP programs can call Scheme procedures, provided they have a name with the fp: prefix
and accept a single argument, returning a single value and accept/return values that are
meaningful in FP programs. Scheme and FP data types are related in the following manner:

Scheme FP
symbol atom
char char

list or string sequence
number number

2.8 Standard library

A small library of useful functions is installed in the CHICKEN extension repository under
the name stdlib.fp, which you can access by putting load:"stdlib.fp" at the start of
your FP program.

Index

	About this egg
	Version history
	Requirements
	Usage

	Documentation
	Introduction
	Objects
	Builtin functions
	Grammar
	Example
	API
	Interfacing to/from Scheme
	Standard library

	Index

