
A Universal Scripting Framework
or

Lambda: the ultimate “little language”

Olin Shivers

MIT AI Lab, Cambridge, Mass. 02139, USA

Abstract. The “little languages” approach to systems programming is flawed:
inefficient, fragile, error-prone, inexpressive, and difficult to compose. A bet-
ter solution is to embed task-specific sublanguages within apowerful, syntac-
tically extensible, universal language, such as Scheme. I demonstrate two such
embeddings that have been implemented in scsh, a Scheme programming envi-
ronment for Unix systems programming. The first embedded language is a high-
level process-control notation; the second provides for Awk-like processing. Em-
bedding systems in this way is a powerful technique: for example, although the
embedded Awk system was implemented with 7% of the code required for the
standard C-based Awk, it is significantly more expressive than its C counterpart.

1 Introduction

Many programming tools are built around the idea of “little languages”—small inter-
preters implementing a programming language that has been tuned to the specifics of
some specialised task domain. This approach to systems-building was popularised by
Unix, which provides a host of little-language processors. For example, the following
Unix language interpreters all support notations tuned for specialised task domains:

Task Interpreter
regular-expression based string transforms sed
pattern-matching awk
type-setting nroff/tbl/eqn
dependency-directed recompilation make
file-system tree-walking find
program invocation and composition sh

Little languages complement the Unix “toolkit” philosophy—the operating system
provides mechanisms for composing little-language based components into larger sys-
tems (and, in fact, the principal interface for doing so is itself a little language, the
shell). In Concurrency and Parallelism,

Programming, Networking, and Se-
curity, Lecture Notes in Computer
Science #1179, pages 254–265, Ed-
itors Joxan Jaffar and Roland H. C.
Yap, 1996, Springer.

2 The Case for Little Languages

A programming language is a notation for expressing computation. Byrestricting our-
selves to a specific task domain, we can tune our notation to the needs of thedomain's

computations. The language understood by the� ��� utility, for example, is not a gen-
eral programming language, but rather one which is specially adapted for expressing
dependencies among the components of a system [3]. Sacrificing generality is rewarded
by notational compactness and clarity.

Unix's little-languages philosophy is to present the programmer with a suite of spe-
cialised languages—a linguistic toolkit for systems implementation.The programmer
can then write each component of his system in the language which is best suited to the
requirements of the component. Once constructed, the components are then composed
together using pipelines.

In principle, this approach provides a flexible and powerful method forconstructing
systems. In practice, however, little languages have a number of problems.

3 The Problems of Little Languages

One problem with the little-languages approach is that these languages are usually ugly,
idiosyncratic, and limited in expressiveness. Although many of these little languages
are similar to C, they are all slightly different from one another. Because each little
language is different from the next, the user is required to master a handful of languages,
remembering all the trivial distinctions between them, thus unnecessarilyincreasing the
cognitive burden to use these tools.

The bizarre syntactic quirks of little languages are notorious. For example, the well-
known problem with� ���'s syntax distinguishing tab and space has been tripping up
programmers for years.

When a programmer decides to implement a little language, he must start from
scratch, and implement an entire programming language. The designer and implemen-
tor is unable to concentrate solely on the task-specific aspects of his design. Basic lin-
guistic elements such as loops, conditionals, variables, and subroutines must be re-
invented and re-implemented. Not only does this add to confusing and unnecessary
linguistic proliferation, it is not an approach that is likely to produce a high-quality
language design. The temptation is to hurry through these “details” toget to the “in-
teresting parts” of the design—the task-specific elements. So the basic programming
substrate is likely to be hastily thought-out and implemented, and the task-specific ele-
ments of the design are denied the implementor's full consideration. What is produced,
all too often, is a little language with a half-baked variable scoping discipline, weak
procedural facilities, and a limited set of data types.

Finally, by implementing a little language as a standalone interpreter that executes
in a separate address space, the system component implemented in that little language
must typically be implemented as a standard-input/standard-output text transducer that
interacts with other system components “at arms length” through pipes. Components
do not have an opportunity to interact in ways that require sophisticated data structures
or patterns of control transfer. Forcing data to be communicated from component to
component as a linear byte-stream implies a cost of repeated parsing and unparsing
operations at each component interface. In practice, it often leads to fragile programs
that rely on heuristic, error-prone parsers (often based on limited regular-expression
matchers).

4 An Alternate Approach

An alternate approach is to choose a powerful, syntactically extensible programming
language, such as Scheme [6], and embed our little language within it. Thishas the
benefit of focus: it allows the tool designer and implementor to concentrateon the task-
specific elements of his language. Standard programming constructs, such as loops,
variables, procedures, conditionals, data structures, and so forth, can betaken wholesale
from the underlying “glue” language when needed. This means:

– There is a greater chance of the designer getting the basics right since he isreally
leveraging off of the enormous design effort that was put into designing the Scheme
language.

– Not only is the designer able to exploit the design effort represented by the Scheme
language, the implementor can also capitalise on the efforts of others. By embed-
ding within Scheme, he gets interpreters and native-code compilers for free.

– The designer's task is much, much easier because he doesn' t have to start from
scratch; he can devote all of his time and thought to the task-specific elements of
his little language.

– The base language is not limited because the designer didn' t have the time or re-
sources to implement all the features of a real programming language.

– The user doesn' t have to learn five or six different little languages—just Scheme
plus the set of base primitives for each application.

– Because different little languages can be embedded within Scheme, components
written in different little languages can now interact using the sophisticated data
structures and patterns of control-flow available in Scheme.

As exemplars of this approach, I have embedded two “little languages” within
Scheme. The first is a high-level process-control notation equivalent tothe notation
provided by Unix shells for constructing pipelines of processes, performing I/O redi-
rection, and so forth. The second, more detailed example, will be an embedding of an
Awk-like little language within Scheme.

These systems were implemented in scsh, a portable Unix programming environ-
ment built in Scheme [7, 8]. Scsh has been used for a wide variety of systemspro-
gramming tasks, such as cell-phone interfaces, mobile Web browsers, CAD tools, log
analysers, http servers and other network tools. Its chief relevance is thatit provides
an interface from Scheme to the underlying operating system, and so makes a suitable
platform for experimenting with embedding systems-oriented littlelanguages within
Scheme.

5 The Scsh Process Notation

Scsh has a notation for controlling processes that takes the form of s-expressions; this
notation can then be embedded inside of standard Scheme code. The basic elementsof
this notation areprocess forms, extended process forms, andredirections.

5.1 Extended Process Forms and I/O Redirections

An extended process formis a specification of a Unix process to run, in a particular I/O
environment:

epf ��� �
pf redir� ��� redir� �

wherepf is a process form and theredir� are redirection specs. There are seven types of
redirection spec; the most common four are:

�� [fdes] file-name� 	
��� ��� �� ���� ���
[fdes] file-name� 	
��� ��� �� �� ��� ����
[fdes] object� 	 � �� object�� �� ����� ����������� ��� ����
[fdes] file-name� 	
��� ��� �� ������ �

Thefdesfile descriptors default to 0 and 1 for input and output redirections, respectively.
The subforms of a redirection are implicitly backquoted. So the output redirection�� �� � means “output to the file named by Scheme variable�,” and the input redirec-

tion
�� �� ����� ���� �� ���� �� � means “read from�� ����� ���� �� ���� ��.” This

implicit backquoting is an important feature of the process notation, asit provides es-
capes to general Scheme computation from within the little language.

Here are two more examples of I/O redirection:
�� ���� ���!�� � ������ " �����#� �

These two redirections cause the file� $�% to be opened on standard input, and the file�����#� to be opened for append writes on standard error.
The redirection

��� object� causes input to come from the printed representation
of object. For example,

��� &'�� (� � � #���� ��)����� ���� ��� ��*+ ��� �&�
causes reads from standard input to produce the characters of the above string. Note
thatobjectis also implicitly backquoted, so we can connect a computed Scheme string
up to a process' standard input,e.g.:

��� �������� �, � � -� �"��

5.2 Process Forms

A process formspecifies a computation to perform as an independent Unix process.
There are six types of process form; the most common three are:�#�� �� � scheme-code�� .

pf� ��� pf� ��
prog arg� ��� arg� �

	 /�� scheme-code�� � ��� �
	 0����� � �������
	 1����� 2 ��� ��� ������� �

The default case
�
prog arg� ��� arg� � is also implicitly backquoted. That is, vari-

ables can be substituted into the command line with�expor �3expforms.

5.3 Using Extended Process Forms in Scheme

Process forms and extended process forms arenotScheme. They are a different notation
for expressing computation that, like Scheme, is based upon s-expressions. Extended
process forms are used in Scheme programs by embedding them inside special Scheme
forms. There are three basic Scheme forms that use extended process forms: ��� !��,�
, and���.

���� !�� � epf� 	 ���� ��� ������ ��� ��� ��� � epf� 	 ���� epf �� #� ������� ��� ������ � �� ����� � epf� 	 /�� epf ��� ������ �� �� ����� � �
These special forms are macros that expand into the equivalent series of system calls.
The definition of the��� !�� macro is non-trivial, as it produces the code to handle
I/O redirections and set up pipelines. However, the definitions of the

�
and��� macros

are very simple:�� � epf� �
���� �� �� ���� !�� � epf������� � epf� �
����� �� � epf��

Figure 1 shows a series of examples employing a mix of scsh's process notation and
Scheme. Note that regular Scheme is used to provide the control structure, variables,
and other linguistic machinery needed by the script fragments; this was made possible
by our strategy of embedding our specialised notation within Scheme.

6 Awk in Scheme

Our second case study is the Awk language for pattern-directed processing [1]. The
first part of the design task was to factor the language into its two basiccomponents: a
record- and field-based I/O system, and a rule-based, pattern-directed controlstructure.
Each of these components was implemented separately in the Scheme design. This
allows us to mix and match the components—a given task may only require one of the
two components. Also, this factoring allows the user a degree of extensibility—if the
provided record I/O library doesn' t serve his needs, he can use the full power of Scheme
to implement his own I/O primitives, and plug them into the pattern-matching control
structure in a modular fashion.

6.1 Field and Record Readers

Awk programs iterate over a sequence of records, processing each in turn. TheC-based
Awk has limited support for specifying the record and field structure ofthe input stream.
If the programmer's data has structure that is too complex to be parsed with these sim-
ple mechanisms, he is out of luck. The Scheme-based design, however, provides an
extensible toolkit for constructing procedures to read records and parsethem into their
component fields. This toolkit makes it easy to build record readers for thetypical cases,
but in no way limits the programmer from constructing and using his own, arbitrarily
complex, input parsers.

��� ������������	 �

 � �� �� �������� ���� ������ �
���� ����� �� ���� ��

 � ���� �� ���� �� � ������ �

���� ������ ����
 �� ���� ������
 � ����

 � !������ � � � ������ �

���� ��� ����� �"�����

 � #��� ��� $�%& ' �� $%()* �

�� +, ���������� ��� ���� �� �� ������� ��������� � ��� � ���
�� �� ����� ���� �� � &����� �� ��� ���� � ������ �� ��� ���� �
�� -�� ���� ���� �� �������� �
�������� �. �����

���� ��������� �������������� ���� ���� / ���� /

�������� �������������� ���� ���� / ���� /

�0 � 1 �� ,
 ��� �� ��������

�� �����

� 2 ��������

����������������

�� !����� ����� ���� �� ! �- ���������� �� ������ /� ��3���� / 4
�' ����'� ���

�������� �. �����

��� �5���	 ���� ����� �� � ��3���� �����

������������ ����

����������������

Fig. 1. Example process-notation fragments

Reading RecordsThe basic function for constructing a record reader is
��� ���!������ [delims elide?]� 6 reader

The �� ���!������ function constructs a reader procedure which reads delimited
records from an input stream. The optionaldelimsparameter is a string of delimiter
characters—any of these characters will terminate a record. If the optionalelide?pa-
rameter is true, then a contiguous sequence of delimiter characters is taken to meana
single record boundary. The default values ofdelimsandelide?are newline and false,
respectively, so the expression

��� ���!������ �constructs a simple line-reading pro-
cedure:

��� ��� ����!���� ��� ���!������ ��
Notice that the�� ���!������ procedure doesn' t read records itself—it constructs
record readers for later use.

Note also that there is nothing special about�� ���!������. The Awk program-
mer is not limited by the span of record readers it provides. As we will see,he is free to
use general Scheme to define his own arbitrary record readers—a facility unavailable to
the client of the C-based Awk.

Parsing Records into FieldsOnce an Awk program has obtained a record to process,
it then parses the record into its component fields. Our Awk system provides three func-
tions for constructing field parsers. These procedures allow the programmer to define a
record's field structure in terms of regular expressions:

� ����!�������� [regexp num-fields]� 6 parser�����!�������� [regexp num-fields]� 6 parser��� ��!�������� [regexp num-fields]� 6 parser

The constructed parsers map a record string to a list of field strings. The regular expres-
sion passed to the����!�������� function defines the fields to be parsed from the
record. For example, the parser

� ����!�������� & $�!�%� &�
produces a function that extracts digit sequences from a string:

������ � &���� #��� ������� "- �� � �&��� ����!�������� & $�!�%� &� �� 6 �&"- & &� &�
The three functions differ in their interpretation of theregexpparameter:

Procedure Pattern����!�������� matches fields�� ��!�������� separates fields
�� ��!�������� terminates fields

The regular expression passed to the�� ��!�������� function is used to match field
separators. So the parser

��� ��!�������� & 2&� will split a line of text into colon-
separated components. The optionalnum-fieldsparameter is used to specify tight or
lower bounds on how many fields must be parsed from an input record; its default
is just to parse as many as possible. So we can simply define a parser for theUnix��� ������� file with the expression

��� ��!�������� & 2& -�.

Composing Record Readers and Field ParsersThe function����!������ is used
to compose a record reader with a field parser:

� ����!������ [field-parser record-reader]� 6 reader

When the returned reader is applied to an input stream, it usesrecord-readerto read a
record from the stream, then appliesfield-parserto the record to break it into fields. The
reader then returns two values: the raw, unparsed record, and the list of parsed fields.
Both parameters are optional; the default record reader is����!����, and the default
field parser splits strings at white-space boundaries. Therefore, if� is bound to an input
stream open on the��� ������� file, the expression

�� ����!������ ��� ��!�������� & 2& -�� � �
might return the two values

& ����� 2�����((� 2,�- 2"" 21��� ���� 2�� ��� ����� 2�# ����� &�& ����� & &�����((� & &,�- & &"" & &1��� ���� &
&�� ��� ����� & &�# ����� &�

Figure 2 gives some examples of field readers that can be simply constructed with
Awk's constructors. Notice how we have exploited Scheme's higher-order procedures
to succinctly construct a wide array of input procedures. Again, as we shallsee, the
Awk programmer is not limited to this particular set of readers and parsers—he has the
full power of Scheme to define his own arbitrary readers and parsers.

6.2 The Awk Loop

Besides field parsing, Awk also provides a rule-based, pattern-directed control structure
for determining what to do with records as they are read into the program.Awk's basic
control structure is to read in a record, parse it into its component fields, and then match
the record against a set of pattern/action rules. If a rule's pattern matches the record, it
fires its action part, updating iteration variables and performing output. After all rules
have had a chance to fire, the program loops, reading another record, and so forth.

In our Scheme-embedded Awk, this control-structure is realised as a macro. The
general syntax of our new control structure is

���� next-record record&field-vars state-var-decls
clause� ��� clause� �

For example, here is a very simple Awk loop:
���� �����!����� ������ �� 	 0�� �� #���� ������& $� ��% & �� �����+ ����� ����������� 	 ��� ����� �

The first form in the��� expression,
�����!�����, is an expression which is evalu-

ated on each iteration to produce the next record to be processed. The next form is a

��� �� �� ������ ������ � � �� �
��� ��'������� � � ����� 22��� *�� 2, �2 4,� ��� ����
������������� ��������������� / � ��	
 / �

��� �������� �� ������� ������ � � �� �
��� �� �2, �� �2, �
������������� ��������������� / �� �	
 / ,

��� % ��� �� ����� �� �������� � � �� �
��� � 2 �, � ��
���� �������� ��������������� / �
�		 ����	
 /

������������� �. ��
 �� �� ������� ������ ������� �

Fig. 2. Some examples of field readers

list of variables—one for each value returned by thenext-recordexpression. Since the����!���� procedure in our example only returns a single value, we only have one
variable,����. This loop has only one pattern/action clause, whose test is the regular
expression& $� ��% &. When the loop variable���� contains at least one non-blank
character, it matches the regular expression. This fires the clause body, which prints out
the line.

A clause's test expression doesn' t have to be a string denoting a regular expression.
It can be a general Scheme expression, which is evaluated to produce a boolean value:

			 �� ��� ����+ ���� ������ ���� �� ���� ����� �����!����� ������ ����� ���� ���!������ ����� ����� �����+ ����������������
Note that we can use the full power of Scheme to encode arbitrarily complextests,
something we cannot do with the limited “little language” provided by the C-based
Awk.

��� loops can have iteration variables, which are declared and initialised in the���-
style state-var-declspart of the form. When iteration variables are used, each clause
must return the new values for the iteration variables when it fires. So ifa loop has
three iteration variables, each clause must return three values—one for each iteration
variable. The��� expression's value is the final value of the iteration variable (if the
loop has multiple iteration variables, it produces multiple values).

Here are two examples of��� expressions that use loop state:

			 � ��� ��� ������ � ��� ������� ���� ����� �����!����� ������ ��� ��!��� ������ �� �� � ��!��� ���� ���!������ ��������
			 ����� ��� ���#�� � ���! ��� ��� �����
			 � ��� �� �+ 0 ��� � ���� � ����� �����!����� ������ �������� ����&� $ ��%� 	& ������� 	 ���� �������� �� ������ ,��� 	 ��� � ��� ���

We haven' t bothered yet to parse our records into fields, as none of our simple ex-
amples have required it. It is a simple matter, however, to employ a fieldparser in an
��� loop when necessary. As an example, we can process the Unix��� ������� file.
For our purposes, we only need to know that this file contains a sequence of newline-
terminated records; each record contains seven colon-separated fields; and the first field
is the user's login id. In this example, the����!������ procedure returns two values
each time it is called: a line of text (bound to����), and its field-parse as a seven-
element list of strings (bound to �����). The ��� expression produces a list of ele-
ments, where each entry in��� ������� is tagged by the user's login id. This list is
sorted by the login-id key, and then the sorted entries are printed out.

��� ��� � ��� � 	 � ����� ���� �##��� ��� ��� �
��� ��� ����!������ �����!������ ��� ��!�������� & 2& -���
			 0��� ��� ���� ��� �� ��� ������� #+ ��� �� ��� � ����!�� � �� �����+ � �� �����+ � �� ����+ �� ��������������� �� �� + � ���� ����� � �� � � � �� + ������� �����!������ � ����� ������ ���� � �������� � �� � � �� � �� ����� �� �����

�� ������
Note that��� is not restricted to performing output to express its result. It is agen-
eral Scheme expression, and can be embedded within a larger Scheme context. The
three main computations in this example—parsing, sorting, and output—were com-
posed with function composition in Scheme, instead of via pipes as the classical “Unix
tools” approach would employ with the C-based Awk utility. Functional composition
is a much more powerful technique for composition, as it allows for sophisticated data
structures, such as linked lists, to be passed from component to component efficiently
and reliably.

7 The Methodology of Embedding

Both the Scheme-embedded process notation and Awk sublanguages have extrafeatures
we haven' t covered—for example, the process notation provides ways to capture and
parse process output into Scheme data, and the��� macro supports rule patterns that
are active over designated ranges of records. However, we've seen enough of these two
little languages to get a feel for the general technique of embedding a sublanguage
within Scheme.

In both cases, we followed the same methodology. The first step for ourembedding
was to functionally decompose the system into its primitive computational elements.
These can be realised as base procedures and their associated data structures. In the
case of Awk, this was captured by the library of record readers and field parsers.In the
case of scsh, this was captured by binding the Unix system calls for I/O andprocess
control into Scheme.

The second step of our embedding was to capture unusual patterns of controland
environment structure as macros, providing gains in notational compactness and clarity.
This step is what distinguishes Scheme from languages such as Tcl or Perl—the abil-
ity to introduce new forms of notation. In Scheme, we can make these extensions all
within a common s-expression framework. Although Tcl and Perl are useful scripting
languages, one cannot extend their syntax to embed a new language within them.

The��� macro and the scsh process notation are examples of this “notational engi-
neering.” In both cases, we were careful to allow escapes within the notation to allow
general Scheme code to extend the set of allowed computations. For example, scsh's im-
plicit backquoting of its I/O redirections allow the programmer to usegeneral Scheme
expressions for I/O redirection; the#�� �� process form allows general Scheme com-
putations to serve as the process specification; and the�� redirection cross-connects

Scheme and general process computations. In the��� design, we allow any Scheme
form at all to be employed as the input record reader, and both the test and body ele-
ments of the clauses can be arbitrary Scheme code. These escapes allow us to have the
best of both worlds: the compactness and simple clarity of task-specific notation, and
the generality of a general-purpose programming language. The Scheme escapeskeep
us from being trapped by our specialised notations. For example, if we wanted to write
an Awk loop that scanned over files of C source code, operating on a single top-level
function definition at a time, we could write a general C parser in Scheme and use it
as the loop's record reader. This is not a possibility with the traditional Awk; we are
restricted to the limited class of built-in record readers it provides.

8 The Benefits of Embedding

By now, the benefits of embedding a sublanguage within Scheme should beclear. Em-
bedding a little language within Scheme gets its power from three sources:

– It is, of course, mucheasierto embed a sublanguage within Scheme than to invent
and implement a new language out of whole cloth.
For example, the Gnu project's C implementation of Awk is about 14,000lines
of code. The Scheme-embedded implementation is 933 lines of code, of which
roughly one-third are the field-reader library, one-third are the��� macro, and one-
third are comments. It took about three days to implement the system. Things were
this easy mostly because of the things thatdidn' t have to be designed or imple-
mented: variables, conditionals, arithmetic operators, procedures, and the rest of
the machinery that typical programming languages need.
Lowering the barrier to invent and embed new little languages within Scheme
means this linguistic tool is more generally available to the programmer for ap-
plication within specialised niches.

– Thequalityof the little language produced is greater.
Even though the embedded Awk macro required only 7% as many lines of code to
implement as the standalone C version, it is significantly more powerful.
� Whenever necessary, the user can break out of the special-purpose notation and

express complex computations in a general-purpose programming language.
The Scheme embedding makes simple things easy, and complex things possi-
ble. The standalone little language only provides the former.

� The general-purpose computational facilities provided by Scheme are far more
powerful than those provided by the C-based interpreters that implementtradi-
tional Awk or the Unix shell.

In short, Scheme is always available, which is a tremendous source of power.
– System componentscomposebetter.

Embedding subsystems within a single broad-spectrum language, such asScheme,
makes it possible for them to be more intimately intertwined. Instead of interacting
via flat text streams sent through pipes, components written in different little lan-
guages can pass complex data structures around. For example, uses of the process
notation can be embedded within Awk scripts, orvice versa. In fact, current scsh
programmers do exploit the ability to compose system components in this way.

9 Final Thoughts

The technique of embedding little languages within Scheme is a fairly general one.
Having embedded two little languages within Scheme, it's not too hard tosee how to
embed twenty more. Two obvious candidates are the���� � programmed-dialogue
scripting tool [4], and the� ��� utility for dependency-directed program recompilation
[3]. Since the power of a glue language is the power of the interaction that it facilitates,
this is a case of “the more the better”—the possibilities for interaction between system
components written in embedded sublanguages go up quadratically with the number of
systems that are embedded within Scheme.

We aren' t restricted to using Scheme to embed our little languages. We couldhave
used almost any member of the Lisp family of programming languages, including Com-
mon Lisp [9] or the original s-expression Dylan [2]. While Scheme has the most so-
phisticated macro system of any language in this family, the macro systems of the other
members can be exploited in a similar manner.

A final note on the power of syntactic extension: It seems curious in themid-nineties
to be using Scheme as a serious tool for systems programming. The current standard
lacks a module system, static type-checking, exceptions, and record types—it would
appear that time has passed the language by. Scheme's sole remaining virtue distin-
guishing it from more modern languages, such as ML [5], is its unusually sophisticated
macro system. But it is the syntactic extensibility provided by thismacro system that
provided us the crucial mechanism we needed to embed our little languages within
Scheme. Designers of new programming languages would do well to note thepower
and utility of this mechanism.

References

1. Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger. Awk—a pattern scanning and pro-
cessing language.Software—Practice and Experience, IX(4):267–279, April, 1979.

2. Dylan: An Object-Oriented Dynamic Language.Apple Computer, 1992.
3. Stuart I. Feldman. Make—A program for maintaining computer programs. Software—

Practice and Experience, IX(4):255-265, April, 1979.
4. Don Libes. expect: Curing those uncontrollable fits of interaction. InProceedings of the

Summer 1990 USENIX conference, Anaheim, Ca., June 1990.
5. Robin Milner, Mads Tofte, and Robert Harper.The Definition of Standard ML.The MIT

Press, Cambridge, Mass., 1990.
6. J. Rees and W. Clinger (editors). The revised

�

report on the algorithmic language Scheme.
Lisp PointersIV(3):1-55, July–September 1991.

7. Olin Shivers. A Scheme shell. To appear in theJournal of Lisp and Symbolic Computation.
8. Olin Shivers. The scsh manual.November 1995, scsh release 0.4. MIT Laboratory for

Computer Science. (Also available at URL
��� 433�' ������ ��� �� �� ����3���3

.)
9. Guy L. Steele Jr.Common Lisp: The Language.Digital Press, Maynard, Mass., second

edition 1990.

