A Universal Scripting Framework

or
Lambda: the ultimate “little language”

Olin Shivers

MIT Al Lab, Cambridge, Mass. 02139, USA

Abstract. The “little languages” approach to systems programmingaiset:
inefficient, fragile, error-prone, inexpressive, and difft to compose. A bet-
ter solution is to embed task-specific sublanguages withpowerful, syntac-
tically extensible, universal language, such as Schememiodistrate two such
embeddings that have been implemented in scsh, a Schenmamprogmg envi-
ronment for Unix systems programming. The first embeddeguage is a high-
level process-control notation; the second provides fok-fike processing. Em-
bedding systems in this way is a powerful technique: for edamalthough the
embedded Awk system was implemented with 7% of the code nexdjdor the
standard C-based Awk, it is significantly more expressiag ks C counterpart.

1 Introduction

Many programming tools are built around the idea of “little languageshall inter-
preters implementing a programming language that has been tuned to tHesmdci
some specialised task domain. This approach to systems-building wakpsgd by
Unix, which provides a host of little-language processors. For el@rtie following
Unix language interpreters all support notations tuned for specialis&diomains:

Task Interpreter
regular-expression based string transforms sed
pattern-matching awk
type-setting nroff/tbl/egn
dependency-directed recompilation make
file-system tree-walking find
program invocation and compaosition sh

Little languages complement the Unix “toolkit” philosophy—the @iy system
provides mechanisms for composing little-language based componeniarier sys-
tems (and, in fact, the principal interface for doing so is itself eelitihguage, the
shell).

2 The Case for Little Languages

A programming language is a notation for expressing computatiome&yicting our-
selves to a specific task domain, we can tune our notation to the needsiofitiaén's

In Concurrency and Parallelism,
Programming, Networking, and Se-
curity, Lecture Notes in Computer
Science #1179, pages 254-265, Ed-
itors Joxan Jaffar and Roland H. C.
Yap, 1996, Springer.

computations. The language understood byritiee utility, for example, is not a gen-
eral programming language, but rather one which is specially adapted fassiuy
dependencies among the components of a system [3]. Sacrificing generalityarsled
by notational compactness and clarity.

Unix's little-languages philosophy is to present the programméraviuite of spe-
cialised languages—a linguistic toolkit for systems implementafitve. programmer
can then write each component of his system in the language which is bestteuihe
requirements of the component. Once constructed, the components arertiposed
together using pipelines.

In principle, this approach provides a flexible and powerful methoddostructing
systems. In practice, however, little languages have a number of preblem

3 The Problems of Little Languages

One problem with the little-languages approach is that these languagesiatiy ugly,

idiosyncratic, and limited in expressiveness. Although many of thidte languages
are similar to C, they are all slightly different from one another. Beeaach little
language is different from the next, the user is required to master dthafthnguages,
remembering all the trivial distinctions between them, thus unneceswsatigasing the
cognitive burden to use these tools.

The bizarre syntactic quirks of little languages are notorious. ¥amele, the well-
known problem withmake's syntax distinguishing tab and space has been tripping up
programmers for years.

When a programmer decides to implement a little language, he must start fro
scratch, and implement an entire programming language. The designer anthienpl
tor is unable to concentrate solely on the task-specific aspects of hisdBaigjc lin-
guistic elements such as loops, conditionals, variables, and sulesutiast be re-
invented and re-implemented. Not only does this add to confusing and usagces
linguistic proliferation, it is not an approach that is likely to puoe a high-quality
language design. The temptation is to hurry through these “detailgétdo the “in-
teresting parts” of the design—the task-specific elements. So the bagiamming
substrate is likely to be hastily thought-out and implemented, amthttk-specific ele-
ments of the design are denied the implementor's full consideratioat M/produced,
all too often, is a little language with a half-baked variable scopirsgipline, weak
procedural facilities, and a limited set of data types.

Finally, by implementing a little language as a standalone interptettekecutes
in a separate address space, the system component implemented in thanlitiade
must typically be implemented as a standard-input/standard-ougpttaasducer that
interacts with other system components “at arms length” through pipesp@uents
do not have an opportunity to interact in ways that require sophisticidta structures
or patterns of control transfer. Forcing data to be communicated from aoemp to
component as a linear byte-stream implies a cost of repeated parsing andngparsi
operations at each component interface. In practice, it often leads to fragilapreog
that rely on heuristic, error-prone parsers (often based on limitedaregypression
matchers).

4 An Alternate Approach

An alternate approach is to choose a powerful, syntactically extensibtggmming
language, such as Scheme [6], and embed our little language within ith@kithe
benefit of focus: it allows the tool designer and implementor to concemnatee task-
specific elements of his language. Standard programming constructs, sumbpas |
variables, procedures, conditionals, data structures, and so forth, taaehevholesale
from the underlying “glue” language when needed. This means:

— There is a greater chance of the designer getting the basics right sincech#yis
leveraging off of the enormous design effort that was put into desipthie Scheme
language.

— Not only is the designer able to exploit the design effort representéttiScheme
language, the implementor can also capitalise on the efforts of others. Bgdem
ding within Scheme, he gets interpreters and native-code compilers for free.

— The designer's task is much, much easier because he doesn't have to istart fro
scratch; he can devote all of his time and thought to the task-specific eenfen
his little language.

— The base language is not limited because the designer didn't haventhertre-
sources to implement all the features of a real programming language.

— The user doesn't have to learn five or six different little languagest-S§oheme
plus the set of base primitives for each application.

— Because different little languages can be embedded within Scheme, components
written in different little languages can now interact using the sojchigd data
structures and patterns of control-flow available in Scheme.

As exemplars of this approach, | have embedded two “little languagesinwith
Scheme. The first is a high-level process-control notation equivalethietmotation
provided by Unix shells for constructing pipelines of processes, paifg /O redi-
rection, and so forth. The second, more detailed example, will be an emigeafdin
Awk-like little language within Scheme.

These systems were implemented in scsh, a portable Unix programmiingrenv
ment built in Scheme [7, 8]. Scsh has been used for a wide variety of sygiems
gramming tasks, such as cell-phone interfaces, mobile Web browsers, @A) lbg
analysers, http servers and other network tools. Its chief relevance ig fravides
an interface from Scheme to the underlying operating system, and so makiesbées
platform for experimenting with embedding systems-oriented lithguages within
Scheme.

5 The Scsh Process Notation

Scsh has a notation for controlling processes that takes the form @iressions; this
notation can then be embedded inside of standard Scheme code. The basic edéments
this notation argrocess formsextended process forpendredirections

5.1 Extended Process Forms and I/O Redirections

An extended process forima specification of a Unix process to run, in a particular I/O
environment:

epf == (pf redir;... redir,)

wherepfis a process form and thiedir; are redirection specs. There are seven types of
redirection spec; the most common four are:

(< [fdes] file-name ; Open file for read.

(> [fdes] file-name ; Open file for write.

(<< [fdes] objecd ; Use objects printed representation.
(>> [fdes] file-namé ; Open file for append.

Thefdesfile descriptors default to 0 and 1 for input and output redirectionpeataely.
The subforms of a redirection are implicitly backquoted. So the dugalirection
(> ,x) means “output to the file named by Scheme variaijland the input redirec-
tion (< /usr/shivers/.login) means “read fronfusr/shivers/.login.” This
implicit backquoting is an important feature of the process notatioit,pasvides es-
capes to general Scheme computation from within the little language.
Here are two more examples of I/O redirection:

(< ,(vector-ref fv i))
(>> 2 /tmp/buf)

These two redirections cause the file[i] to be opened on standard input, and the file
/tmp/buf to be opened for append writes on standard error.

The redirection(<< objec) causes input to come from the printed representation
of object For example,

(<< "The quick brown fox jumped over the lazy dog.")

causes reads from standard input to produce the characters of the abayeNsbti
thatobjectis also implicitly backquoted, so we can connect a computed Scheme string
up to a process' standard inpety:

(<< ,(append s1 (f x 7) s2))

5.2 Process Forms

A process fornspecifies a computation to perform as an independent Unix process.
There are six types of process form; the most common three are:

(begin . scheme-code ; Run scheme-coddén a fork.
opf ... pf) ; Simple pipeline
(prog arg, ... arg,) ; Default: exec the program.
The default cas€prog arg, ... arg,) is also implicitly backquoted. That is, vari-

ables can be substituted into the command line wétkpor , @expforms.

5.3 Using Extended Process Forms in Scheme

Process forms and extended process formaatr8cheme. They are a different notation
for expressing computation that, like Scheme, is based upon s-expresExtended
process forms are used in Scheme programs by embedding them inside sgiemmaéS
forms. There are three basic Scheme forms that use extended processfaerepf,

&, andrun.

(exec-epf . epf) ; Nuke the current process.
(& . eph ; Fork epf in background and return pid.
(run . eph ; Run epf and return exit status.

These special forms are macros that expand into the equivalent seriesenh £gls.
The definition of theexec-epf macro is non-trivial, as it produces the code to handle
I/O redirections and set up pipelines. However, the definitions of tr@drun macros
are very simple:

& . eph (fork (A () (exec-epf . eph))
(run . eph (wait (& . eph)

Figure 1 shows a series of examples employing a mix of scsh's proced®nand
Scheme. Note that regular Scheme is used to provide the control s&ucamiables,
and other linguistic machinery needed by the script fragments; this was pusgdible
by our strategy of embedding our specialised notation within Scheme.

6 Awkin Scheme

Our second case study is the Awk language for pattern-directed proceskifidhé

first part of the design task was to factor the language into its two lbasiponents: a
record- and field-based I/O system, and a rule-based, pattern-directed stmttlre.

Each of these components was implemented separately in the Scheme design. This
allows us to mix and match the components—a given task may only requérefdhe

two components. Also, this factoring allows the user a degree of sikibty—if the
provided record I/O library doesn't serve his needs, he can use thevérpf Scheme

to implement his own I/O primitives, and plug them into the patteatating control
structure in a modular fashion.

6.1 Field and Record Readers

Awk programs iterate over a sequence of records, processing each in tu@-Jased
Awk has limited support for specifying the record and field structuta®fnput stream.
If the programmer's data has structure that is too complex to be paitbethese sim-
ple mechanisms, he is out of luck. The Scheme-based design, howevedegran
extensible toolkit for constructing procedures to read records and {enseinto their
component fields. This toolkit makes it easy to build record readers foypieal cases,
but in no way limits the programmer from constructing and usiiggawn, arbitrarily

complex, input parsers.

(if (file-exists? f)) ; If the resource file exists,
(run (xrdb -merge ,f))) ; load it into the X server.

(run (crypt ,key) (< mbox.crypt) (> mbox)) ; Decrypt my mailbox.
(run (cc ,file ,@flags)) ; Compile FILE with FLAGS.

;3 M4 preprocess each file in the current directory, then pipe
;3 the input into cc. Errlog is foo.err, binary is foo.exe.
;3 Run compiles in parallel.
(for-each (A (file)
(let ((outfile (replace-extension file ".exe"))
(errfile (replace-extension file ".err")))
(& (| (m4) (cc -o ,outfile))
(< ,file)
(> 2 ,errfile))))
(directory-files))

;3 Delete every file in DIR containing the string "bin/tclsh":
(with-cwd dir
(for-each (A (file)
(if (zero? (run (grep -s bin/tclsh ,file)))
(delete-file file)))
(directory-files)))

Fig. 1. Example process-notation fragments

Reading Records The basic function for constructing a record reader is
(record-reader [delims elide?) — reader

The record-reader function constructs a reader procedure which reads delimited
records from an input stream. The optiodi@limsparameter is a string of delimiter
characters—any of these characters will terminate a record. If the op&bde® pa-
rameter is true, then a contiguous sequence of delimiter characters is taken ta mean
single record boundary. The default valueslefimsandelide?are newline and false,
respectively, so the expressi¢record-reader) constructs a simple line-reading pro-
cedure:

(define read-line (record-reader))

Notice that therecord-reader procedure doesn't read records itself—it constructs
record readers for later use.

Note also that there is nothing special abdeitord-reader. The Awk program-
mer is not limited by the span of record readers it provides. As we willleeis, free to
use general Scheme to define his own arbitrary record readers—a facility labée/to
the client of the C-based Awk.

Parsing Records into Fields Once an Awk program has obtained a record to process,
it then parses the record into its component fields. Our Awk systemgesthree func-
tions for constructing field parsers. These procedures allow the proggata define a
record's field structure in terms of regular expressions:

(field-splitter [regexp num-fields] — parser
(infix-splitter [regexp num-fields] — parser
(suffix-splitter [regexp num-fields] — parser

The constructed parsers map a record string to a list of field strings:€fular expres-
sion passed to theield-splitter function defines the fields to be parsed from the
record. For example, the parser

(field-splitter "[0-9]+")
produces a function that extracts digit sequences from a string:

(define s "Yale beat harvard 27 to 3.")
((field-splitter "[0-9]+") s) — ("27" "3")

The three functions differ in their interpretation of ttegexpparameter:

Procedure Pattern
field-splitter matches fields
infix-splitter separates fields

suffix-splitter terminates fields

The regular expression passed to théix-splitter function is used to match field
separators. So the parsgimfix-splitter ":") will split a line of text into colon-
separated components. The optionam-fieldsparameter is used to specify tight or
lower bounds on how many fields must be parsed from an input recordefisilt
is just to parse as many as possible. So we can simply define a parser fdnithe
/etc/passwud file with the expressioffinfix-splitter ":" 7).

Composing Record Readers and Field Parser3he functionfield-reader is used
to compose a record reader with a field parser:

(field-reader [field-parser record-readef) — reader

When the returned reader is applied to an input stream, itresesd-readerto read a
record from the stream, then applfesdd-parsetto the record to break it into fields. The
reader then returns two values: the raw, unparsed record, and the lissefigaslds.
Both parameters are optional; the default record readesd8-1ine, and the default
field parser splits strings at white-space boundaries. Therefgrés Hound to an input
stream open on théetc/passwd file, the expression

((field-reader (infix-splitter ":" 7)) p)

might return the two values

"ctkwan:mx3Uaqq0:107:22:Doug Kwan:/usr/ctkwan:/bin/sh"
("ctkwan" "mx3UaqqO" "107" "22" "Doug Kwan"
" /usr/ctkwan" "/bin/sh")

Figure 2 gives some examples of field readers that can be simply construitbed w
Awk's constructors. Notice how we have exploited Scheme's higlter-procedures

to succinctly construct a wide array of input procedures. Again, as we sallthe
Awk programmer is not limited to this particular set of readers and pardegdias the
full power of Scheme to define his own arbitrary readers and parsers.

6.2 The Awk Loop

Besides field parsing, Awk also provides a rule-based, pattern-directedlsinicture
for determining what to do with records as they are read into the progyakis basic
control structure is to read in a record, parse it into its componensfiait then match
the record against a set of pattern/action rules. If a rule's pattern matehestnd, it
fires its action part, updating iteration variables and performing oufdtdr all rules
have had a chance to fire, the program loops, reading another record, anithso fo

In our Scheme-embedded Awk, this control-structure is realised as a mdwo. T
general syntax of our new control structure is

(awk next-record record&field-vars state-var-decls
clause... clauss,)

For example, here is a very simple Awk loop:

(awk (read-line) (line) () ; Strip blank lines
("[~ \t]" (display line) (newline))) ; from input.

The first form in theawk expression(read-1line), iS an expression which is evalu-
ated on each iteration to produce the next record to be processed. Themexs

;33 1s -1 output reader, e.g.
HHH -rw-r--r-— 1 shivers 22880 Sep 24 12:45 scsh.scm
(field-reader (infix-splitter "[\t]+" 8))

;33 Internet IP address reader, e.g.
HE 18.24.0.241
(field-reader (field-splitter "[~.]+" 4))

;33 Line of decimal integers, e.g.

HHE 73 72 84 70 80

(let ((parser (field-splitter "[+-]17[0-9]+")))
(field-reader (A (s) (map string->number (parser s)))))

Fig. 2. Some examples of field readers

list of variables—one for each value returned by tiest-recordexpression. Since the
read-line procedure in our example only returns a single value, we only hage on
variable,1ine. This loop has only one pattern/action clause, whose test is the regular
expression' [~ \t]". When the loop variableéine contains at least one non-blank
character, it matches the regular expression. This fires the clause baclypsihts out
the line.

A clause's test expression doesn't have to be a string denotinglarregjpression.
It can be a general Scheme expression, which is evaluated to produce a badlean v

;35 Print every line longer than 80 chars.
(awk (read-line) (line) ()

((> (string-length line) 80)

(display line)

(newline)))

Note that we can use the full power of Scheme to encode arbitrarily congses
something we cannot do with the limited “little language” provided hg C-based
Awk.

Awk loops can have iteration variables, which are declared and initialised irthe
style state-var-declgart of the form. When iteration variables are used, each clause
must return the new values for the iteration variables when it fires. &ddbp has
three iteration variables, each clause must return three values—one for eatibriter
variable. Theawk expression's value is the final value of the iteration variable (if the
loop has multiple iteration variables, it produces multiple values).

Here are two examples afik expressions that use loop state:

;35 Find the length of the longest line.
(awk (read-line) (line) ((max-len 0))
(#t (max max-len (string-length line))))

;33 Count the number of non-comment lines
;35 of code in my Scheme source.
(awk (read-line) (line) ((nlines 0))
("~ [\t]l*;" nlines) ; Comment
(else (+ nlines 1))) ; Not a comment

We haven't bothered yet to parse our records into fields, as none ohguleséx-
amples have required it. It is a simple matter, however, to employ agdaaiser in an
awk loop when necessary. As an example, we can process the/dte{passwud file.
For our purposes, we only need to know that this file contains a sequénewline-
terminated records; each record contains seven colon-separated fields; andftbklfirs
is the user's login id. In this example, thead-passwd procedure returns two values
each time it is called: a line of text (bound 1dne), and its field-parse as a seven-
element list of strings (bound thields). The awk expression produces a list of ele-
ments, where each entry jfetc/passwd is tagged by the user's login id. This list is
sorted by the login-id key, and then the sorted entries are printed out

(define $ nth) ; A convenient abbreviation.
(define read-passwd (field-reader (infix-splitter ":" 7)))

;33 Sort the entries in /etc/passwd by login name.
(for-each (A (entry) (display (cdr entry)) (newline))
(sort (A (x y) (string<? (car x) (car y)))
(awk (read-passwd) (line fields) ((ans ’()))
(#t (cons (cons ($ fields 0) line)
ans)))))

Note thatawk is not restricted to performing output to express its result. It gea-

eral Scheme expression, and can be embedded within a larger Scheme context. The
three main computations in this example—parsing, sorting, and butpare com-

posed with function composition in Scheme, instead of via pipes as theaab4Jnix

tools” approach would employ with the C-based Awk utility. Functiboomposition

is a much more powerful technique for composition, as it allows fphsicated data
structures, such as linked lists, to be passed from component to conedigently

and reliably.

7 The Methodology of Embedding

Both the Scheme-embedded process notation and Awk sublanguages hafeaguxtes
we haven't covered—for example, the process notation provides ways toecapd
parse process output into Scheme data, andtizenacro supports rule patterns that
are active over designated ranges of records. However, we've seen enough ofithes
little languages to get a feel for the general technique of embedding a gubiga
within Scheme.

In both cases, we followed the same methodology. The first step f@mbedding
was to functionally decompose the system into its primitive comjmurtak elements.
These can be realised as base procedures and their associated data structwees. In th
case of Awk, this was captured by the library of record readers and field pdrstrs.
case of scsh, this was captured by binding the Unix system calls for I/(raess
control into Scheme.

The second step of our embedding was to capture unusual patterns of eowtrol
environment structure as macros, providing gains in notational congsscamd clarity.
This step is what distinguishes Scheme from languages such as Tcl or Rerkbit-
ity to introduce new forms of notation. In Scheme, we can make thesestdsnall
within a common s-expression framework. Although Tcl and Perl agéuliscripting
languages, one cannot extend their syntax to embed a new language wéthin th

Theawk macro and the scsh process notation are examples of this “notational engi-
neering.” In both cases, we were careful to allow escapes within the notatadlowv
general Scheme code to extend the set of allowed computations. For exarsiple s -
plicit backquoting of its 1/O redirections allow the programmer to gsaeral Scheme
expressions for 1/O redirection; thegin process form allows general Scheme com-
putations to serve as the process specification; and<¢hedirection cross-connects

Scheme and general process computations. Iratfkedesign, we allow any Scheme

form at all to be employed as the input record reader, and both the test apealeed
ments of the clauses can be arbitrary Scheme code. These escapes allow us te have th
best of both worlds: the compactness and simple clarity of task-speotfition, and

the generality of a general-purpose programming language. The Scheme ésspes

us from being trapped by our specialised notations. For example, if weed/gmwrite

an Awk loop that scanned over files of C source code, operating on a singlevip
function definition at a time, we could write a general C parser in Schemesad u

as the loop's record reader. This is not a possibility with the foadit Awk; we are
restricted to the limited class of built-in record readers it provides.

8 The Benefits of Embedding

By now, the benefits of embedding a sublanguage within Scheme shodleéareEm-
bedding a little language within Scheme gets its power from threessur

— ltis, of course, mucleasierto embed a sublanguage within Scheme than to invent
and implement a new language out of whole cloth.
For example, the Gnu project's C implementation of Awk is about 14lip@8
of code. The Scheme-embedded implementation is 933 lines of code, of which
roughly one-third are the field-reader library, one-third areatfiemacro, and one-
third are comments. It took about three days to implement the systanmgsTivere
this easy mostly because of the things thain't have to be designed or imple-
mented: variables, conditionals, arithmetic operators, procedures, amdshof
the machinery that typical programming languages need.
Lowering the barrier to invent and embed new little languages within Sehem
means this linguistic tool is more generally available to the progranfor ap-
plication within specialised niches.

— Thequality of the little language produced is greater.
Even though the embedded Awk macro required only 7% as many lines of code to
implement as the standalone C version, it is significantly more polwerfu

e Whenever necessary, the user can break out of the special-purpose notation and
express complex computations in a general-purpose programmingalpagu
The Scheme embedding makes simple things easy, and complex things possi
ble. The standalone little language only provides the former.

e The general-purpose computational facilities provided by Scheme are far mo
powerful than those provided by the C-based interpreters that impleradit
tional Awk or the Unix shell.

In short, Scheme is always available, which is a tremendous source of.power

— System componentomposebetter.
Embedding subsystems within a single broad-spectrum language, sBcherse,
makes it possible for them to be more intimately intertwined. Instéaderacting
via flat text streams sent through pipes, components written in diffétids lan-
guages can pass complex data structures around. For example, uses o€éss pro
notation can be embedded within Awk scriptsvare versaln fact, current scsh
programmers do exploit the ability to compose system componentsinay.

9 Final Thoughts

The technigque of embedding little languages within Scheme is a fairlgrgeone.
Having embedded two little languages within Scheme, it's not too hasdddow to
embed twenty more. Two obvious candidates areethgect programmed-dialogue
scripting tool [4], and thewake utility for dependency-directed program recompilation
[3]. Since the power of a glue language is the power of the interadtatrittfacilitates,
this is a case of “the more the better"—the possibilities for interadiietween system
components written in embedded sublanguages go up quadratically withrttteenof
systems that are embedded within Scheme.

We aren't restricted to using Scheme to embed our little languages. Wehawald
used almost any member of the Lisp family of programming languagesdingiCom-
mon Lisp [9] or the original s-expression Dylan [2]. While Schenas the most so-
phisticated macro system of any language in this family, the macro sysféhesather
members can be exploited in a similar manner.

A final note on the power of syntactic extension: It seems curious imttenineties
to be using Scheme as a serious tool for systems programming. Tleatcstandard
lacks a module system, static type-checking, exceptions, and record titpestid
appear that time has passed the language by. Scheme's sole remainingisfirtide d
guishing it from more modern languages, such as ML [5], is its uniyss@phisticated
macro system. But it is the syntactic extensibility provided by thé&cro system that
provided us the crucial mechanism we needed to embed our little languagés with
Scheme. Designers of new programming languages would do well to nopeer
and utility of this mechanism.

References

1. Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger. Kiwa pattern scanning and pro-
cessing languagesoftware—Practice and Experiend(4):267-279, April, 1979.

. Dylan: An Object-Oriented Dynamic Languag&pple Computer, 1992.

3. Stuart I. Feldman. Make—A program for maintaining compuygmgrams. Software—
Practice and ExperienceX(4):255-265, April, 1979.

4. Don Libes. expect: Curing those uncontrollable fits oéiiattion. InProceedings of the
Summer 1990 USENIX conferengémaheim, Ca., June 1990.

5. Robin Milner, Mads Tofte, and Robert Harperhe Definition of Standard MLThe MIT
Press, Cambridge, Mass., 1990.

6. J. Rees and W. Clinger (editors). The revfsegbort on the algorithmic language Scheme.
Lisp PointerslV(3):1-55, July—September 1991.

7. Olin Shivers. A Scheme shell. To appear indbernal of Lisp and Symbolic Computation

8. Olin Shivers. The scsh manual.November 1995, scsh release 0.4. MIT Laboratory for
Computer Science. (Also available at URLtp: //swissnet.ai.mit.edu/scsh/.)

9. Guy L. Steele Jr.Common Lisp: The LanguageDigital Press, Maynard, Mass., second
edition 1990.

N

