
Syntax and Semantics of a Persistent Common Lisp*

J. H. Jacobs and M. R. Swansont

Center for Software Science

Department of Computer Science

University of Utah

Abstract

The syntax and semantics for UCL+P, a persistent Common
Lisp, are detined. The definition provides adequate support
for persistence while maintaining the look-and-feel of Com-

mon Lisp. All Lisp data types (except streams) can be made

persistent. Persistence is conferred automatically on non-
symbol values when they become part of a persistent data
structure. Symbols are persistent if interned in a persistent
package. The Common Lisp package facility was enhanced
to allow for persistent packages which provide modularity to
the space of persistent values and serve as the ultimate roots

of the persistence conferral algorithm. Values are retrieved

from the store using demand loading; new or mutated val-

ues are automatically detected and written back to the store
when the transaction is committed. The sharing semantics

of Lisp are preserved in this specification.

1 Introduction

The ability to construct programs that use persistent data
(where values persist after a program execution) is becom-
ing increasingly important in this era of gigabyte secondary
stores. While database management systems adequately
serve many business applications, they are insufficient to

efficiently support many of the complex data structures re-

quired for modern computer applications such as CAD. Per-
sistent languages are designed to serve the data management

needs of these applications. Most persistent languages were

evolved from existing languages such as: Algol [4], C++ [10]
[15] [1], Smalltalk [8], ML [13], and Lisp [14] [11] [2] [3] [6].

In all but the Lisp languages the introduction of persistence
has been fairly successful: the resulting language still has
the look-and-feel of the original. Unfortunately the Lisp im-
plementations have not been as successful in this regard.

Introducing persistence into a known language is a chal-
lenging undertaking, and when the original language pro-
vides automatic storage management the task is even harder.

“ This research was sponsored by the Advanced Research Projects

Agency (DOD), mon]tored by the Department of the Navy, Office of

the Chief of Naval Research, under Grant number NOO014-91-J-4046.
t {JhjacObs,swanSOn} @cs.utah .edu

Permission to copy m“thouf fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
andlor specific permission.

Seamless integration of persistence requires a thoughtful de-

sign, and careful, low-level modifications to both the com-

piler and runtime systems of the language. For C++ and the

others, there was no choice but to bite the bullet and make
the necessary low-level changes. However, the expressive

power of Lisp provided shortcuts which attracted many im-
plementors of persistence: restricting persistence to CLOS

objects, limiting persistence support to interpreted code,
etc. While these expediencies can produce usable systems,
they are pale realizations of Persistent Lisp.

The UCL+P project began with the fundamentals. We
fist conceived of how a Persistent Lisp ought to work and
look, then we undertook the necessary steps to make our

concept a reality. In our view, a Persistent Lisp should fol-
low three principles. First, it should conform to established

Lisp syntax, semantics, and programming style; if it does
not look like Lisrr. it cannot be called LisD. Second. the.,
persistence features provided should be powerful enough so
that the programmer need not resort to using Lisp 1/0 fea-

tures or operating systems calls to implement persistent pro-
grams. Third, the programs constructed using Persistent

Lisp should be sufficiently efficient that programmers will
be able to use the programs that they construct. Following
these three guidelines we designed and implemented UCL+P

(Utah Common Lisp plus Persistence) by modifying the ex-
isting UCL compiler and runtime system. UCL+P features

orthogonal persistence, concurrent transactions, and com-
~iled code surmort. These features are interzrated almost. . .
transparently into Common Lisp and, as a result, Lisp pro-

grammers will find that writing persistent programs is nearly

as easy as writing volatile programs.
UCL+P forced us to address many interesting issues:

low-level implementation support; language syntax and se-
mantics; and persistent store design and interface. In this
article we focus on the issues of language syntax and seman-

tics. Creating UCL+P involved extending both the syntax

and semantics of Common Lisp. We defined constructs to
support atomic transactions and modular persistence. In

addition, we had to define persistence semantics for all of
the built-in data types provided by Common Lisp. Defining

semantics for persistence required blending the requirements
of shared, long-lived data with the semantics already defined

by Common Lisp for volatile values to produce a coherent
set of semantics. We believe that the semantics embodied
in UCL+P fully support the manipulation of persistent val-
ues by Lisp programs and dovetail well with Common Lisp
semantics.

The body of this article is grouped into five sections.

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-319410006..$3.50

103

First, we provide an overview of the UCL+P system to help
“ place the more detailed discussions in context. This is fol-

lowed by a description of the syntax and semantics of the
new transaction constructs. Continuing we look at how the
package construct was extended to provide modularity for
persistent values. Next we examine the general semantics

of persistence, and finally turn to the persistent semantics
peculiar to the specific Lisp data types.

2 An Overview of UCL+P

While the subject of this article is the language definition of

a persistent L]sp, it may be helpful to have a brief overview

of the complete system. UCL+P integrates persistence into
Lisp. A transaction construct is provided to allow for atomic

and concurrent access to persistent values (see section 3).
UCL+P implements transactions using a commit-time vali-
dation concurrent transaction protocol which imposes little
overhead when only a single program is accessing the store
whale providing full serializability when shared concurrent

access to the store occurs. Note, however, that this imple-

mentation decision does not impact the language definition;
a conservative locking approach could also be used.

Persistent values reside in modules called persistent pack-
ages, which are an extension of the Common LISP package
construct (see section 4). A UCL+P program may access
any number of persistent packages simultaneously, and many
programs can concurrently share a persistent package, sub-
ject to transaction semantics. Persistent packages may be
arbitrarily large and may reside on one or more secondary
storage devices managed by a store manager process. All

access to the store is through the store manager. The store
manager provides for atomic, multivalue updates to the store

and insures that all programs using the store conform to
transaction semantics.

Efficiently integrating persistence into Lisp required low-
level modifications to both the compiler and runtime system

of the Utah Common Lisp system (UCL)[9]. The compiler
changes centered around two issues. An extra level of in-
direction was added to most intervalue references — thus
pointers became handles (or double-pointers) — and an in-
struction was added to mark each referenced item as read or

writ ten when accessed. Redating Dointers with handles was
L?.

necessary so that heap data which becomes persistent can be
moved into the protected region of memory reserved for per-
sistent values. Access to this region is blocked when outside

the scope of a transaction. Value marking is necessary to
implement both the transaction and automatic write-back

mechanisms (see section 5.4).
After mal&g these mo&ications we examined the size

and performance of the resulting system. These modifica-
tions caused the code size of compiled applications to grow
by 9%-16%, and changes to the runtime system caused the
data area of programs to grow by 20%. The Gabriel bench-

mark set [7] was used to measure the effects of the changes on
volatile- value-only performance. This is an important mea-
sure of system performance since most of the values used in
a UCL+P program will be volatile and, once loaded, persis-
tent values are accessed in the same way as volatile values.

The results showed that the amount of CPU time con-
sumed by UCL+P versions of the benchmarks was a factor
of 1.0 to 1.8 of that used by the corresponding UCL versions.

The range is due to the different proportions of data types

used in the individual benchmark; for example, list manipu-

lation is significantly affected by the low-level changes made
to the compiler, so list intensive benchmarks show a larger

slowdown than others. Since a performance conscious pro-
grammer would favor the vector and hash-t able data types
over the 1 ist, the nominal slowdowns should be closer to
the middle of the range. We have identified some future

changes which should further improve the performance.

3 Transactions

Transactions ensure two related, but separate, properties for
any actions that change the persistent values in the store.
First, they provide atomicity for groups of related changes,

ensuring the internal consistency to store values. Transac-
tions group a set of operations on persistent values together

and either makes the results of all the operations persistent
or discards them all[5]. If the changes are made then the
transaction is said to have committed, and otherwise the
transaction is said to have aborted. Ensuring atomic trans-

action semantics requires that all mutations to persistent
values occur only within the dynamic scope of a transaction

construct.
Transactions also ensure the coherency of store and pro-

gram data when multiple processes are performing concur-

rent accesses and uDdates to the store. UDdates bv se~arate
“.

processes are guaranteed to be seriahzable’ if they do not con-
flict; this may require aborting an update that would violate
serializability. The coherency of the store is thus ensured.
The coherency of program data is also important. That is, a

program that simply reads persistent values but does not at-
tempt to store any updates should still be able to depend on
that set of values representing a single consistent view of the

persistent store. Intervening updates could render the set of
values inconsistent. Ensuring this consist ent view of data

for the program requires that all accesses to persistent data

be within a transaction and that such accesses be recorded.
Conflicting updates by other processes can then be caught

by the runtime system and the transaction aborted.
Consequently, in UCL+P, it is a runtime error to apply

a strict operation to a persistent value outside the scope of
a transaction. A strict operation is one that requires knowl-

edge of a value’s contents to complete. Examples are car

applied to a persistent cons cell, aref applied to a persis-
tent array, get applied to a persistent symbol, and eval if

applied to any persistent value. Nonstrict operations do not
require value content information. For example 1 ist, cons,

and eq are nonstnct. Thus persistent values can be passed
around inside volatile values and inserted into volatile values
while outside a transaction.

3.1 Transaction Related Constructs

with-transact ion ({var I (var value)}*) [Macro]

transaction-form [cfeanup-form]

with-t ransact i on introduces a set of bindings. After nlak-

ing the bindings, the t rans act ion-form is evaluated; this

is the body of the transaction. The transaction succeeds if

the body completes execution and if the implicit commit is

also successful. Then the result of with-transaction is the
result of the bodv. If the form tries to leave the transac-
tion scope via a go, throw, abort-transaction, etc., or if
the commit attempt fails, then the transaction aborts. The

transaction may be aborted by the runtime system during

the course of a transaction if a needed lock is not available

104

(e.g. if a locking transaction protocol were implemented)
or if a protocol violation were detected (e.g. when a time-

stamping optimistic protocol is in use). The commit at-

tempt can fail because of an 1/0 error at the server or be-

cause the transaction collided with another transaction and
failed the validation process (e.g. if the underlying transac-
tion mechanism is commit-time validation).

The commit attempt is made after the completion of
the transaction-form, and is within the scope of the vith--

transact ion. The value of the current binding of any per-
sistent special variable is the value persisted. This may be a
binding introduced by the irith-traneact ion form. There

fore, although persistent symbols can be used as special vari-
ables within the program, only the most recent bh-ding is

persisted.
When the transaction aborts, the cleanup form is exe-

cuted. These forms are outside the scope of the transaction

so they cannot reference persistent values. The purpose of
the cleanup form is to allow the programmer the opportu-

nisty to “roll-back” volatile values that were modified by the
transaction body. In the case of an aborted transaction, the
result of with-transaction is the result of the last cleanup-
form.

The variable lisp:: *abort-reason* is defined to contain an
implementation dependent reason for the transaction abort

(e.g. ‘deadlock, ‘validation-failed, etc.). It can also be set
via the abort-transact ion function (see below).

Support for nested transactions [12] is permitted. An
implementation dependent parameter, *max-transact ion-

-depth*, specifies the maximum level of nesting. If this
level is exceeded then an error will be signalled. The cur-

rent implementation of UCL+P will only support a single,
unnested transaction.

abort-transaction &optional (code ‘user) [Function]

The abort -transact ion function causes the transaction to
be aborted. It also sets the variable *abort-reason* to

code. abort-transaction may only be called within the
dynamic scope of a transaction or an error will be signalled.

persistent-p arg [Function]

persistent-p returns t if arg is a persistent value and nil

otherwise. The purpose of this function is to allow the pro-
gram to determine if a value is persistent and therefore can
only be accessed inside a transaction. When used inside a
transaction it must be remembered that values that will be

made persistent at the end of the transaction are volatile un-
til after the commit has succeeded; therefore, persist ent-p
will return nil when applied to such values.

in-transact ion-p [Function]

in-transact ion-p returns the nesting depth (~ 1) if exe-

cuted within the dynamic scope of a transaction and nil
otherwise.

3,2 Examples

Figure 1 shows a simple function to transfer funds between
two bank accounts. The function takes three arguments,
two account numbers and an amount; all of these values are
volatile. The global variable, accounts, is a persistent array
which contains the balance of each account. The function

(defun transfer+unde-1 (erc dst rmt)
(-ith-transaction

((left (- (aref accmrnte src) -t)))
(cond ((< left O) (abort-transaction))

(t (incf *total-handled-today* amt)
(setf (aref accounts src) left)
(incf (aref accounts dst) amt)
t)))

(progn
(if (>= left O) (decf ●total-handled-today* amt.))
nil)))

Figure 1: l%nd transfer example implemented using
abort-transact ion.

(defun transfer-funds-2 (src dst amt)
(catch ‘nsf

(vith-transact ion
((left (- (aref accounts src) amt.)))

(cond ((< left O)
(throrr ‘nsf ‘S-O-l))

(t (incf ●total-handled-today* amt)
(setf (aref accounts src) left)
(incf (aref accounte dst) wst)
t)))

(progn

(if (>= left O) (decf *total-handled-today* smt))
nil))))

Figure 2: Funds transfer function implemented using throw.

will transfer amount from the source account to the desti-

nation account if the source account has enough funds. The

function also updates a volatile variable, *total-handled--
today*, to reflect the amount of funds manipulated during
the banking day. When the transfer succeeds, the func-

tion returns t. If the source account contains insufficient
funds, abort-transact ion is used to exit the transaction.
The cleanup form is executed but leaves changes *total--

handled-t oday* unchanged due to the if statement. If the
transaction commit fails, the cleanup form is also executed,

but this time it decrements *total-handled-t oday* to re-
flect the failed operation. The function returns nil if the
transfer fails for any reason.

Figure 2 shows a different implementation of the fund

transfer function. Here, a throw is used in place of abort --
transact ion. When the throw is executed, the cleanup

forms are executed as in the previous example. However,
when the cleanup form is complete, the throw “continuesn

causing the) s-o-1 to be returned as the function value.

4 Persistent Packages

The Common Lisp package construct was extended to cre-

ate persistent packages. By providing modularity, standard
CL packages assist in the management of symbols and, by

extension, their bindings and associated volatile values. Per-
sistent packages extend this support for modularity to per-

sistent values and also underlie our mechanism for conferring
persistence onto values. In this section we look at the use,
syntax and semantics associated with persistent packages.

105

4.1 Persistent Packages: Modularity for Persistent Values

By introducing persistence, we have split the value space
into two parts: persistent and volatile. A single, large value

space is accepted as the norm for volatile values, but for per-
sistent values it is inappropriate. A persistent value space

can become enormous, even by LISP standards, presenting
significant management difficulties. These challenges in-

clude managing the store (allocation, deallocation, locality,

etc.), controlled sharing (at what granularity access can be
controlled), and security. Persistent packages make these

tasks feasible by modularizing the stored persistent values

into manageable subsets much as files partition data on sec-
ondary store.

Associating the persistence of values with the package
mechanism does not require any significant changes to the

programmer’s view of Lisp. With few exceptions, the prw
grammer need not be aware of whether a value is persistent
or volatile. 1 A symbol is associated with a home package via

the usual intern process; if the home package is persistent,
then so are the bhlings of the symbol in force at commit
time: its value, its function definition, and its property list.

The precise methodology for determining the persistence of
values is discussed below (section 5.2).

Persistent packages add a new attribute to packages, the
storename. This attribute increases the flexibility of persis-
tent packages by decoupling the actual instance of a package
(the store) from its interface (the name of the package and

its exported symbols). Since the storename names a file

in the host file system, the naming and protection mecha-

nisms of that system are exploited in locating and accessing
stores. Even a single user might find it useful to have dif-

ferent persistent packages having the same packagenamq
this is similar to using the load function to bring in the

appropriate set of forms. For example, a measures package
could have a symbol 1ength-unit. By specifying the stor-

name “inks” the symbol measures: : length-unit would be
bound to “meters” , and if the store-name “cgs” were used
then measures: : length-unit would be bound to “centime-
ter”. For multiple users, the benefits are even greater, as

it is possible to choose private or shared versions of a given
package.

During the execution of a Lisp program, persistent pack-

ages act very much like volatile packages; a package must be

made known to Lisp via make-package before any symbols
belonging to the package are seen by the reader. Persistent

packages do differ, in that some of the package attributes
are not persisted.

A persistent package retains the export status of its sym-
bols. If a symbol was internal when the package was saved,
then it will still be internal when retrieved. The export
status of a symbol can be permanently changed using the

Common Lisp functions export and unexport witbin the
scope of a transaction.

Persistent packages do retain information about the use
of other packages, but not the import of specific symbols.
The intent is to avoid storing large numbers of off-package

symbols that might not actually occur as values within the

package. Therefore, any symbols to be imported into a per-

sistent package will have to be explicitly included each time

the persistent package is used.

Nicknames for packages present a problem because of the

possibility of conflict with the nicknames of other packages.

1 With the exception that persistent values cannot be accessed out-

side the scope of a transaction.

Such a conilict could cause rnske-package to fail. To ad-
dress this, if nake-package is provided with a : nicknames

argument, that argument will override the nicknames stored
in the persistent package for the current program execution.

A permanent change to the nicknames can be accomplished
using rename-package within the scope of a transaction.

4.2 New Syntax and Semantics of Packages

make-package package-name kkey : nicknames [Function]

:use : persistent

make-package has been extended with a : pers ist ent key-
word. The associated argument is the storename for the
persistent package (a string). If : pers istent is not speci-

fied, then make-package behaves as in standard CL. When
: pers ist ent is used, one of the following actions will be

taken:

1. If a package named packagename exists on the store
named stor~name, that persistent package is returned.

2. If no store named store-name exists, a new store is

created, and a new persistent package is created within
that store and returned.

3. If a store named stor~name exists but contains no
package named packagename, such a package is cre-
ated within the store and that package is returned.

4. If any package named package-name is already known
to the runtime system; a runtime error is signalled.

make-package has been changed to return two values. The
first is the package created or found on the store. The second
value is t if a new persistent package was created on the
store, and nil otherwise.

in-package packagename kke y : nicknames [Function]

: use : persistent

A new keyword : persistent was added to the defini-

tion for in-package. The argument associated with it is
the package’s storename, either a string or nil. When
: persistent is not used, in-package behaves as in stan-

dard CL. Note that it may find a previously known persis-

tent package.
When : persistent is used with argument nil, it be-

haves as a standard CL in-package except that only a

volatile package is returned. If a persistent, known pack-

age named packag~name is found, an error is signalled.
When : persistent is used with a string argument, a

persistent package is always returned. If a volatile package

named packagename is known, or a known persistent pack-
age using package-name but having a different stor~name
is found, then an error is signalled. mike-package is called

if there is no known package named packagename.
in-package now returns multiple values. The first value

is the package, and the second value is t if a new persistent
package was created, and nil otherwise (this is always the
case for volatile packages).

package-of arg [Function]

The package-of function returns the package of its argu-
ment. For symbols this is the home package and for persis-
tent values it is the package that contains them. For volatile,

nonsymbolic values this function returns nil. The function
may be called outside of a transaction.

106

5 Semantics of Persistence

The semantics of UCL+P are nearly a superset of Com-

mon Lisp semantics. Some exceptions were described above:

two of the package functions were modified, and transaction

semantics dictate that persistent values be accessed only
within the scope of a transaction, With these exceptions,

all other Common Lisp semantics and syntax hold while
values are resident in the executing program.

Common Lisp semantics provide a set of rules to be sat-
isfied during the execution of a program, but naturally have
nothing to say about persistent values. Therefore, we have
had to devise semantics for persistent values that did not
clash with the volatile value semantics and yet made sense
for operations on persistent values. In this section we look
at the relationship between sharing and the implementation
of persistence, at the algorithm for confernng persistence,

and at the role of symbols in our persistence schema. Con-
tinuing, we examine the mechanism for moving values to

and from the store and the approach to references crossing
package boundaries. We conclude by exploring a sharing

paradox.

5.1 Sharing

Conforming to Lisp semantics requires us to preserve the

same sharing semantics between program executions aa stan-
dard CL does within a single execution of a program. We

have maintained Common Lisp sharing semantics for per-
sistent values: if a persistent value is shared by two other
persistent values at runtime, that relationship will be pre-
served when the values are retrieved from the store during

later transactions within the same or subsequent program
executions. In particular, the property of eq-ness is pre-
served.

Another approach would be to allow structure sharing
to be ignored at commit time when values are persisted.

This would lead to some peculiar situations as illustrated in
figure 3. Prior to being committed, mutations to a shared

value would be visible through all references to the shared
object as shown under “Sharing preserved.” But mutations

in subsequent transactions (or program executions) might be
made to copies of the object and would be visible through

only a subset of the original references (“Sharing not pre-
served”). By extending sharing semantics to persistent val-

ues, we have avoided this potentially troublesome inconsis-
tency. It should be noted that this preservation of sharing

has proved to be one of the most costly aspects of the imple-
mentation, due to the fine granularity of Lisp objects. The

alternative approach was not rejected lightly.

Preserving sharing semantics required that we provide
orthogonal persistence: all data types (with the exception
of streams) have been made persistent; Persistence, and

therefore sharing, could have been limited to a subset of
values (e.g. CLOS objects) available in Lisp, but this would
produce a persistent subset of Lisp.

5.2 Conferring Persistence

Since Common Lisp does not address persistent values, we

had to define the means for creating persistent values. Three

approaches were considered. The first, creation-time con-
ferral, is very simple. This requires that all value creating
functions (e.g. cons, make-array, etc.) take an argument to
indicate whether the value created is to be persistent. This

(in-package ‘p :persistent “p.pkg”)
(uith-transaction ()

(progn (defvar a (list 1 2 3))

(defvar b (cdr a))))

Sharhz nreserved:

a

b

Sharing not preserved:

a 1
1++

2
1~

3 I NIIJ

b 2
IH

3
I

NIL

Figure 3: A Sharing Example

approach presents some difficult semantic problems. If an
initially volatile value later needs to be made persistent, it
would be necessary to make a persistent copy of the value.

This would violate the sharing semantics which we intend
to maintain.

Another scheme for conferring persistence is to explicitly
confer it some time after the value was created. A function
would be applied to a value to change it from volatile to

persistent. The explicitness of this approach does not match
up well with the spirit of Lisp.

Both of these first two approaches sfier from the same
serious drawback-it is possible to construct composite val-
ues (such as graphs of cons cells, arrays, structures, etc.)

that contain persistent values which reference volatile val-
ues. Such composite values present a problem because ref-

erences to the volatile portions would be meaningless when
such a value was retrieved in a future program execution. To

maintain either of these approaches and avoid that drawback
would involve changing fundamental operations to have dif-

fering semantics baaed on the persistence attributes of the
arguments provided. This violates our premise that persis-
tent and volatile values should possess identical semantics

within a given program execution.

Our approach, persistence by reachability, conforms to
both the law and spirit of Lisp. Using reachability, a non-

symbolic, volatile value2 becomes persistent at commit time
if a reference path passes from a persistent value to it; refer-
ence chains do not pass through symbols via their bindings,

though they will always originate at a persistent symbol.
The roots for this conference are the symbols within the
persistent package(s), The concept is analogous to the deter-
mination of liveness for garbage collection. Pigure 4 shows
an example of this approach. The body of the transaction
contains three statements which intern the variable “c” into

persistent package “q” and set up in memory the situation il-

lustrated by the memory schematic. At commit-time, q: : c

serves as the roots for the conferral algorithm, being the

2packages are ~ither volatile or persistent based on how they are

created. In the unlikely event that a package becomes part of a per-
sistent value (e.g. (defvar per :W (find-package ‘lisp))) the reference

will be stored M a reference to a package named “LISP”.

107

(make-package ‘q :persistent “q.pkg”)

(in-package ‘r)

(with-transaction ()

(progn (defvara (list 1 2))

(defvarb (list 3 4))

(defvarq::c (list a ‘b))))

Schematicofvalues inmemory

‘FM ,,
r: :b 3 4 NIL

Schematic of values in store

1
1

1’!+
2 NIL

1

U::c 11 0 1
T NIL

‘r::b

Figure 4: Conferring Persistence

only persistent symbol. Reachable from this root are the

cons cells makingup (list a ‘b), the ualueofr::a, (list 1

2). The bindings of r: : b are not made persistent because

q: : c references only the symbol, ‘r: : b, not its bindings.

Because our approach does not affect the eq-ness of the

values, all sharing semantics are preserved. Since the pro-

cess is automatic, functions need not be aware of whether
their arguments are persistent or volatile as there is no risk

that persistent values will be left with dangling references
to volatile values.

The one drawback of this approach is that persistent
values may inadvertently be incorporated into previously
volatile data structures. If this occurs an error will be sig-

nalled if the persistent component of the data structure is
accessed outside the scope of a transaction. While this is
certainly not a pleasant occurrence it is a type of fauh that
is readily detectable, whereas dangling references placed into

the store moduce a Persistent minefield!

Anoth& disadva&age can occur if persistent data struc-
tures contain temporary data such as intermediate results
in a large computation. Since persistence is conferred by
simple reachability, the system cannot distinguish the in-
termediate results from the final results and will save both.
The programmer needs to either design the data structures
such that they do not contain unneeded data or that the
trash k dumped before committal (e.g. by putting nil into

slots containing temporary data).

5.3 Symbols

The symbol is a very important and unique feature in CL.

Three of the symbol properties are important to understand-
ing the semantics of persistence for symbols. First, sym-

bols can serve as unique values, in and of themselves, which
make them very useful for symbolic computations (e.g. (if

(eq account-state ‘frozen) (reject-login))). Second,
symbols can be bound or associated with several different
values which can extracted when needed allowing symbols
toserve asnamed variables, named functions, andmoremis-

cellaneous roles. Lastly, unlike other values, interned sym-
bolsare notsubject togarbage collectio~ oncecreated they
exist urdess explicitly uninterned. These properties guided

us in our definition of a persistence semantics for symbols.
When symbols are created, they are interned into their

home package. Whether the symbol is persistent or volatile
depends on whether that home package is persistent or vola-

tile. Unlike other values, an interned symbo13 never changes
from volatile to persistent when referenced by a persistent
value. The reasons for this are several. When a nonsymbolic
value is made persistent, it becomes part of the persistent

package conferring persistence onto it. This is necessary
to prevent the store from containing values with references

to nonexistent, volatile values. To apply an analogous ap-

proach to symbols would require either that a referenced
volatile symbol be made a part of the persistent package,

or the home package of the referenced volatile symbol be

made persistent as well. Moving the volatile symbol into
the persistent package would be a violation of package se-

mantics. Conferring persistence onto the containing package

would effectively result in all packages eventually becoming

persistent requiring all data accesses to follow transaction
semantics.

Fortunately, neither of these two dh-e solutions are nec-
essary. Although symbols can be evaluated to values (or
to functions), they also stand alone as values. Therefore
when a persistent vahe contains a symbol, a dangling ref-

erence is not created. When the contained symbol is only

used as the subject of a symbolic computation, the contain-

ing persistent value is complete. In defining the semantics
of persistence for symbols when they are subject to evalua-

tion, they are intentionally treated as interfaces to the values
and functions of other packages and, as such, the program

must provide the appropriate bindings at runtime. This is
consistent with the L]sp model for symbol use: they pro-
vide a level of naming that allows for dynamic rebinding.
Therefore volatile symbols referenced by a persistent value
do not become persistent. The containing persistent value
retains the symbol’s name for reconstruction whenever the

persistent value is retrieved from the store.
This approach cuts two ways. It places a burden on the

user of a persistent package: a meaningful set of bindings
must be provided for any symbols external to that pack-

age which appear as values within it. On the other hand,
it provides the user with the flexiblli t y of choosing appro-
priate bindings for those symbols at each use the persistent

package.
A pragmatic reason for selecting this approach is that

persisting the bhdings of symbols external to the persistent
package could transitively include extensive portions of, if

3Unlnterned symbols are a spec]al case. Whether originally per-

sistent or volatile, uninterned persistent symbols follow the same per.

sistence conferral semantics as other values.

108

not the entire, execution state, This would constitute a
gross violation of our goal of modularity.

An issue introduced by persistence is that of circular ref-

erences. In standard CL there is no difficulty in creating

interpackage references, wherein the values bound to sym-
bols in the two packages each contain the other symbol. If

these two packages both persist, a problem could arise in
attempting to instantiate a value in one package that con-

sists of a symbol in a package that has not yet been made

known. This is a case where lazy loading (see next section)
has not only performance implications but provides a nec-
essary support for the semantics of the persistence.

5.4 Fetch and Store

A persistent language should provide more power than ad

hoc approaches baaed on the 1/0 facilities provided by the

language. It should ease the task of the programmer in
writing programs that manipulate persistent values. An

approach that requires the program to explicitly retrieve
values from the store is not much more powerful than the

read/write operations persistent languages seek to supplant.
Similarly, requiring the programmer to mark those values
which are modified so that they will be stored at commit
time imposes a large burden on the programmer. If the pro-

grammer neglects to write even a single changed value back
to the store, it can leave the persistent store in an inconsis-
tent state.

UCL+P provides transparent fetch and store of persis-

tent values. The runtime system assures that values needed
from the store are fetched prior to their use and that mu-
tated/created values are automatically written back to the
store when a transaction commits. Further, the language

semantics specify lazy loading of persistent values. At first

glance this would seem to be an implementation issue and
irrelevant to the language semantics; however, there is an
indirect semantic effect. Since persistent packages can be-
come quite large and because a program may simultaneously

use several persistent packages, it is possible that a program

might fail due to excessive memory requirements if an eager

loading approach to fetch were defined. The lazy approach
defers unnecessary loading, and permits programs to exe-

cute successfully so long as the values they actually use will

fit in memory.

Under lazy loading, when referencing a persistent pack-
age by make-package or in-package, only the package sym-

bol table is initially fetched from the store. As nonresident
values of the package are accessed, the runtime system re-
trieves them from the store. Only accessed values are actu-

ally loaded into the program.4 This lazy loading approach
allows manageable subsets of very large persistent packages
to be manipulated.

Figure s illustrates the lazy loading feature. When per-
sistent package “x” is opened, all of its symbols are loaded;

one of these symbols, “a” was bound to (list 1 2 3) in
a previous program execution. At the start of the transac-
tion, only the symbol itself is memory resident, as depicted

in the first schematic. As each of the three format state-
ments cause the list to be walked, more of the list is made
memory resident.5

4 Other values located on the same storage block may also be made

resident. This is a detail of the store manager implementation.

5Note, however, that an efficient store manager would attempt to
place all three cons cells on the same store page to exploit locality,

and therefore all three cells might well be loaded simultaneously. If

(in-package ‘x : persistent “x, tmp”) ;A

(with-transact ion ()

(progn (format t “-a-%” (car a)) ;B
(format t “-a-%” (cadr a)) ;C
(format t “-a-%” (caddr a)))) ; D

Values fetched at each stew

F@re .5: A Fetching Example

All persistent value accesses are automatically detected
and recorded, to support store conflict assessment at trans-

action commit time. In addition, detection of write accesses
enables automatic determination of which values must be

saved to the store at commit time. Newly created values
become part of the mutated set either by virtue of being

added to an existing persistent object (value mutation) or
by being assigned as the value of a persistent symbol bind-
ing (symbol mutation). An example is shown in figure 6.

Persistent package “x” contains two symbols, “a”, and “b”,
bound to (list 1 2 3) and (list 11) respectively; the first
schematic depicts these values. The transaction body causes
a destructive mutation of the list bound to “a” , and conses
a value onto the front of the value of “b”, then binding “b”

to the new value. The second schematic shows the new val-

ues; the shading marks the mutated vahses which are written

back to the store during the commit process. The unshaded
values are already known to the store and are not rewritten,

thereby saving translation effort by the runtime system, IPC

bandwidth, and processing by the store manager.

5.5 Interpackage References

The combination of sharing semantics, and simultaneous use
of multiple persistent packages leads to the possibility of in-

terpackage references. Although in most cases, each value
is properly contained within a single package, UCL-i-P does
support cross-package shared structures (e.g., when values

from two distinct packages share the tail of a list). The

shared portion of the structure can only reside in one store.

In the package not containing the shared portion of the
structure, an interpackage reference to the shared portion
is stored. The reference denotes the persistent package (via

its store-name) and a reference to the structure within that
store. While interpackage sharing of structured values is

supported, using symbols for interpackage references is a
better approach since it makes the dependence on another
package both explicit and potentially more flexible.

the values were very large vectors they could not reside on the same

page and the data structure would certainly be fetched incrementally.

109

Values already on store:

a 1
1+

2
l++

3
I

NIL

(make-package ‘per :persistent “per.pkg”)
(in-package ‘user)
(defvara ‘(l 2))
(with-transaction ()

(defvarper::b a))

b+ lllNILl

(in-package ‘x :persistent “x.tmp”)
(uith-transaction ()

(progn (nconca (list 4))

(setfb (cons 10b))))

Values sent to store are shaded.

::::~ :::<.y.:;,,~ ..:,:
a 1 l++ 2 1~~1 3...., 4 ~~ ~

:.x’ .S., .:::.:.:.:. :.:.:.:.?:.:.:

Figure 6: A Storing Example

InterPackage symbol references are trivial. The symbol
itself in this case is the value; only the full symbol name is
saved. When a persistent value containing a symbol refer-
ence is loaded, the stored symbol name is used to establish
a reference to the symbol currently bound to that name in
the current environment. A symbol reference in a persis-

tent value can resolve to a symbol in a persistent package in

one program execution and to a volatile symbol in another.

As with all symbol references, the package containing the

referenced symbol must be known to Lisp.

5.6 A Sharing Paradox

Sharing semantics are preserved across both persistent and
volatile values during the execution of a program, and be-
tween persistent values for their entire lifetime. However,
when a subsequent program execution retrieves persistent
values from the store, the sharing relationship may not be

as first expected. Consider the example in figures 7 & 8.
During the first program execution, variable a is created

and bound to the value (1 2). Variable per: :bis created
and bound to the value of a. Not surprisingly, the values
of both variables are eq. On a subsequent program execu-

tion (figure 8), a is again bound to (1 2), but the value is

no longer eq with the value of per: : b as returned from the
store. Although this might be surprising at first, the lack
of eq-ness follows from the fact that in this execution anew
constant (1 2) was created for the value of a and, as such,

can not be expected to have an eq relationship with the

constant created in the previous program execution. The

situation is analogous to one in Common Lisp:

Given: (defvar a ‘(X y))
(defvarb ‘(x y))

we cannot conclude:

a 1 1’;4 2 NIL

b

Figure7: Sharing paradox: first program execution.

(rmke-package ‘per :persistent “per.pkg”)

(in-package ‘user)
(defvar a ‘(l 2))

(uith-transaction ()

(eqper::b a)) ; ==>nil

a 1 1’{+ 2 NIL

b 1
I “++

2 NIL

F@re8: Sharing paradox: second program execution

6 Persistent Semantics of Other Data Types

In the previous section we covered the major semantic issues
ofpersistence andwehave detailed the persistence semantics

of the types, packages and symbols. However, Lisp is a
language rich in data types and the discussion of persistent
semantics would be incomplete without examining the rest
of the data types. Forsome of thedatatypes (e.g. numbers)

the semantics ofpemistence is quite straight forward, while
for others (e.g. functions) it is fairly complex.

6.1 Numbers, Characters

The Common Lisp definition of eq-ness for numbers and
characters permits the implementation to use copying in-

stead of sharing [16]. Therefore no Lisp program can safely
rely on two numbers being eq to each other. The informa-
tion contained in a numeric or character value is preserved
in UCL+P.

6.2 Streams

Values of type stream are not allowed to persist. This is
because the ultimate stream values (e.g. files) are in the

domain of the host operating system and follow semantics
defined by it.

(eq a b) will retr.umt.

110

6.3 Lists, Arrays, Hash Tables, Readtables, Pathnames,

and Random States

Lists, arrays, hash tables, readtables, random states, and
pathnames are all fairly simple aggregate data types. Be-

cause persist ence preserves the semantics of sharing, these

data types all perform as would be expected; eq-ness is pre-

served.

6.4 Functions

Functions, like any other Lisp value, can become persistent.

One questions arises: how do functions participate in the
persistence conferral scheme?

Fhnctions confer persistence on values and other func-
tions via the reachability algorithm described earlier. It is
important to note that the named functions called by a func-
tion are referenced via symbols. As described earlier in Sec-

tion 5.3, the symbol is persisted, not its function definition.
The same applies to value references to global symbols.

The programmer is required to guarantee that any named
helper functions used by a persistent function, but which

are external to the persistent package, be defined before use

of the persistent function. They may either be volatile and
therefore have been made present by previous load’s or they

may reside in other persistent packages which must be made
known by make-pack age’s. In the latter case, the actual def-
inition of the helper function may actually not be present
until a call on it occurs.

Anonymous functions referenced by persistent values are
automatically persisted in accordance with the reachability

algorithm. Anonymous references to functions can be cre-
ated in a variety of ways. They can be created by using
lambda, labels, and flet, or by calling symbol-function
which returns an anonymous reference to a named function.

Automatic persistence for anonymous functions is not only
consistent with the conference policy, but necessary, since

there is no way for a user to provide the needed function in
future executions.

Persistence of closures requires that their environment
be stored along with the code. Logically, a closure can be

thought of as a pair of function and values (environment).
Each part of the pair is handled according to the rules for
functions and values.

Figure 9 shows the difference between saving a function’s

name and saving its code. The transaction defines two sym-
bols, “f” and “k”, within persistent package “p”. The body

of function “f” calls the function z: : g. The symbol func-
tion slot of “k” is bound to the symbol function of “g”. The

values persisted are illustrated in the schematic. Since “fn

calls z: : g by name, the persisted code for “f” will contain

a reference to the symbol z: : g; no direct reference to the
function for z: : g is persisted. The situation is a little dif-
ferent for “k”. Since “k” is bound to the same function that

z: : g is bound to, the function value of “k” will contain a
reference to the code for function “g”. When a symbol is

evaluated to obtain any of its bindings, the relationship be-
tween resulting value and the symbol is lost and cannot, in
general, be reconstructed. Therefore, the value itself must

be persisted.

6.5 Structures and Conditions

Structures are a fairly complex data type. We can split

structure operations into two categories: type and instance.

(in-package z) ; not persistent

(defun g (x) x)
(in-package ‘p :persistent “p. tmp”)
(with-transact ion ()

(progn (defun f(x) (z: :g x))

(defvar k)
(setf (symbol-function ‘k) # ‘z: :h)))

Schematic of values on the store after commit.

‘W’z’:g
‘f-

F@re 9: Result of persisting functions.

The def struct operation creates a named data type to-
gether with a set of functions: slot accessors, constructor,
predicate, etc. Each of the functions created is bound to

a symbol. Once the data type is defined, instances can be
created and manipulated. Given a structure instance, the
runtime system can determine its data type and size directly.
With these two pieces of information the store manager is

able to save and retrieve a structure value. However, with-
out the information provided in the def st ruct statement, a

program can only treat the structure as an opaque value,
To fully use a structure requires all of the auxiliary func-

tions. Because these are named functions they derive their

Persistence status from the naming symbol. It falls to the
~rogrammer to ensure that the needed functions are avail-
able, either by defining them within a persistent package or
by providing them as volatile functions.

When a structure instance is retrieved from the store

it is possible that the current data type definition for it is
different than when it was created. This is analogous to per-

forming a sequence of de fstruct, make-struct, de fstruct.
The Lisp standard states that the results of redefining a
structure are undefined [16] in the volatile world, so the ex-
ample described above for persistent values is compatible

with similar volatile value semantics.

The data layout and behavior of condit ions are compa-

rable to structures and are handled analogously.

6.6 Persistence Semantics of Classes, Methods,
and Generic Functions

These data types were introduced into Common Lisp along
with CLOS. CLOS provides a very powerful object sys-
tem, including multiple inheritance, the meta-object pro-
tocol, and a simple form of type evolution. Persisting the

data components of individual objects is straightforward, as
a consequence of our orthogonal approach to persistence.

The issues related to persisting methods are largely analo-
gous to those for functions and structures. But subtle issues
arise with the interaction of the complex semantics of CLOS
objects and the state it requires within the runtime system.

111

There are also issues relating to the interaction of persis-
tence with type evolution and with time-specific methods

such as initializers. We have not yet concluded the process
of crafting a persistence semantics for CLOS.

7 Conclusions

We believe we have that in UCL+P we have created a Per-
sistent Common Lisp which fully supports persistence while

maintaining the look-and-feel of Common Lisp. The trans-
action mechanism allows the programmer to easily construct

programs that will leave the store in an consistent state even
when the system fails or when the store is concurrently ac-

cessed by other programs. The ease with which persistent

Lisp programs can be developed is due in large part to the
preservation of the LISP style of programming. Sharing se-
mantics are preserved between all values during any program

execution and at all time~ between persistent values. Per-
sistence is automatically conferred onto nonsymbol values
when they are needed as part of a persistent data struc-
ture, while symbols are persistent if they reside in a per-
sistent package. Needed persistent values are automatically
retrieved from the store on demand; new or mutated val-

ues are implicitly detected and automatically written to the
store.

Besides serving as the ultimate root for our persistence
conferral algorithm, persistent packages are important from

the store perspective. By providing fairly self-contained con-

tainer-s of persistent values, persistent packages modularize

the store making the persistent store management a much
more tractable endeavor.

Our successful definition of a persistent Lisp is due in
large part on our willingness undertake all necessary mea-
sures to implement the language definition. We went into
the guts of the UCL compiler and mntime system to imple-

ment our definition. This freed us from any undue concerns
about being able to realize an efficient implementation of
persistent Lisp and would not have been possible if we had
to implement persistent Lisp as a nonintegrrd layer on top

of Common Lisp. A Lisp aware store was also designed to

efficiently support the needs of the language. The low-level

approach also allows for further optimizations in both the
compiler and store manager.

From a language design and implementation viewpoint
we believe that UCL+P is a success, but until several in-
dependent Lisp programmers have created some significant

application programs in UCL+P, we will not be able to fully
evaluate the success of the project. As with all languages,
no matter how well designed, only time will tell if this effort
is more than an academic exercise.

References

[1]

[2]

R. Agrawal and Gehani N. H. ODE (Object Database

and Environment): The language and data model. In
Pro.. Int ‘1. Conf. on Management of Data, pages 36-45,

Portland, Oregon, May-June 1989. ACM-SIGMOD.

Gilles Barbedette. Llsp02: A persistent object-oriented
LISP. In F. Bancilhon, C. Delobel, and P. Kanellakkis,
editors, Building an Object-Oriented Database System:

The Story oj OZ, chapter 10, pages 215-233. Morgan
Kaufmann, 1992. Also in Proceeding of the 2nd EDBT.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

13]

14]

P. Broadbery and Burdorf C. Applications of Telos.

Lisp and Symbolic Computation, 6(1/2):139-158, Au-

gust 1993.

W. P. Cockshott. PS-ALGOL Implementations: Ap-

plications in Persistent Object-oriented Progmmming.
Ellis Horwood, 1990.

Korth H. F. and A. Silberschatz. Database System Con-

cepts, .2e. McGraw-HN, 1991.

S. Ford, J. Joseph, Langworthy D., D. Lively,

G. Pathak, E. Perez, R. Peterson, D. Sparacin,

S. Thatte, Wells D., and S. Agarwala. Zeitgeist:

Database support for object-oriented programming. In

K. R. Dittrich, editor, Advances in Object-Oriented

Database Systems. Springer-Verlag, 1988.

R. P. Gabriel. Perjomance and Evaluation of Lisp Sys-

tems. MIT Press, 1985.

A. L. Hosking, J. E. B. Moss, and C. Bliss. Design of an
object faulting persistent Smalltalk. Technical report,
Univenty of Massachusetts, 1990. UM-CS-1990-045.

J. H. Jacobs, M. R. Swanson, and R. R. Kessler. Per-
sistence is hard, then you die! or Compiler and runtime

support for a persistent common lisp. Technical report,
Center for Software Science, University of Utah, 1994.

UUCS-94-004.

Charles Lamb, Gordon Landis, Jack Orenstein, and
Dan Weinreb. The Object Store database system. Cmrl-
munications of the ACM, 34(10):50-63, Ott 1991.

Arthur H. Lee. The Persistent Object System MetaS-

tore: Persistence via Metaprogmmming. PhD thesis,

University of Utah, Aug 1992.

J. Eliot B. Moss. Nested transactions: An introduc-

tion. In Bharat K. Bhargava, editor, Concurrency Con-
trol and Reliability in Distributed Systems, chapter 14,

pages 395–425. Van Nostrand Reinhold, 1987.

S. M. Nettles and Wing J. M. Persistence + undoability

= transactions. In Proceedings of the Hawaii Interna-

tional Confermce on Systemg Science 25, 1992. See also

tech-report CMU-CS-91-173.

A. Paepcke. PCLOS: A flexible implementation of
CLOS persistence. In S. Gjessing and K. Nygaard, ecii-
tors, Proceedings of the European Conference on Object-

Oriented Programming. Springer-Verlag, 1988.

[15] Joel E. Richardson, Michael J. Carey, and Daniel T.

Schuh. The design of the E programming language.

Technical report, University of Wisconsin, 1989. Tech

Report 824.

[16] Guy L. Steele, Jr. Common Lisp: The Language, Sec-

ond Edition. Digital Press, 91.

112

