
The Scheme
of Things

Pavel Curtis

Xerox PARC
3333 Coyote Hill Rd.
Palo Alto, CA 94304

Pavel@Xerox.Com

I decided to begin my tenure on this column
by describing two recent proposals for additions
to Scheme. The first is a facility for creating
new, programmer-defined da ta types; the sec-
ond makes it possible for procedures to return
more than one value. These proposals will be
considered by the Scheme authors for inclusion
in the Revised 5 Report on Scheme whenever
that document comes up for discussion.

For future columns, I am considering dis-
cussing other possible directions for Scheme lan-
guage development, inc luding macros, dynamic
binding, exception handling, modules, and con-
currency. I may also do a column or two on
Scheme compilation and interpretat ion tech-
niques. If you've got an idea for some other
topic you'd like me to discuss here, please feel
free to write me at the addresses above; your
suggestions are always welcome.

One of the most glaring holes in the Scheme
language is the lack of a facility for defining new
data types in a modular way. Many portable
Scheme programs have little prologues that look
something like this:

(define (make-frob a b)

(v e c t o r a b))

(define (frob-a frob)

(vector-ref frob 0))

(define (frob-b frob)
(vector-ref frob 1))

(define (frob-set-a! frob obj)
(vector-set! frob 0 obj))

(define (frob-set-b! frob obj)
(vector-set! frob i obj))

This sort of programming manages to do the job
well enough for many purposes. For larger pro-

grams, though, there are several problems with

this approach to defining new types of data:

• There is no way to test whether or not a

given value is a "frob".

• Every frob looks like a vector.

For each new field in such a structure, there
are three places to be maintained consis-
tently.

• Defining new da ta types this way is tedious.

The first problem could be addressed by mak-
ing every frob vector one element longer and
putt ing some unique, distinguished value in that
slot. We might modify the code above to do this
as follows:

(define frob-marker (list "Frob"))

IV. 1-61

(define (make-frob a b)
(vector frob-marker a b))

(We must, of course, also add one to each of the
vector indices in the rest of the code.) Given
this, we could define f r o b ? as follows:

(define (frob? obj)
(and (vector? obj)

(> (vector-length obj) O)
(eqv? frob-marker

(vector-ref obj 0))))

The second problem, that every frob looks
like a vector, has several consequences.

All code that might manipulate frobs must
be written carefully so as not to mistake them
for vectors. For example, suppose that foo is a
procedure that takes either frobs or vectors as
inputs. It must be writ ten like this:

(d e f i n e (foo ob j)
(i f (f rob? ob j)

(do-frob-stuff obj)
(do-vector-stuff obj)))

and not like this:

(define (foo obj)
(if (vector? obj)

(do-vector-stuff obj)
(do-frob-sZuff obj)))

In essence, the programmer must always keep
in mind that frobs are implemented as vectors,
a serious breach of modularity. If there is a bug
of this variety, it may well be very dii~cult to
notice, let alone find.

Since frobs cannot be distinguished from vec-
tors, they will be printed as such by the stan-
dard procedures w r i t e and d i s p l a y . This is
almost certainly not the most readable external
representation one could choose.

'The other two problems I listed above (that
this approach is tedious and error-prone) could
presumably be solved by means of some higher-
level syntax or procedures. The "records" pro-
posal, originally formulated by Jonathan Rees
based upon a suggestion by Norman Adams, is
primarily aimed at solving the second problem:
modularity.

Under the proposal, five new standard proce-
dures will be added to Scheme:

make-record-type
record-constructor
record-predicate
record-accessor

record-updater

Before I describe the new procedures, let me
show you how the "hob" example above would
be rewritten using them:

(define frob-type
(make-record-type "Frob"

'(a b)))

(define make-frob
(record-constructor frob-Zype

'(a b)))

(define frob?
(record-predicate frob-Zype))

(define frob-a
(record-accessor frob-Zype 'a))

(define frob-b
(record-accessor frob-type 'b))

(define frob-set-a!
(record-updater frob-type 'a))

(define frob-set-b !
(record-updater frob-type 'b))

The procedure make-record-type takes two
arguments, a string giving a name for the new
type (for use in printing the values and other
such debugging purposes) and a list of sym-
bols naming the fields to appear in each value
of the new type. Make-record-type returns
a record-type descriptor (abbreviated "rtd"), a
value that can be passed to the other four pro-
cedures to identify the new type.

It is guaranteed that each rid returned by
make-record-type really identifies a brand new
type, disjoint from all others. Values of the new
type are not vectors, pairs, strings, etc.

Record-constructor takes a record-type de-
scriptor, rid, and a list of symbols, fields, all
of which must name fields in the type identified

IV. 1-62

by rtd. It returns a procedure for construct-
ing values of the new type. This constructor
takes as many arguments as there were symbols
in fields; it returns a new value whose fields
are initialized to the given arguments. Thus,
for example, with make-frob defined as shown
above, (make-frob 1 2) returns a new frob ob-
ject whose a and b fields are initialized to 1 and
2, respectively.

The fields argument to r e c o r d - c o n s t r u c t o r
is optional; it defaults to the list of field names
given when rtd was created. Thus, the defini-
tion of make-frob above could have been sim-
plified to

(define make-frob
(record-constructor frob-type))

Record-predicate takes just one argument,
a record-type descriptor rid; it returns a mem-
bership-testing procedure for the type identified
by rtd. The returned procedure takes one argu-
ment and returns either #t, if the argument is
a member of the type identified by rid, or #f,
otherwise.

The procedure record-accessor takes two
arguments, & record-type descriptor, rid, and a
symbol, field, naming one of the fields in each
value of the type identified by rtd. It returns a
procedure that takes one argument, which must
be a member of the type identified by rtd. The
returned procedure itself returns the value of
the field named .field in the argument.

Finally, r ecord-upda ' t e r takes the same ar-
guments as r e c o r d - a c c e s s o r , but returns a
different kind of procedure. This procedure
takes two arguments, a member of the type
identified by rtd, call it record, and a new value
for the field named field in record; it stores the
new value in the field and returns an unspecified
value.

Given this proposal, it would be legitimate
for a Scheme system to implement the basic op-
erations on pairs as follows:

(define pair-type
(make-record-type "Cons cells"

' (car cdr)))

(define cons
(record-constructor pair-type))

(define pair?
(record-predicate pair-type))

(define car
(record-accessor pair-type 'car))

(define set-car!
(record-updater pair-type 'car))

(define cdr
(record-accessor pair-type 'cdr))

(define set-cdr!
(record-updater pair-type 'cdr))

Several suggestions have been made for exten-
sions to the records proposal. The most contro-
versial of these is the addition of what Jonathan
}tees has ca/led an "abstraction-breaking" pro-
cedure, record-type-descriptor, that maps
any record to an rtd identifying its type. Thus,
for example, the expression

(l e t ((a - f r o b (make-frob 1 2)))
(record-type-descriptor a-frob))

would return an rtd equivalent to frob-type,
above; that is, the new rtd could be passed
to record-predicate, for example, to obtain
a procedure with precisely the same behavior
as frob?.

Given this, along with the procedure record-
type-field-names mapping rtds to their asso-
ciated list of field names, it is possible to read
or write the values of any field in any record,
regardless of modularity concerns.

The presence of such procedures in the lan-
guage, some people claim, would remove the
very advantage that the record proposal was
meant to provide: modularity. It is likely that
this issue will be actively discussed at the next
meeting of the Scheme authors.

Under another suggested extension, record
types would allow a simple kind of subtyping,
not unlike the inheritance mechanisms in most
object-oriented languages. This idea is to have
m a k e - r e c o r d - t y p e take an optional third argu-
ment, a "parent" rtd:

IV. 1-63

(define foo-type
(make-record-type "Foo"

' (c)
frob-type))

(define make-foo
(record-constructor foo-type

' (a b c)))

(define foo?
(record-predicate foo-type))

(d e f i n e f o o - c
(r e c o r d - a c c e s s e r f r o b - t y p e ' c))

Any foe would also be a frob; thus, for exam-
ple, (f r o b ? (make - foe 1 2 3)) would yield
#t and f r o b - a would accept a foe and return
its a field.

There has been a cautious reaction to the sub-
typing suggestion; some folks are afraid that
the behavior specified might not be compati-
ble with whatever is eventually decided about
object-oriented programming in Scheme.

A final suggestion asked that m a k e - r e c o r d -
t y p e take another optional argument , a proce-
dure to be used for printing values of the new
type. The reaction to this idea has been like the
previous case: this is like specifying a method in
object-oriented languages, so perhaps we should
avoid committ ing to such an interface before
we've decided what we want to do about the
more general issue.

The records proposal solves three of the four
problems found with the ad hoc implementat ion
of frobs at the beginning of the column: there is
a way to test whether or not a given object is a
frob, frobs do not look like vectors (or anything
else but frobs), and the addition of a new field
does not require that any subtle consistencies

be maintained.

It would be more difficult to argue that the
proposal alleviates the fourth problem, that
such record-type definitions are tedious to write
and read. Given a macro-definition facility,
though, one could a t tack this problem by de-
signing some more convenient syntax for type

definitions that expands into uses of the proce-
dures described above. For example, an imple-
mentat ion might introduce a form similar to the
d e f s t r u c t macro in Common Lisp.

The records proposal does not include such
a tedium-saving syntact ic extension because it
was felt that more experimentat ion was needed
before adding one to the language. If and when
the rest of the proposal is accepted, it will be
possible for such experiments to be carried out
portably.

Suppose that you are designing an imple-
mentat ion of hash-tables in which t a b l e - r e f
is the lookup procedure. You must decide what
(t a b l e - r e f table key) is to return. An obvi-
ous approach is to return the value associated
with key in table, if there is one, or # f other-
wise. This simple s t rategy leads to ambiguity,
however. Whenever t a b l e - t e l returns #f , one
knows that either #f is the value associated with
key or key has no associated value; there is no
way to distinguish the two cases.

Of course, there are several ways to solve
this particular problem. For example, one
could specify at table creation time some dis-
tinguished value to be returned in the "no as-
sociated value" case; each client of hash-tables
could then pick a value appropriate to their ap-
plication and check for it whenever t a b l e - r e f
was used. Alternatively, t a b l e - r e f could take
a procedure to be called when there's no asso-
ciated value. The possibilities are endless.

A perhaps more general solution would be
for t a b l e - r e f somehow to return two values,
a boolean indicating whether or not key has an
associated value and the value itself.

I say that this solution is more general be-
cause the ability for procedures to return more
than one value is useful in a wide variety of sit-

uations. For example:

• The computat ion of some value involves the
simultaneous computat ion of one or more
other, useful values. For example, when

IV. 1-64

computing the quotient of two integers, the
remainder is also computed; it might be
useful for a division procedure to return
both quotient and remainder. Many pars-
ing or matching operations also have this
property.

• In inductions (that is, loops or recursions)
over more than one variable, a part of the
computat ion is encapsulated in a proce-
dure that takes the old values of the in-
duction variables and must return new val-
ues for them. For example, consider a tree
walk that simultaneously computes maxi-
mum tree depth and the number of leaves.

• Some functions inherently compute two or
more values. For example, matrix factoring
usually involves computing two new matri-
ces from the input matrix.

In all of these cases, one could, of course, re-
turn a single value that contains all of the de-
sired values, such as a list. In addition to being
inefficient, though, this has conceptual prob-
lems. It could be argued that values in pro-
grams should represent conceptual wholes; in
manv cases, the collection of values returned by
some procedure lack this coherence.

With this and other considerations in mind,
several Scheme authors col laborated ' to put for-
ward a proposal to allow multiple-result proce-
dures. It calls for the addition of two s tandard
procedures:

values

call-with-values

The first of these is the basic means for return-
ing multiple values and the second is that for
using them.

The procedure v a l u e s takes an arbi trary
number of arguments, including none, and re-
turns all of the arguments as its results. For
example, the expression (v a l u e s 1 2) returns
1 and 2. To say this in another way, v a l u e s
invokes its own continuation on the arguments
passed to it. In fact, v a l u e s can be writ ten in
s tandard Scheme:

(define (values . arguments)
(call-with-current-continuation

(lambda (k)
(apply k arguments))))

Since values can be writ ten so easily, you
may well wonder why there is any need for
a multiple-values proposal at all. The rea-
son is tha t s tandard Scheme specifies that the
continuations reified by c a l l - w i t h - c u r r e n t -
c o n t i n u a t i o n accept exactly one argument.
Thus, the invocation (v a l u e s 1 2) is currently
defined to be in error. What is needed is some
way to provide continuations that do accept
other numbers of arguments.

The procedure c a l l - w i t h - v a l u e s provides
this capability. It takes as arguments two pro-
cedures, call them producer and consumer. It
invokes producer with no arguments and then
passes all of the values producer returns as ar-
guments to consumer. The result(s) of calling
consumer are returned by c a l l - w i t h - v a l u e s
as well.

Thus, this expression returns 5:

(c a l l - w i t h - v a l u e s (lambda ()
(v a l u e s 2 3))

+)

and this is an overly-complex procedure to re-
turn the absolute difference between its two real
arguments:

(lambda (x y)
(call-with-values

(lambda ()
(if (> x y)

(values x y)
(values y x)))

(lambda (bigger smaller)
(- bigger smaller))))

Getting back to the hash table design from
earlier, you would write t a b l e - r e f itself us-
ing v a l u e s and any clients of t a b l e - r e f using
call-with-values.

A few questions remain concerning (a) the ef-
fect of returning a different number of values

IV. 1-65

than the continuation expects, and (b) the num-
ber of values expected by all of the various kinds
of continuations.

In relation to the first question, consider the
following expression:

(call-with-values (lambda ()
(values 1 2 3))

cons)

In this case, the continuat ion of the values ex-
pression is expecting two values, the arguments
to cons, but three are returned. Under the pro-
posal, this is t reated the same as passing the
wrong number of arguments in a normal pro-
cedure call; that is, it is an error for this to
happen.

This is a different approach from that taken
in the corresponding par t of Common Lisp. In
that language, any "extra" re turned values are
simply ignored and when more values are ex-
pected than provided, the lack is made up with
the appropriate number of n i l s . The concen-
sus among the proposers was that this behavior
was inconsistent (because normal procedure call
doesn't work that way in either language) and,
in some vague sense, too "unprincipled".

This all begs the question of the number
of values expected by those continuations not
created by call-with-values. There are five
kinds of such continuations, or evaluation con-
texts:

• the procedure position in a call,

• an argument position in a call,

• the subexpression in a s e t ! expression,

, the test position in an i f expression, and

• any expression except the last in a b e g i n
expression.

Every expression in a s tandard Scheme program
is evaluated in one of these contexts.

There was general agreement among the pro-
posers that the first four of these contexts
should expect exactly one value, to be used in
the obvious way. There was more controversy

concerning the last context above, sometimes
called effect context , since the values of such
expressions are not used.

One subset of the proposers felt tha t , for
consistency among the contexts, effect context
should also expect exactly one value.

Another side, which included me, believed
that effect context should allow any number of
values, including none, and ignore them all. It
was argued that the restriction to a single value
in effect context discriminates against multiple-
result procedures in a case where the semantics
is reasonably well-defined.

Finally, it was also suggested that perhaps ef-
fect context should insist on receiving zero val-
ues. There was somewhat less support for this
position, on the grounds that it would be too in-
convenient and would break too much existing

code.
This issue, of the number of values expected

by effect context , is likely to be debated at some
length when the proposal is formally considered
by the full group of authors.

The fact tha t the expression (v a l u e s) re-
turns zero values is considered by some to be
very useful, and not just a notat ional acci-
dent. In particular, there are a number of
s tandard procedures in Scheme whose re turned
value is "unspecified"; s e t - c a r ! and c l o s e -
i n p u t - p o r t are two examples. Some have sug-
gested tha t this specification be weakened to
say tha t such procedures return an unspecified
number of unspecified values. This would al-
low some implementations to experiment with
the idea of such procedures returning zero val-
ues. If this were done in an implementat ion that
signalled an error whenever the wrong number
of values were re turned to some context, then
a certain class of portability errors could be
caught at the moment they occur. This sugges-
tion has not received widespread vocal support
as yet, but it is likely to come up again when
the multiple-values proposal is considered.

While c a l l - w i t h - v a l u e s provides an essen-
tial service in a simple and general way, uses of
it are usually very verbose and obfuscatory. For

IV. 1-66

example, consider a typical client of t a b l e - r e f :

(call-with-values
(lambda ()

(table-ref table key))
(lambda (value found?)

(if found?
...)))

This compares rather poorly with clients of a
single-valued table-re:f:

(let ((value (table-ref table key)))

(if value
...))

The proposal does not include any remedy for
this problem, on the theory that some signifi-
cant experimentation is required before we can
settle on standard syntactic sugar.

We have been planning to experiment with
this issue in SchemeXerox (our implementation
of Scheme here at PARC); I'll close this column
with a description of a few of our ideas. None
have been implemented yet, so comments and
suggestions are especially welcome.

In most uses of c a l l - w i t h - v a l u e s , much of
the template above is constant:

(call-with-values (lambda () ezpr)
(lambda (variables ...)

body))

One could simply package up this idiom in a
simple form:

(b ind-va lues (variables . . .)
ezpr

body)

This is very similar in syntax and function to
the Common Lisp m u l t i p l e - v a l u e - b i n d con-
struct. A problem with this approach is that
one frequently ends up writing code like this:

(let* ((a (foo))
(b (bar a)))

(bind-values (c d)
(baz a b)

(let* ((e (mumble a b c d)))

(frotz a b c de))))

Because the binding of multiple values uses a
different construct than the binding of a single
value, visual clutter and apparent complexity
result. We are thus considering allowing a list
of variables to appear in place of a single one in
l e t and l e t * expressions:

(let* ((a (foo))
(b (bar a))
((c d) (baz a b))
(e (mumble a b c d)))

(frotz a b c de))

Another problem concerns situations where a

procedure returns several values but only one

is needed. For example, if we wanted to test
whether or not a particular key had an associ-

ated value in a hash table, we would have to
write this code:

(let (((value found?)

(table-ref table key)))
found?)

While the extension to let has made this much

more palatable than the equivalent code using
call-with-values, perhaps it is worthwhile
adding a values-ref expression:

(values-ref (table-ref table key) i)

If this sort of idiom is particularly common, it
might even make sense to add lexical-level syn-

tax to support it:

#1(table-ref table key)

As I mentioned above, we have not yet imple-

mented any of these ideas and so are most open
to comments and suggestions. Perhaps next is-

sue I'll describe the most interesting ideas I re-
ceive. []

IV. 1-67

