
Pattern Matching for Scheme

Andrew K� Wright and Bruce F� Duba

Department of Computer Science

Rice University

Houston� TX ����������

Version ����� May �	� ����

Please direct questions or bug reports regarding this software to wright�research�nj�nec�com�
The most recent version of this software can be obtained by anonymous FTP from site
ftp�nj�nec�com in �le pub�wright�match�tar�gz�

� Pattern Matching for Scheme

Pattern matching allows complicated control decisions based on data structure to be expressed in
a concise manner� Pattern matching is found in several modern languages� notably Standard ML�
Haskell and Miranda� This document describes several pattern matching macros for Scheme� and
an associated mechanism for de�ning new forms of structured data�

The basic form of pattern matching expression is�

�match exp �pat body � � � � �

where exp is an expression� pat is a pattern� and body is one or more expressions �like the body
of a lambda�expression��� The match form matches its �rst subexpression against a sequence of
patterns� and branches to the body corresponding to the �rst pattern successfully matched� For
example� the following code de�nes the usual map function�

�de�ne map
�lambda �f l�
�match l
��� ���
��x � y� �cons �f x � �map f y������

The �rst pattern �� matches the empty list� The second pattern �x � y� matches a pair� binding x

to the �rst component of the pair and y to the second component of the pair�

��� Pattern Matching Expressions

The complete syntax of the pattern matching expressions follows�

�The notation �hthingi � � �� indicates that hthingi is repeated zero or more times� The notation �hthing� j thing�i�
means an occurrence of either thing� or thing�� Brackets ���� are extended Scheme syntax� equivalent to parentheses
�����

	



exp ��
 �match exp clause � � � �
j �match�lambda clause � � � �
j �match�lambda� clause � � � �
j �match�let ��pat exp� � � � � body�
j �match�let� ��pat exp� � � � � body�
j �match�letrec ��pat exp� � � � � body�
j �match�let var ��pat exp� � � � � body�
j �match�de�ne pat exp�

clause ��
 �pat body � j �pat �
� identi�er� body �

Figure 	 gives the full syntax for patterns� The next subsection describes the various patterns�
The match�lambda and match�lambda� forms are convenient combinations of match and

lambda� and can be explained as follows�

�match�lambda �pat body � � � � � 
 �lambda �x � �match x �pat body � � � � ��
�match�lambda� �pat body � � � � � 
 �lambda x �match x �pat body � � � � ��

where x is a unique variable� The match�lambda form is convenient when de�ning a single argu�
ment function that immediately destructures its argument� The match�lambda� form constructs
a function that accepts any number of arguments� the patterns of match�lambda� should be lists�

The match�let� match�let�� match�letrec� and match�de�ne forms generalize Scheme�s let�
let�� letrec� and de�ne expressions to allow patterns in the binding position rather than just
variables� For example� the following expression�

�match�let ���x y z � �list � � ���� body�

binds x to �� y to �� and z to � in body � These forms are convenient for destructuring the result of
a function that returns multiple values as a list or vector� As usual for letrec and de�ne� pattern
variables bound by match�letrec and match�de�ne should not be used in computing the bound
value�

The match� match�lambda� and match�lambda� forms allow the optional syntax �
� iden�
ti�er� between the pattern and the body of a clause� When the pattern match for such a clause
succeeds� the identi�er is bound to a failure procedure of zero arguments within the body � If this
procedure is invoked� it jumps back to the pattern matching expression� and resumes the matching
process as if the pattern had failed to match� The body must not mutate the object being matched�
otherwise unpredictable behavior may result�

��� Patterns

Figure 	 gives the full syntax for patterns� Explanations of these patterns follow�

identi�er �excluding the reserved names � �� 
� � and� or� not� set�� get�� ���� and ��k for non�
negative integers k�� matches anything� and binds a variable of this name to the matching value
in the body �

� matches anything� without binding any variables�

��� �t� �f� string� number � character � �s�expression� These constant patterns match themselves�
ie�� the corresponding value must be equal� to the pattern�

�pat� � � � patn�� matches a proper list of n elements that match pat� through pat
n
�

�



Pattern � Matches �

pat ��� identi�er anything� and binds identi�er as a variable
j anything
j �� itself �the empty list�
j �t itself
j �f itself
j string an equal� string
j number an equal� number
j character an equal� character
j �s�expression an equal� s�expression
j �symbol an equal� symbol �special case of s�expression�
j �pat� � � � patn� a proper list of n elements
j �pat� � � � patn � pat

n��� a list of n or more elements
j �pat� � � � patn pat

n�� ��k� a proper list of n� k or more elementsa

j ��pat� � � � patn� a vector of n elements
j ��pat� � � � patn pat

n�� ��k� a vector of n� k or more elements
j ��pat a box
j �� struct pat� � � � patn� a structure
j �� �eld pat� a 	eld of a structure
j �and pat� � � � patn� if all of pat� through pat

n
match

j �or pat� � � � patn� if any of pat� through pat
n
match

j �not pat� � � � patn� if none of pat� through pat
n
match

j �
 predicate pat� � � � patn� if predicate true and pat� through pat
n
all match

j �set� identi�er� anything� and binds identi�er as a setter
j �get� identi�er� anything� and binds identi�er as a getter
j �qp a quasipattern

Quasipattern� Matches �

qp ��� �� itself �the empty list�
j �t itself
j �f itself
j string an equal� string
j number an equal� number
j character an equal� character
j identi�er an equal� symbol
j �qp� � � � qpn� a proper list of n elements
j �qp� � � � qpn � qp

n��� a list of n or more elements
j �qp� � � � qpn qp

n�� ��k� a proper list of n� k or more elements
j ��qp� � � � qpn� a vector of n elements
j ��qp� � � � qpn qp

n�� ��k� a vector of n� k or more elements
j ��qp a box
j �pat a pattern
j �pat a pattern� spliced

Figure 	� Pattern Syntax

aThe notation ��k denotes a keyword consisting of three consecutive dots �ie�� ������� or two dots and an non�negative
integer �eg�� ���	�� ���
��� or three consecutive underscores �ie�� � ��� or two underscores and a non�negative integer�
The keywords ���k� and � k� are equivalent� The keywords ������ � �� ������ and � �� are equivalent�

�



�pat� � � � patn � pat
n���� matches a �possibly improper� list of at least n elements that ends in

something matching pat
n���

�pat� � � � patn pat
n�� ����� matches a proper list of n or more elements� where each element of the

tail matches pat
n��� Each pattern variable in pat

n�� is bound to a list of the matching values� For
example� the expression�

�match ��let ��x ���y ��� z�
���let ��binding values� � � � � exp� body ��

binds binding to the list ��x y�� values to the list ��� ��� and exp to �z in the body of the match�
expression� For the special case where pat

n�� is a pattern variable� the list bound to that variable
may share with the matched value�

�pat� � � � patn pat
n�� �� This pattern means the same thing as the previous pattern�

�pat� � � � patn pat
n�� ��k�� This pattern is similar to the previous pattern� but the tail must be at

least k elements long� The pattern keywords ��� and ��� are equivalent�

�pat� � � � patn pat
n�� k�� This pattern means the same thing as the previous pattern�

��pat� � � � patn�� matches a vector of length n� whose elements match pat� through pat
n
�

��pat� � � � patn pat
n�� ����� matches a vector of length n or more� where each element beyond n

matches pat
n���

��pat� � � � patn pat
n�� ��k�� matches a vector of length n� k or more� where each element beyond

n matches pat
n���

��pat� matches a box containing something matching pat �

�� struct pat� � � � patn�� matches a structure declared with de�ne�structure or de�ne�const�
structure� See Section ��

�
 �eld pat�� is intended for selecting a �eld from a structure� ��eld� may be any expression� it
is applied to the value being matched� and the result of this application is matched against pat�

�and pat� � � � patn�� matches if all of the subpatterns match� At least one subpattern must be
present� This pattern is often used as �and x pat� to bind x to to the entire value that matches pat
�cf� �as�patterns� in ML or Haskell��

�or pat� � � � patn�� matches if any of the subpatterns match� At least one subpattern must be
present� All subpatterns must bind the same set of pattern variables�

�not pat� � � � patn�� matches if none of the subpatterns match� At least one subpattern must be
present� The subpatterns may not bind any pattern variables�

�



� predicate pat� � � � patn�� In this pattern� predicate must be an expression evaluating to a single
argument function� This pattern matches if predicate applied to the corresponding value is true�
and the subpatterns pat� � � � patn all match� The predicate should not have side e�ects� as the code
generated by the pattern matcher may invoke predicates repeatedly in any order� The predicate
expression is bound in the same scope as the match expression� ie�� free variables in predicate are
not bound by pattern variables�

�set� identi�er �� matches anything� and binds identi�er to a procedure of one argument that
mutates the corresponding �eld of the matching value� This pattern must be nested within a pair�
vector� box� or structure pattern� For example� the expression�

�de�ne x �list � �list � ����
�match x �� � �set� setit��� �setit ����

mutates the cadadr of x to �� so that x is ��� �� ����

�get� identi�er �� matches anything� and binds identi�er to a procedure of zero arguments that
accesses the corresponding �eld of the matching value� This pattern is the complement to set�� As
with set�� this pattern must be nested within a pair� vector� box� or structure pattern�

Quasipatterns� Quasiquote introduces a quasipattern� in which identi�ers are considered to be
symbolic constants� Like Scheme�s quasiquote for data� unquote ��� and unquote�splicing ����
escape back to normal patterns�

��� Match Failure

If no clause matches the value� the default action is to invoke the procedure match�error with the
value that did not match� The default de�nition of match�error calls error with an appropriate
message�

� �match � �� ���

Error� no clause matched ��

For most situations� this behavior is adequate� but it can be changed either by rede�ningmatch�error �
or by altering the value of the variable match�error�control � Valid values for match�error�control are�

match�error�control � error action�

�error �default� call �match�error unmatched�value�
�match call �match�error unmatched�value ��match expression � � � ��
�fail call match�error or die in car � cdr � ���
�unspeci	ed return unspeci�ed value

Setting match�error�control to �match causes the entire match expression to be quoted and passed
as a second argument to match�error � The default de�nition of match�error then prints the match
expression before calling error � this can help identify which expression failed to match� This option
causes the macros to generate somewhat larger code� since each match expression includes a quoted
representation of itself�

Setting match�error�control to �fail permits the macros to generate faster and more compact code
than �error or �match� The generated code omits pair� tests when the consequence is to fail in car
or cdr rather than call match�error �

Finally� if match�error�control is set to �unspeci	ed� non�matching expressions will either fail in
car or cdr � or return an unspeci�ed value� This results in still more compact code� but is unsafe�

�



� Data De�nition

The ability to de�ne new forms of data proves quite useful in conjunction with pattern matching�
This macro package includes a slightly altered� version of Chez Scheme�s de�ne�structuremacro for
de�ning new forms of data �	�� and a similar de�ne�const�structure macro for de�ning immutable
data�

The following expression de�nes a new kind of data named struct �

�de�ne�structure �struct arg� � � � argn��

A struct is a composite data structure with n �elds named arg� through arg
n
� The de�ne�structure

macro declares the following procedures for constructing and manipulating data of type struct �

Procedure Name� Function�

make�struct constructor requiring n arguments
struct
 predicate
struct�arg�� � � � � struct�argn named selectors
set�struct�arg��� � � � � set�struct�argn� named mutators
struct��� � � � � struct�n numeric selectors
set�struct���� � � � � set�struct�n� numeric mutators

The �eld name �underscore� is special� no named selectors or mutators are de�ned for such a �eld�
Such unnamed �elds can only be accessed through the numeric selectors or mutators� or through
pattern matching�

A second form of de�nition�

�de�ne�structure �struct arg� � � � argn� ��init� exp� � � � � �initm expm ���

declares m additional �elds init� through initm with initial values exp� through exp
m
� The expres�

sions exp� through exp
m

are evaluated in order each time make�struct is invoked�
Finally� the macro de�ne�const�structure�

�de�ne�const�structure �struct arg� � � � argn��
�de�ne�const�structure �struct arg� � � � argn� ��init� exp� � � � � �initm expm ���

is similar to de�ne�structure� but allows immutable �elds� If a �eld name arg
i
is simply a variable�

no �named or numeric� mutator is declared for that �eld� If a �eld name has the form �� x �
where x is a variable� then that �eld is mutable� Hence �de�ne�structure �Foo a b�� abbreviates
�de�ne�const�structure �Foo �� a� �� b����

By default� structures are implemented as vectors whose �rst component is the name of the
structure as a symbol� Thus a Foo structure of one �eld will match both the patterns �� Foo x�
and ���Foo x �� Setting the variable match�structure�control to disjoint causes subsequent de�ne�
structure de�nitions to create structures that are disjoint from all other data� including vectors�
In this case� Foo structures will no longer match the pattern ���Foo x ���

�This macro generates additional numeric selector and mutator names for use by the pattern matcher� recognizes
as an unnamed �eld� and optionally allows structures to be disjoint from vectors� Chez Scheme does not provide

de�ne�const�structure�
�Disjoint structures are implemented as vectors whose �rst component is a unique symbol �an uninterned symbol

for Chez Scheme�� The procedure vector� is modi�ed to return false for such vectors �hence the �disjoint option
cannot be used with Chez Schemes optimize�level set higher than ��� For completeness the other vector operations
�vector�ref� vector�set�� etc�� should also be modi�ed to reject structures� but we dont bother�

�



� Code Generation

Pattern matching macros are compiled into if�expressions that decompose the value being matched
with standard Scheme procedures� and test the components with standard predicates� Rebinding or
lexically shadowing the names of any of these procedures will change the semantics of the match
macros� The names that should not be rebound or shadowed are�

null� pair� number� string� symbol� boolean� char� procedure� vector� box� list�
equal�
car cdr cadr cdddr ���
vector�length vector�ref
unbox
reverse length call�cc

Additionally� the code generated to match a structure pattern like �� Foo pat� � � � patn� refers to the
names Foo� � Foo�� through Foo�n� and set�Foo��� through set�Foo�n� � These names also should
not be shadowed�

� Examples

This section illustrates the convenience of pattern matching with some examples� The following
function recognizes s�expressions that represent the standard Y operator�

�de�ne Y�
�match�lambda
���lambda �f� �
��lambda �y� �
����lambda �x� � �f	 ��lambda �z� � ��x	 x
 � z	 ����
��lambda �a� � �f
 ��lambda �b� � ��a	 a
 � b	 �����
y	 ���

�and �symbol� f� � �symbol� y� � �symbol� x� � �symbol� z� � �symbol� a� � �symbol� b� �
�eq� f� f	 � �eq� f� f
 � �eq� y� y	 �
�eq� x� x	 � �eq� x� x
 � �eq� z� z	 �
�eq� a� a	 � �eq� a� a
 � �eq� b� b	 ���

� �f���

Writing an equivalent piece of code in raw Scheme is tedious�
The following code de�nes abstract syntax for a subset of Scheme� a parser into this abstract

syntax� and an unparser�

�de�ne�structure �Lam args body��
�de�ne�structure �Var s��
�de�ne�structure �Const n��
�de�ne�structure �App fun args��

�



�de�ne parse
�match�lambda
��and s �� symbol� � �not �lambda��
�make�Var s��
��� number� n�
�make�Const n��
���lambda �and args ��� symbol� � � � � � �not �� repeats� ��� body�
�make�Lam args �parse body���
��f args � � � �
�make�App
�parse f �
�map parse args���

�x �error x 	invalid expression	����

�de�ne repeats�
�lambda �l�
�and �not �null� l��

�or �memq �car l� �cdr l�� �repeats� �cdr l������

�de�ne unparse
�match�lambda
��� Var s� s �
��� Const n� n�
��� Lam args body� ��lambda �args ��unparse body���
��� App f args� ����unparse f � ���map unparse args�����

With pattern matching� it is easy to ensure that the parser rejects all incorrectly formed inputs with
an error message�

With match�de�ne� it is easy to de�ne several procedures that share a hidden variable� The
following code de�nes three procedures� inc� value� and reset � that manipulate a hidden counter
variable�

�match�de�ne �inc value reset�
�let ��val ���
�list
�lambda �� �set� val �� � val���
�lambda �� val�
�lambda �� �set� val ������

Although this example is not recursive� the bodies could recursively refer to each other�
The following code is taken from the macro package itself� The procedure match�validate�pattern

checks the syntax of match patterns� and converts quasipatterns into ordinary patterns�

�



�de�ne match�validate�pattern
�lambda �pattern�
�letrec
��simple�
�lambda �x �
�or �string� x � �boolean� x � �char� x � �number� x � �null� x ����

�ordinary
�match�lambda
��� simple� p� p�
�� � �
��� match�pattern�var� p� p�
���quasiquote p� �quasi p��
��and p ��quote �� p�
���
 pred ps � � � � ��
 �pred ���map ordinary ps���
���and ps 		
� ��and ���map ordinary ps���
���or ps 		
� ��or ���map ordinary ps���
���not ps 		
� ��not ���map ordinary ps���
���� �
 match�pattern�var
 r� ps � � � � ��� �r ���map ordinary ps���
��and p ��set� �� match�pattern�var� ��� p�
��and p ��get� �� match�pattern�var� ��� p�
��p �� match�dot�dot�k� ddk�� ����ordinary p� �ddk��
��x � y� �cons �ordinary x � �ordinary y���
��� vector� p� �apply vector �map ordinary �vector��list p����
��� box� p� �box �ordinary �unbox p����
�p �match�syntax�err pattern 	syntax error in pattern	����

�quasi
�match�lambda
��� simple� p� p�
��� symbol� p� ��quote �p��
���unquote p� �ordinary p��
����unquote�splicing p� � ��� �ordinary p��
����unquote�splicing p� � y� �append �ordlist p� �quasi y���
��p �� match�dot�dot�k� ddk�� ����quasi p� �ddk��
��x � y� �cons �quasi x � �quasi y���
��� vector� p� �apply vector �map quasi �vector��list p����
��� box� p� �box �quasi �unbox p����
�p �match�syntax�err pattern 	syntax error in pattern	����

�ordlist
�match�lambda
��� ���
��x � y� �cons �ordinary x � �ordlist y���
�p �match�syntax�err pattern

	invalid use of unquote�splicing in pattern	�����
�ordinary pattern����

� Known Bugs

A structure pattern like �� foo a b c� is not checked to ensure that there are enough �elds present
for a foo object� This should be �xed in the future�

�



Acknowledgments

Several members of the Rice programming languages community exercised the implementation and
suggested enhancements� We thank Matthias Felleisen� Cormac Flanagan� Amit Patel� and Amr
Sabry for their contributions�

References

�	� Dybvig� R� K� The Scheme Programming Language� Prentice�Hall� Englewood Cli�s� New
Jersey� 	����

	�


