
Using the New Common Lisp Pretty Printer

Richard C. Waters

MIT AI Laboratory
545 Technology Sq.

Cambridge MA 02139
Dick@AI.MIT.EDU

Mitsubishi Electric Research Laboratories
201 Broadway

Cambridge MA 02139
Dick@MERL.COM

Although not part of the initial definition
of the language, pretty printing has been an
important feature of Lisp programming envi-
ronments for twenty years or more [1]. By the
time Common Lisp was being defined, the im-
portance of pret ty printing was clear enough
that pret ty printing was made a formal part of
the language [2]. However, little was done be-
yond recognizing the least common denomina-
tor of the pret ty printing facilities available at
the time--J2] specifies how pretty printing can
be turned on and off, but says very little else.
In particular, no provision was made for allow-
ing the user to control what the pret ty printer
does.

Since the late 1970s, efficient pret ty printers
that allow extensive user control over the for-
mat of the output produced have been a par-
ticular interest of mine. In 1989, my xP pretty
printer [4] was adopted as part of the proposed
Common Lisp standard [5]. This adds a num-
ber of very useful facilities to Common Lisp,
however, some study and experimentation on
the part of the user is required to make the
best use of these facilities.

The purpose of this short paper is to show
how the user format-control facilities provided
by the new Common Lisp pretty printer can be
used to advantage. It is intended as an exten-
sion to the documentat ion in [5], rather than a
replacement for it. To make the best use of this
article, it is advisable to read [5] and obtain a
copy of the new Common Lisp pretty printer as
outlined at the end of this article, so that you
can play with the examples.

Pr int ing Lisp as Pasca l

As a convenient context for discussing the
format-control facilities provided by the new
Common Lisp pretty printer, this article uses
the problem of displaying Lisp code using Pas-
cal syntax. In particular, the article shows how
the pret ty printer can be used to print a sim-
ple mathematical subset of Lisp as Pascal. For
example, the following Lisp function definition

(defun sqt (n ~aux sqt)
(declare (f loa t n) (f loa t sq t))
(se tq sqt 1.0)
(loop (when (< (abs (- (* sqt sqt) n))

i . oE-4)
(re turn n i l))

(se tq sqt
(I (+ sqt (I n sqt)) 2.0)))

sqt)

is printed as shown below.

function Sqt (N: Real): Real;
begin

Sqt := 1.0;
while not (Abs(Sqt*Sqt-N) < I.OE-4) do

Sqt := (Sqt+N/Sqt)/2.0
end

The Lisp-as-Pascal printing system is best
viewed as a means for presenting the pretty
printing facilities, rather than any kind of se-
rious a t tempt at program translation. How-
ever, it is worthy of note that the system is
not totally contrived. A similar system was
used as part of the Knowledge-Based Editor in
Emacs [3] to display a Lisp-like internal repre-
sentation as Ada code.

Figures 1-4 contain definitions that cause

V-2.27

(in-package "USER")

(defvar *PD* (copy -pp r in t -d i spa t ch))
(proclaim ' (s p e c i a l *B*))

(defun p a s c a l - w r i t e (sexpr ~ res t args)
(let ((*B* 0))

(apply # ' w r i t e sexpr : p r e t t y t
: p p r i n t - d i s p a t c h *PD* a rg s)))

(defun p r - s t r i n g (s s t r i ng)
(se tq s t r i n g (s t r i n g s t r i n g))
(wr i t e - cha r # \ ' s)
(dotimes (i (length string))

(let ((char (aref string i)))
(write-char char s)
(when (char= char #\')

(write-char #\' s))))
(write-char #\' s))

Figure 1: Code for printing atoms.

the pretty printer to print Lisp as Pascal. The
pretty printer operates under the control of a
dispatch table that specifies how various kinds
of objects should be printed. The second form
in Figure 1 defines a variable *PD* and initializes
it with a copy of the default pretty printing dis-
patch table. The function pascal -wri te prints
a Lisp expression as Pascal by triggering pretty
printing and using the dispatch table *PD*. (As
discussed in conjunction with Figure 2, the vari-
able *B* is used to control the printing of paren-
theses in Pascal expressions.)

The function p r - s t r ing prints strings as re-
quired by Pascal.

"Bob's house" prints as 'Bob' ' s house '
"say \ " H i \ prints as ' say "Hi" '

The top two forms on the right of Figure 1
cause p r - s t r ing to be used for printing strings
and characters. (The first line of p r - s t r ing is
included so that p r - s t r ing can be used to print
character objects in addition to strings.)

#ks prints as ' s '

The third form on the right of Figure 1 spec-
ifies how variables and function names should
be printed in Pascal. In particular, it speci-
fies that whenever an object of type symbol is
encountered, it should be pretty printed using
the indicated function. This function capital-
izes the first letter of each word and removes
any hyphens.

(set-pprint-dispatch 'string
#'pr-string 0 *PD*)

(set-pprint-dispatch 'character
#'pr-string 0 *PD*)

(set-pprint-dispatch 'symbol
#'(lambda (s id)

(write-string
(remove # \ -

(s t r i n g - c a p i t a l i z e
(string id)))

s))
0 *PD*)

(set-pprint-dispatch
'(and rational (not integer))
#'(lambda (s n)

(write (float n) :stream s))
0 *PD*)

first-num prints as FirstNum
break-level-2 prints as BreakLevel2

(As with most of the code being presented here,
this does not guarantee that every relevant Lisp
construct will be translated into a valid Pascal
construct. However, it is sufficient to trans-
late Lisp constructs that are intended to be dis-
played as Pascal into valid Pascal.)

A key thing to notice is that the symbol
printing function uses wr i t e - s t r i ng to print the
string it computes, rather than pr int . The rea-
son for this is that p r in t applies pretty printing
dispatching to its argument while wr i t e - s t r ing
does not. If the function p r in t were used in the
symbol printing function, the symbol :~irst-nura
would be printed as 'FirstNura', because the
string created by the symbol printing function
would be printed as specified by the pretty
printing dispatch entry for strings.

The last form in Figure 1 specifies how to
print rational numbers. Nothing special has to
be said about integers and floating point num-
bers, because the standard Lisp printer prints
them in a way that is compatible with Pascal.

Printing Expressions

Figure 2 shows the pretty printing control
code that specifies how expressions should be
printed. The most interesting aspect of this
code is the way it handles the printing of paren-

V-2.28

(defvar *unary*
'((+ "+" 2) (...... 2) (not "not " 4)))

(defun unary-p (x)
(and (consp x)

(assoc (car x) *unary*)
(= (length x) 2)))

(set-pprint-dispatch '(satisfies unary-p)
#'(lambda (s list)

(let* ((info (cdr (assoc (car list)
unary)))

(nest (<= (cadr info) *B*))
(*B* (cadr info)))

(when nest (write-char #\(s))
(write-string (car info) s)
(write (cadr list) :stream s)
(when nest (write-char #\) s))))

0 *PD*)

(defvar *builtin*
'((atan "ArcTan") (code-char "Chr")

(lo E "Ln") (oddp "Odd")
(char-code "Ord") (truncate "Trlmc")
(prinl "Write") (terpri "Writeln")))

(defun builtin-p (x)
(and (consp x)

(assoc (car x) *builtin*)))

(defun pr-arglist (s ares)
(when ares

(let ((*B* 0))
(format S #"':<-@{'W'', "_'}':>"

axgs))))

(set-pprint-dispatch '(satisfies builtin-p)
#'(lambda (s list)

(writelstring
(cadr (assoc (car list)

builtin))
s)

(pr-arglist s (cdr list)))
0 *PD*)

Figure 2: Code for printing expressions.

(defvar *bin*
' ((, " ," 3) (/ "/" 3)

(mod " mod " 3)
(round " div " 3)
(and " and " 3)
(+ "+" 2) (. 2)
(or " or " 2)
(. 1)
(< " < " 1) (> " > " 1)
(I= " <> " i) (<= " <= " i)
(>= " >= " I) (eq " 1)
(eql I) (equal I)))

(defun bin-p (x)
(and (consp x)

(assoc (car x) *bin*)
(= (length x) 3)))

(se t -ppr in t -d ispa tch
'(satisfies bin-p)
#'(lambda (s list)

(let* ((info (cdr (assoc (car list)
bin)))

(nest (<= (cadr info) *B*)))
(pprint-logical-block

(s (cdr l i s t)
:prefix (if nest "(......)
:SUffix (if nest ")))

(l e t ((*B* (1- (cadr info))))
(write (pprint-pop)

:stream s))
(pprint-newline :linear s)
(write-string (car info) s)
(let ((*B* (cadr info)))

(write (pprint-pop)
:stream s)))))

0 *PD*)

(set-pprint-dispatch 'cons
#'(lambda (s list)

(write (car list) :stream s)
(pr-arglist s (cdr list)))

-I *PD*)

theses. At each moment, the variable *B* con-
tains the binding strength of the current con-
text on a scale of 0 (weakest) to 4 (strongest).
Unless the binding strength of an operator is
stronger than the surrounding context, paren-
theses are printed to specify the proper nesting
of expressions.

Consider the top left of Figure 2. The vari-
able *unary* contains information about the
relationship between unary operators in Lisp
and Pascal. Each triple contains a Lisp func-
tion, the corresponding Pascal operator, and
the binding strength of the operator in Pascal.

The function tmary-p tests whether something
is a list that is an application of a unary oper-
ator.

The printing function for unary operators
determines whether the expression should be
nested in parentheses by comparing the bind-
ing strength of the operator with the binding
strength of the surrounding context; changes
the value of *B* to reflect the binding strength
of the operator; prints parentheses if needed;
prints the appropriate Pascal operator; and calls
write to print the argument appropriately.

The top three forms on the right of Fig-

V-2.29

ure 2 specify how binary operators should be
handled. This is done in a way that is closely
analogous to the handling of unary operators,
however, two additional complexities have to be
handled by ~he binary printing function.

The left associative nature of Pascal must
be taken into account when deciding where to
place parentheses. This is done by reducing the
binding strength of the context when printing
the first argument of a binary operation.

(* (+ 1 2) 3) prints as (1+2).3
(* (* 1 2) 3) prints as 1.2.3
(* 1 (* 2 3)) prints as 1 . (2.3)

To allow the pret ty printer to adjust the
output based on the line width available, the
printing function for binary operators creates a
logical block and introduces a conditional new-
line. As discussed at length in [4, 5], logical
blocks are a central feature of the pret ty print-
ing algorithm. Each logical block is printed on
a single line if possible. However, if this is not
possible, a block is broken across multiple lines
as specified by the conditional newlines within
it and appropriate indentation is inserted. For
example, the Lisp expression

(> threshold (+ new-val delta))

prints as follows if the line width is sufficient.

Threshold > NewVal+Delta

If somewhat less space is available it prints as:

Threshold
> NewVal+Delta

If even less space is available it prints as:

Threshold
> NewVal

+Delta

Logical blocks and conditional newlines al-
low a single printing function to produce aes-
thetic output for a wide range of line widths.

The bot tom four forms on the left of Fig-
ure 2 support the printing of built-in functions
where the name used in Pascal is different from
the Lisp name. The most interesting thing here

is the function pr-arglist. This function prints
out zero or more arguments of a Pascal function
call. Note that nothing is printed if there are
zero arguments and *B* is set to 0 reflecting the
fact that the printing of the arguments does not
have to be sensitive to the binding strength of
the outer context.

The function pr-arglist and the printing
function for binary operators each create a logi-
cal block and specify conditional newlines. How-
ever, they do so using different forms. The
form pprint-logical-block is the most general
form for creating a logical block. It must be
used in situations where complex computat ion
is required to determine what should be printed
within the block. In simple situations (e.g.,
in p r - a r g l i s t) the format directive " - < . . . ' : > "
can be used instead. The directive " '_" is used
to specify conditional newlines within a format
string.

The last form on the right of Figure 2 sup-
ports the printing of user-defined functions and
built-in functions where the name is the same
in Lisp and Pascal (e.g., cos and round). Note
that the dispatching entry is given a priority of
-1 instead of 0 as in the other entries in Figure 2.
A different priority is required because the type
specifier associated with the entry (cons) is not
disjoint from the other type specifiers in Fig-
ure 2. A lesser priority is used so that the en-
try will act as a catch-all that only applies in
situations where no other entry applies.

As examples of the way function calls are
printed, consider the following:

(terpri) prints as Writeln
(log x) prints as Ln(X)
(my-fn a b c) prints as MyFn(A, B, C)

The logical block introduced by pr-arglist
causes the Lisp expression

(my-fn epsilon (+ end delta) total)

to print either as

MyFn(Epsilon, End+Delta, Total)

or

MyFn(Epsilon,
End+D elta,
Total)

depending on the space available.

V-2.30

(set-pprint-dispatch
'(cone (member setq))
#"'<'*'l~{'W :=" "W'}':>"
0 *PD*)

(set-pprint-dispatch
'(cons (member progn))
#"'<'*'l~{begin -2i'_'~{-W''; "_'} -

"l'_end'}':>"
0 *PD*)

(defun pr-if (s list)
(let ((then (caddr list))

(else (cadddr list)))
(when

(and else (consp then)
(or (member (car then)

'(when unless))
(and (eq (car then) 'if)

(null (cdddr then)))))
(setq then '(progn ,then)))

(format s #"'~<if "W "i':_'31"
then "_'W'@["I'_'3I"
else "_'W']':>"

(cadr list) then else)))

(set-pprint-dispatch
'(cons (member if))
#'pr-if 0 *PD*)

(defun maybe-progn (list)
(if (cdr list)

'(progn., list)
(car list)))

(set-pprint-dispatch
'(cons (member when))
#'(lambda (s list)

(pr-if s '(if ,(cadr list)
,(maybe-progn

(cddr l i s t)))))
0 *PD*)

(set-pprint-dispatch
'(cons (member unless))
#'(lambda (s list)

(pr-if s '(if (not ,(cadr list))
,(maybe-progn

(cddr list)))))
0 *PD*)

Figure 3: Code for printing simple statements.

P r i n t i n g S t a t e m e n t s

Figure 3 shows the pretty printing control
code that specifies how simple statements are
printed. The first two forms print assignment
statements and beg in . . , end blocks. They are
specified very compactly by using the extended
form of the cons type specifier included as part
of the propsed Common Lisp standard and the
reader macro # " . . . " , which creates a function
corresponding to a format string. Both forms
use logical blocks to control the output .

The function p r - i f is used to print condi-
tional statements. Some complexity is involved,
because the function must ensure that nested
conditionals print correctly. In particular, the
expression

(i f a (i f b c) d)

must be printed as

if A then begin if B then C end else D

instead of

if A then if B then C else D

to distinguish it from

(if a (if b c d))

Checking for this problem requires pr-if to in-
spect the then clause of the conditional being
printed.

The last three forms on the right of Figure 3
specify how to print the Lisp forms when and
unless. This is done by converting them to
equivalent ifs .

The first five forms in Figure 4 specify how
to print while and repeat loops. The primary
complexity revolves around the need to inspect
Lisp loop forms and determine what Pascal
statements should be used to represent them.
(The code shown assumes that every Lisp loop
it encounters can be displayed as either a while
or repeat loop in Pascal). An example of the
way a while loop is printed is shown at the
beginning of this paper. The following repeat
loop

(loop (setq result (* result x))
(setq count (- COunt I))
(when (= count O) (return nil)))

is printed as shown below.

repeat
Result := Result*X;
Count := Count-I

until Count = 0

V-2.31

(defun while-loop-p (x)
(and (consp x) (eq (car x) 'loop)

(exit-p (cadr x))))

(defun exit-p (x)
(and (consp x)

(member (car x) '(if when))
(equal (cddr x) '((return nil)))))

(set-pprint-dispatch
'(satisfies while-loop-p)
#'(lambda (s list)

(format s "'@<while "W "
-:_do "2I'_'W':>"

'(not ,(cadadr list))
(maybe-progn (cddr list))))

0 *PD*)

(defun repeat-loop-p (x)
(and (consp x) (eq (car x) 'loop)

(exit-p (car (last x)))))

(set-pprint-dispatch
'(satisfies repeat-loop-p)
#'(lambda (s list)

(format s "'@<'<repeat "2I"
"@{'''_'W''; "}-:> "I'_"
until "W':>"

(butlast (cdr list))
(cadar (last list))))

0 *PD*)

(proclaim '(special *decls*))

(defun pr-decl (s vsI ~rest ignore)
(declare (ignore ignore))
(format s #"'W: "W"

var (declared-type var)))

(defun declared-type (vat)
(cdr (assoc

(dolist (d *decls* 'integer)
(when (member var (cdr d))

(return (car d))))
'((float . real)

(single-float . real)
(integer . integer)
(fixnum . integer)
(character . char)
(string-char . char)))))

(defun pr-defun (s list)
(let* ((name (cadr list))

(args (caddr list))
(body (cdddr list))
(*decls* nil)
(fn? (and (member name args)

(eq name
(car (last body)))))

(locals
(delete name

(cdr (member '~aux args))))
(parameters

(ldiff args
(member '~aux args)))

(*B* 0))
(loop

(unless (eq (caar body) 'declare)
(return nil))

(setq *decls*
(append *decls* (cdar body)))

(pop body))
(pprint-logical-block (s (cdr list))

(write-string
(if fn? "function procedure ")
s)

(write name :stream s)
(format s #" ":<'~{-/pr-decl/''"

; " :_-}- :>"
parameters)

(when fn?
(format s #": "W"

(declared-type name)))
(format s #" ;" : ~_")
(when locals

(format s #" var "4I"
"{':@_'/pr-decl/;-}"
"01":@_"

locals))
(format s #"begin "2i':~_'{'W''; "_'}"

"I'_end"
(if fn?

(butlast body)
body)))))

(set-pprint-dispatch
'(cons (member defun))
#'pr-defun 0 *PD*)

Figure 4: Code for printing loops and function definitions.

Printing Function Definitions

The remainder of Figure 4 controls the print-
ing of function definitions. The primary com-
plexity here is that parameters, local variables,
and type declarations are specified in PascM
very differently from the way they are speci-
fied in Lisp. The function pr-defun effectively
has to parse the defun to be printed and then re-

express the information using either a procedure
or function statement in PascM.

An interesting thing to note is the function
pr-decl . This function prints a variable fol-
lowed by its type and is used as a user-defined
format directive in pr-defun. The type to print
is determined by the function declared-type,
which looks at declaration information stored
in the variable *decl* by pr-defun.

V-2.32

The results produced by pr-defun are illus-
trated by the first example in this paper and
the following

(defun print-exp (x i ~aux count result)
(declare (integer x count result))
(setq count i)
(setq result I)
(loop (setq result (* result x))

(setq count (- count i))
(.ben (= count O) (return nil)))

(print result))

which is printed as shown below.

procedure PrintExp (X: Integer;
I: Integer);

var
Count: Integer;
Result: Integer;

begin
Count := I;
Result := I;
repeat

Result := Result*X;
Count := Count-i

until Count = O;
Print(Result)

end

C o n c l u s i o n

You can get a lot of wlue out of the pro-
posed Common Lisp pretty printer by merely
setting *p r in t -p r e t t y* to t . However, this only
scratches the surface of the value that can be
obtained. The next level of use comes from
defining speciM pretty printing functions for
particular data structures you define. This al-
lows the pret ty printer to be much more useful
during debugging. However, the usefulness of
the pret ty printer is not limited to being part
of the Lisp programming environment.

An entirely new level of use comes from us-
ing the pretty printer as a component of a sys-
tem you are building, as in the example pre-
sented here. The pretty printer's ability to tai-
lor output to fit the space available makes it
valuable in a wide variety of situations where
output is being produced. In particular, it al-
lows a modular approach to the creation of out-
put.

For example, in the code shown in Figures 1-
4, each dispatching entry specifies how to print

a single kind of form. Except for a small amount
of contextual information (e.g., the information
required to decide where parentheses should be
printed) each entry operates on a local basis
without having to know anything about any
other form. However, because each entry spec-
ifies how the relevant form should be printed if
it will fit on one line and what should be done
if it cannot be printed on one line, the pretty
printer is able to dynamically combine the en-
tries and automaticaaly adjust the output to fit
aesthetically in a wide range of line widths.

O b t a i n i n g t h e E x a m p l e

The example above is written in Common
Lisp and has been tested in several different
Common Lisp implementations. The full source
is shown in Figures 1-4. In addition, the source
can be obtained over the INTERNET by using
FTP. Connect to FTP.AI.MIT.EDU (INTERNET

number 128.52.32.6). Login as "anonymous"
and copy the files shown below.

In the directory / p u b / l p t r s /
xpx-code , lisp source code
xpx-test, lisp test suite

Since the example makes use of the pret ty
printing facilities in the proposed Common Lisp
standard, it requires a Common Lisp imple-
mentat ion that supports these facilities. If the
Common Lisp implementation you use does not
yet support these facilities, you can obtain an
implementation over the INTERNET. Connect
to FTP. AI. MIT. EDU, login as "anonymous", and
copy the files shown below.

In the directory /pub/xp/
xp. l i s p source code
xp- t e s t , l i s p test suite
xp-doc, l i s p brief documentation

The contents of Figures 1-4 and the files
above are copyright 1992 by the Massachusetts
Institute of Technology, Cambridge MA. Per-
mission to use, copy, modify, and distribute
this software for any purpose and without fee
is hereby granted, provided that this copyright
and permission notice appear in all copies and
supporting documentation, and that the names

V-2.33

of MIT and/or the author are not used in ad-
vertising or p u blicity pertaining to distribution
of the software without specific, written prior
permission. MIT and the author make no rep-
resentations about the suitability of this soft-
ware for any purpose. It is provided "as is"
without express or implied warranty.

MIT and the author disclaim all warranties
with regard to this software, including all im-
plied warranties of merchantability and fitness.
In no event shall MIT or the author be liable
for any special, indirect or consequential dam-
ages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action
of contract, negligence or other tortious action,
arising out of or in connection with the use or
performance of this software.

References

[1] Goldstein I., "Pretty Printing, Converting
List to Linear Structure", MIT/AIM-279,
February 1973.

[2] Steele G.L.Jr., Common Lisp: the Lan-
guage, Digital Press, Maynard MA, 1984.

[3] R.C. Waters, "The Programmer's Appren-
tice: A Session With KBEmacs", IEEE
Transactions on Software Engineering,
11(11):1296-1320, November 1985.

[4] Waters R.C., XP: A Common Lisp Pretty
Printing System, MIT AI Laboratory tech-
nical memo MIT/AIM-1102a, September
1989.

[5] Waters R.C., "Pretty Printing',' in Common
Lisp: the Language, Second Edition,
748-769, Steele G.L.Jr., Digital Press,
Burlington MA, 1990.

From: bclement~cavebbs.gen.nz (Bruce Clement) 17 Jan 92

Nondlsclosure agreements llmlt the amount of preclce
information I can give, but object oriented COBOL will have
the following enhancements on procedural COBOL:

1. There will be 3 new DIVISIONS:
*The CLASS Division where object classes will be declared
*The MESSAGE Division where all messages which may be used

are declared
*The METHOD Division which associates MESSAGES with CLASSES

2. All existing verbs are deleted from the language. Gone ere
ADD SUBTRACT COMPUTE (Which should never have been there
in the first place, it makes COBOL too much llke ForTran)
READ WRITE OPEN CLOSE. There is only one remaining verb
SEND which sends messages to objects.

3. Programmers must be careful to avoid using any of the
reserved MESSAGE names: ADD SUBTRACT MULTIPLY DIVIDE READ
WRITE OPEN CLOSE etc. These are only permitted with
built-ln object types.

4. The data division hss OD declarations to define Object
storsge.

The following is a brief example of an ADD ONE TO COBOL
program:

IDENTIFICATION DIVISION.
PROGRAM ID. SAMPLE.
AUTHOR. BRUCE.
SOURCE COMPUTER. INTEL-386-REAL.
OBJECT COMPUTER. INTEL-386-PROTECTED.
REMARKS. (C) 1992, Diversity enhancements.

CLASS DIVISION.
DEFINE CLASS NUMBER.
DEFINE CLASS INTEGER EXPANDS NUMBER.

MESSAGE DIVISION.
VIRTUAL MESSAGE SORT-OF-ADD APPLIES TO NUMBER

INTEGER.
VIRTUAL MESSAGE KIND-OF-PRINT APPLIES TO NUMBER

INTEGER.

ENVIRONMENT DIVISION.

DATA DIVISION.
OBJECT SECTION.
OD NUMBER.

* An empty d e f i n i t i o n , one b y t e minimum.
O1 FILLER PICTURE X.

OD INTEGER.
01 I-VAL PICTURE $9(9) COMP.

WORKING-STORAGE SECTION.
77 A-NOMBER CLASS INTEGER.

LINKAGE SECTION.
77 VALUE-IN PIC $9(9) COMP.

METHOD DIVISION.
MD CLASS NUMBER.
SORT-OF-ADD MESSAGE USING VALUE-IN.

EXIT METHOD.
KIND-OF-PRINTMESSAGE.

SEND DISPLAY "Number: " TO SYS-PRINT.
EXIT METHOD.

ND CLASS NUMBER.
SORT-OF-ADD MESSAGE USING VALUE-IN.

SEND ADD VALUE-IN TO I-VAL.
EXIT METHOD.

KIND-OF-PRINT MESSAGE.

* Note the power of Inherltence of parent methods
SEND KIND-OF-PRINT OF NUMBER TO SELF.
SEND DISPLAY I-VAL TO SYS-PRINT.
EXIT METHOD.

PROCEDURE DIVISION.
ONLY SECTION.

SEND MOVE I TO I-VAL OF A-NUMBER.
SEND SORT'OF-ADD 1 TO A-NUMBER.
SEND KIND-OF-PRINTTO A-NUMBER.
STOPRUN.

I hope that this simple example of an ADD I TO COBOL GIVING
COBOL program suffices to show something of the power of the
language, and demonstrates the true utility of e modern
Business orientated object orlenated language.

V-2.34

