
EX11 – A GUI in a Concurrent Functional Language
Joe Armstrong

SICS
Box 1263

SE-164 29 Kista Sweden

+46 8 633 1538

joe@sics.se

ABSTRACT
In this paper, I describe how GUIs can be made from collections
of communicating parallel processes. The paper describes EX11
which is an Erlang binding to the X protocol. I describe the X
windows programming model and show how X protocol messages
can be naturally mapped onto Erlang messages. The code to
perfom this mapping makes extensive use of the Erlang bit syntax
and as such provides a good example of the use of the bit syntax
to implement a reasonably complex protocol. I give code
examples which make use of the EX11 widget library and show
how the widget library itself is implemented.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]. D.2.2 [Design Tools and
Techniques]: User interfaces

General Terms
Algorithms, Design.

Keywords
GUI, Erlang, X windows, X protocol, concurrency.

1. INTRODUCTION
This paper describes a system for programming GUIs called
EX11. EX11 is an Erlang [1] binding for the X window system
[2]. With EX11 you can easily program complex GUIs. EX11
models all widgets as concurrent processes. This results in
extremely compact GUI programs which are simple to program
and easy to understand.
EX11 is written in 100% Erlang and talks directly to the X server
using the the X Protocol [3].
EX11 has two parts - a low-level library which is used to
communicate with the X-server and a high level widget set
intended for GUI programming. The low-level part of the
implementation deals directly with the X protocol itself, talking
directly to the X windows server through either a Unix domain
socket or through one of the X windows control ports. The low-
level software has to encode and decode packets according to the
X protocol specification and it makes extensive use of Erlang

binaries for bit level manipulation of the protocol packets. Later
in the paper we will see how Erlang binaries can be used for
packing and unpacking the X protocol packets. Fortunately there
is an almost one to one correspondence between the packets as
defined in the X Protocol specification and the Erlang code used
to create the packets. This fact greatly simplified the
implementation of the system.
The low-level libraries provide about as much functionality as the
Xlib library [4,5] – but the code is very much shorter.
The higher level widget library provides an abstraction layer that
makes it easy to program complex widgets. This provides much
of the functionality of a high level widget set such as GTK or one
of the many X toolkits.
Interestingly the entire system is written in Erlang and
communicates directly with the X windows server. The system
appears to be at least an order of magnitude smaller than
equivalent GUI system programmed in sequential imperative
languages and in terms of performance it is not noticeably slower
than GUI systems programmed using conventional widget
programming libraries.
In the remainder of this paper I will describe the X widows
programming model, and how this can be mapped onto a
collection of parallel processes. I will describe how the X protocol
can be programmed in a clear manner in Erlang and how high-
level widgets can be constructed as collections of parallel
processes. The paper has a number of programming examples
which show how complex behavioral patterns can be build from a
number of well-chosen primitives. Finally I compare the
performance and code size of the system with more conventional
systems.

2. THE X11 PROGRAMMING MODEL
To start with we observe that the X windows programming model
is incredibly complicated. Even the simplest “hello world”
program is a nightmare of complexity. The first thing that
happens when you see hello world written directly using Xlib is
that you want to roll over and die. The simple act of creating a
window and writing a line of text takes 177 lines of code; even
the description of hello-world is a heavy 35 pages of description
in the Xlib programming manual. If you want to delve deeper into
the system all you have to do is read the X Protocol manual (458)
pages. The Xlib manuals weigh in at a mighty 1962 pages. Now
all of this is pretty complicated stuff, so to simplify things you
might like to try reading the X11 toolkit intrinsics manual (674
pages) [6] or even the The X window system in a nutshell [7] (424
pages.) 1

In all, the X window system is documented in nine books and a
total of 8350 pages of text. At this point most sensible people give
up and choose either a high level widget library (such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Erlang’04, September 22, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-918-7/04/0009…$5.00.

[1] Pretty big nutshell!

1

 GTK) or a GUI building program (such as Visual Basic) or
Visual C++.

The GUI builder writes the program for you so you don't have to
deal with this horrendous complexity. The less sensible person (ie
the author) decides to read the manuals and re-implement as
much as possible from scratch.

If you want to program a graphics system you have to start
somewhere. You can start at a really low-level and implement a
frame buffer on top of a bit-mapped graphics system or you can
start at a somewhat higher level. I chose to start at the X protocol
level.

The X protocol itself is a master of simplicity. X windows are
created and destroyed by sending and receiving messages to a
Unix domain socket or to a TCP socket. All objects within the
window are also controlled by sending messages to the control
socket.

In the X programming model to do something to a window you
send a message to the socket associated with the window. When
an event happens within a window the X server writes a message
to the socket associated with the window. This is an incredibly
simple idea – there are no shared variables between the client and
server and the client and server can be physically located on
different machines.

The underlying simplicity of the X protocol is entirely hidden
from the user by a vast set of libraries which essentially do one
thing – the libraries hide concurrency from the user. This the
raison d'être for the complexity of the set of libraries built on top
of the X11 protocol.

The vast majority of conventional programming languages are
sequential – if you want concurrency you use some threads
package or fork off an operating system process. You can get
concurrency if you want it but you have to use operating system
processes. Operating system process and threads are appallingly
difficult to program and extremely costly. Creating a thread or a
process is an extremely costly operation.

Because conventional programming languages are sequential the
widget libraries for GUI programming do virtually everything in
terms of call-back routines. A call back function is a function that
is evaluated when a certain event happens. Unfortunately the
scheduling of a callback is undefined, so if a GUI system has set
up a number of call backs in a number of different places and then
if things start happening within a window, it becomes almost
impossible to say what will happen. The exact order in which
these callbacks occur is undefined. What is known is that the
callback routines will eventually be evaluated, but the exact order
in which they are evaluated is undefined. Now usually this doesn't
matter – but in the case where the callback routines have to
manipulate shared resources, this provides a fertile ground for
errors to grow.

The reason why GUI programming is difficult has to do with
concurrency. GUI's are by their nature concurrent. Imagine a GUI
having two clock faces; one showing the time in Sweden and the
other the time in the USA. We expect that whatever is happening
within the two clock widgets to happen concurrently, one clock
should not stop if the other clock is updated. Emulating this
concurrency using a single sequential process and a collection of
callbacks is unnatural, leads to ugly code and is highly error
prone. The sheer size of the program is daunting since it has to be

written in an unnatural manner which does not follow the natural
concurrency patterns dictated by the application.

Since Erlang is a concurrent programming language, it is natural
to map each concurrent activity in a GUI onto a different Erlang
process. Suddenly the programming model becomes simple since
there is no impedance mismatch between the concurrent structure
of the GUI and the manner in which it is implemented.

It is interesting to note how often problems with concurrency lead
to inconsistent behavior in a GUI – for example a clock might
stop being updated during the time in which you interact with a
drag-down menu. If you are in the middle of filling in a form in a
pop-up window you cannot temporarily suspend what you are
doing and do something else in the window. These inconsistencies
are almost invariably due to the sequential way in which the
application is programmed.

2.1 THE EX11 PROGRAMMING MODEL
Widows and widgets
1. All objects placed within a top-level window are instances of

a widget. All widgets are implemented as one or more
concurrent processes. Sometimes a widget is controlled by a
single process (called the controlling process of the widget),
in other cases the widget is controlled by more than one
process; in the latter case one of these processes is designated
the controlling process for the widget.

2. All changes to a widget are made by sending messages to the
controlling process for the widget. All events occurring in the
widget result in messages being sent to the controlling process
for the widget. As far as the user is concerned they can think
of the widget as being controlled by a single process. If the
widget is actually controlled by several processes then the
user will only be aware of the top level controlling processes
and all the other processes will be hidden from the user. If the
widget is destroyed then all processes associated with the
widget die automatically. If a software error occurs in the
code used to implement the widget, then the widget will be
removed from the screen and an appropriate error message
written to the error log. Data associated with a widget can be
read by sending a message to a widget and waiting for a reply
message.

Note that this programming model corresponds exactly to the X
windows programming model when viewed at the protocol level.
There is no impedance mismatch between the semantics of the
interface to X (which is a pure message-passing protocol based
interface) and the semantic of how a widget within a window
behaves.

The next section shows a few examples of this.

3. EXAMPLES
The first example of EX11 (Figures 1 and 2) shows how to create
a window with two labels, two entries and a button.
Widgets are created with the syntax:
 Widget = swWidgetName:make(Arg1,....ArgN)

 So for example:
 Entry1 = swEntry:make(...)

Creates an entry.

2

The arguments Arg1,..., ArgN specify the initial state of
the widget.
If we have created an entry E then we can set the text in the entry
to S with the following command:
 E ! {set, S}

The syntax P ! M means send the message B to the process P.

To read an entry E and assign the value to a variable Var we
evaluate the expression:
 Val = E !! read

The syntax P !! R is used to denote a remote procedure call. A
message R is sent to P and the sending processes waits for a
message to come back from P. The value of this message is the
value of P !! R.

start() ->
 spawn_link(fun win/0).

 win() ->
 Display = xStart("3.2"),
 Win = swTopLevel:make(Display,350,145,?bg),
 Label1 = swLabel:make(Win,10,10,220,30,0,
 ?cornsilk,"First name:"),
 Entry1 = swEntry:make(Win,140,10,120,
 "Peg leg"),
 Label2 = swLabel:make(Win,10,60,220,30,
 ?cornsilk, "Last name:"),
 Entry2 = swEntry:make(Win,140,60,120,
 "Loombucket"),
 Button = swButton:make(Win,10,100,120,30,
 ?grey88, "Swap"),
 Button ! {onClick, fun(X) ->
 Val1 = Entry1 !! read,
 Val2 = Entry2 !! read,
 Entry1 ! {set, Val2},
 Entry2 ! {set, Val1}
 end},
 loop().

loop() ->
 receive
 Any ->
 loop()
 end.

Figure 1: The code to create Figure 2

Figure 2: Window created by running the code in Figure 1
Similarly Label ! {set, Text} can be used to set the
value of a text within a label.
Buttons are created with swButton:make. Once a button has
been created you can tell it what to do if an event occurs within
the button. Like everything else this is done by sending it a
message.

 B ! {onClick, fun(X) -> ... end}

Means if the mouse button is clicked within the button then
evaluates the function fun(X) . Here X describes which mouse
button was clicked and gives information about where in the
widget the pointer was when the button was clicked.
Our little widget is designed so that the contents of the two entries
will be swapped when the button is clicked. This is achieved by
writing:
Button ! {onClick,

 fun(X) ->

 Val1 = Entry1 !! read,
 Val2 = Entry2 !! read,
 Entry1 ! {set, Val2},
 Entry2 ! {set, Val1}
 end},

Now evaluating a function must occur within some context, so it
is pertinent to ask where this function is evaluated – the answer is
within a parallel process created within the button process.
Note now that the callback style of programming has re-occurred,
but that this time it occurs not at the top-level, as would have been
the case were we to code this in the X11Lib style of
programming, but within the widget processes that is responsible
for controlling the widget itself. It makes sense to allow a button
widget to evaluate a function when it is pressed rather than
delegating this evaluation to the containing window.
If we imagine a window containing several buttons and we
imagine clicking one of these buttons, then, in the normal X
window style of programming the code that is evaluated when
you press a button is contained in the top-loop of the event
dispatching routine which is associated with the top-level
window. This fact remains true even when the concurrency is
hidden from the user by use of a widget library having an
appropriate set of call-back routines.
Imagine further a system having two buttons called slow and fast.
When the slow is pressed, a long and involved calculation is
started, when fast is pressed a small computation is performed. If
the user rapidly presses the slow button and then the fast button,
we do not want the computation of the fast button to have to wait
until the computation caused by pressing the slow button has
completed. In a sequential call-back system this is precisely what
happens – though, of course there is no need for this to happen if
the actions performed by pressing the buttons are unrelated
If the widgets are themselves represented by parallel processes
then these kind of problems do not occur. All computations
associated with any widget can proceed in parallel. The
concurrency can lead to a more subtle problem to – namely that
the possibility for live- or dead-lock between processes can
occur. In practice I have never seen this happen.

3. HIGHER ORDER WIDGETS
The EX11 system makes extensive use of a number of higher-
order widgets which are used to co-ordinate the actions of simpler
widgets. I will give one example in this paper. More examples can
be found in the EX11 software distribution.

3

4.1 The drag box
A drag-box is a colored rectangle which can be dragged around
the screen. Now that may not sound very exciting, but it can be
used for a large number of different purposes.
 D = swDragBox:make(X,Y,W,H,C)

makes a drag box of size (W,H) positioned at (X,Y) colored C.

 D ! {onMove, fun(X,Y) -> ... end}

means if the drag box D is dragged to position (X,Y) then
evaluate the function fun(X, Y).

We can use a drag box to make a draggable window, as in Figure
3.

DragBar = swDragBox:make(Win,X,YY,...),

Rectangle = swRectangle:make(Win,XX, ...),

DragBar ! {onMove,

 fun(X, Y) ->

 Rectangle ! raise,

 Rectangle ! {setXY, X, Y+16}

 end}

Figure 3. Code to create a draggable window

The code in Figure 3 creates a drag box and a rectangle. Running
this code results in Figure 4. If the drag box is moved to (X,Y) the
rectangle is raised and moved.

Figure 4 – a drag box and a rectangle
In figure 4 I have deliberately placed the drag box above the
rectangle so that you can see the gap between the two. This is to
emphasize that fact that a window is in fact constructed from two
different widgets. When you move the drag box the rectangle
below the drag box will follow. There is no observable delay
between moving the blue box and the movement of the
underlying rectangle which always follows the the drag box.
By shrinking the gap between the drag box and the underlying
rectangle to zero the composite object appears to move as if it
were a rigid object. Here we can clearly see that what is perceived
at one level of abstraction as an indivisible window can at another
level of abstraction be viewed as a composition of more primitive
objects.

5. PRIMITIVE WIDGETS
If we can have higher-order things can we not also have lower-
order things? The answer is yes. What happens if we extend the
abstraction boundaries downwards instead of upwards?

Up to now I have considered a primitive widget (such as a button)
as an indivisible object which is accessible only though a
protocol. It is, however, instructive to break this abstraction
boundary and see how the button itself is programmed.

Figure 5 – almost a button
The display in Figure 5 is created by running the code in figure 6.
win2(Pid) ->

 Win = xCreateSimpleWindow(Pid,10,10,300,100,

 ?XC_arrow, xColor(Pid, ?wheat2)),

 Font = xEnsureFont(Pid, "9x15"),

 Pen = xCreateGC(Pid, [{function, copy},{font, Font},

 {fill_style, solid},

 {foreground, xColor(Pid, ?DarkBlue)}]),

 Red = xCreateGC(Pid, [{function, copy}, {font, Font},

 {fill_style, solid},

 {foreground, xColor(Pid, ?red)}]),

 xCreateNamedGC(Pid, "black", [{function,copy},

 {line_width,2},{line_style,solid},

 {foreground, xColor(Pid, ?black)}]),

 xCreateNamedGC(Pid, "white", [{function,copy},

 {line_width,2},{line_style,solid},
 {foreground, xColor(Pid, ?white)}]),

 Cmds = [ePolyFillRectangle(Win, Red,

 [mkRectangle(10,20,110,22)]),

 ePolyLine(Win, xGC(Pid, "black"), origin,

 [mkPoint(10,43),

 mkPoint(120,43), mkPoint(120,20)]),

 ePolyLine(Win, xGC(Pid, "white"), origin,

 [mkPoint(10,43),mkPoint(10,20),

 mkPoint(120,20)]),

 ePolyText8(Win, Pen, 12, 35,

 "Hello World")],

 xDo(Pid, eMapWindow(Win)),

 xFlush(Pid)

Figure 6 – the code to create Figure 5

 The details of the code are unimportant. It is its overall shape and
how it interacts with the underlying EX11 libraries which are of
interest.
At this level of abstraction a button is no longer a button – it is a
rectangle containing colored lines and text – nothing more.
The above code draws the text “hello world” onto a window and it
draws two crooked lines, one white and the other black. Oh, and
there's also a red rectangle. By merely re-arranging the
coordinates of exactly where we draw the lines and text we can
turn this seeming nonsensical collection of lines into a button.

4

Figure 7- A button formed by rearranging the elements in

Figure 5

Figure 7 is composed of exactly the same components as in
Figure 5 but now it has mysteriously become a button. Of course
there is no button (just as there was no window in Figure 4) just a
collection of lines and text. Our eye has turned this collection of
lines into a “button”.
Now we have to add semantics. A button is a thing that “does
something” when we click on it. Recall that the last line of Figure
6 called loop(...)
The “loop” code is written something like this:
 loop(B, Display, Wargs, Fun) ->

 receive

 {event,_,buttonPress,X} ->

 flash(Display, Wargs),

 Fun(X),

 loop(B, Display, Wargs, Fun);

 ...

 flash(Display, Wargs) ->

 S = self(),

 Win=Wargs#win.win,

 spawn(fun() ->

 xDo(Display, xClearArea(Win)),

 xFlush(Display),

 sleep(200),

 S ! {event,Win, expose, void}

 end).
What does this code do? - when the user clicks on the button the
X11 server writes an event to the controlling socket for the
window in question. This event is sent to the EX11 system where
it is parsed and then sent to the handler process for the widget
concerned. Finally this shows up as an {event, Win,
buttonPress,X} message which is sent to the button
controlling processes. This process evaluates Fun(X) to achieve
whatever effect is desired by pressing the button and spawns off a
parallel process flash.

Flash clears the button window and flushes the display (which
will cause it to change to the background window color of the
button), sleeps for 200 milliseconds and finally sends itself a
“window expose” message. The window expose message will
cause the window to be repainted.

6. THE PROTOCOL LAYER
The protocol layer of the EX11 system communicates directly
with a socket which is controlled by the X windows server.

Marshalling protocol packets is done in the Erlang model
ex11_lib.erl.

ex11_lib.erl is as far as possible written to be isomorphic to
the individual packets in the X protocol.
With a little thought and judicious use of the Erlang bit syntax
this is relatively easy to achieve. As an example, the
ImageText16 protocol command on page 187 of the X
Protocol manual [3] is shown in Figure 9. The encoding of this
protocol message is achieved in the Erlang function
eImageText16 which is shown in Figure 8.

 eImageText8(Drawable, GC, X, Y, Str) ->

 Len = length(Str),

 BStr= list_to_binary(Str),

 B = <<BStr/binary>>,

 req(76, Len,

 <<Drawable:32,GC:32,X:16, Y:16,

 B/binary>>).

Figure 8 – Code to encode the ImageText16 command
corresponding to Figure 9

bytes Value Description

1 77 Opcode

1 N Number of CHAR2Bs in string

2 4+(2n+p)/4 Request length

4 DRAWABLE Drawable

2 GCONTEXT GC

2 INT16 X

2 INT16 Y

2n STRING16 String16

P Unused, p=pad(2n)

Figure 9 – Page 187 of the X protocol manual
Comparing figures 8 and 9 we see that the code is six
uncomplicated lines of Erlang, the specification is nine lines long
and the correspondence between the two is self-evident.

7. QUANTITIVE PROPERTIES OF THE
CODE
EX11 is built from a low-level library which communicates at the
X protocol level and a high level widget library.
The low level library is functionally equivalent to a subset of
Xlib.
The Erlang code in the low level library has 10 modules and 4241
lines of code. The C code in Xlib has 440 code files and is
125671 lines of code. It is difficult to say what subset of X1ib that
EX11 implements. I have implemented about one third of the
entire X protocol and this appears to be perfectly adequate for
programming a large number of different widgets.

5

The EX11 widget library has 17 modules and 2363 lines of code.
It is unclear how many lines of code it would take to implement
similar functionality in an imperative language.

8. RELATION TO OTHER WORK
The idea of using concurrency as the principle axis to structure a
windowing system is not new though remarkably little work has
been done in this area.
In A Concurrent Window System [8] , Pike observed that “When
implemented in a concurrent language, a window system can be
concise.” giving pretty much same reasons as in this work.
Interestingly very few X graphics package interface directly at a
protocol level with the X server. Two exceptions to this are SCIX
[9] and the eXene system written in CML [10].
Concurrent GUIs programmed in a lazy functional language are
also described in [11].

9. BACKGROUND
Before I implemented EX11 I too fell into the trap of “not
wanting to read the X manuals” so I took the lazy way out. I
downloaded just about every X graphics/GUI package that has
ever been written compiled them up and tried to run them. What I
saw appalled me – a large number of the packages did not work.
Or at least I could not easily get them to work and so I gave up in
the process. Those that did work were inflexible and difficult to
use – none of them used concurrency to structure the widget set,
all of them used callbacks in one form or another.
Having wasted several years trying to get other peoples' stuff to
work I finally decided to attack the system from below.
Fortunately Torbjörn Törnkvist had written a small Erlang
program that talked to the X server though a socket. Getting
started is just about the most difficult bit but Torbjörn had done
this before.

10. ACKNOWLEDGEMENTS
Torbjörn Törnkvist first wrote a program to do graphics using the
X protocol, later Tony Rogvall extended the protocol. Vlad

Dumitrescu change this program to use Erlang binaries. I then
rewrote most of the code (apart from the authentication) Shawn
Pearce rewrote the name resolution code used in starting the
system and Frej Drejhammar pointed out several mistakes in the
design which have now been corrected.

References
[1] Armstrong, J., Virding, R., Wikström, C., and Williams. M.

Concurrent Programming in Erlang, Prentice-Hall, 1996.
[2] Gettys, J., Karlton, P. L., McGregor, S. The X Window

System, Version 11. Software - Practice and Experience,
Volume 20, 1990.

[3] Nye, Adrian. X window system – Volume 0: X Protocol
Reference Manual, O'Reilly & Associates. 1995.

[4] Nye, A. X window system – Volume 1: Xlib Programming
Manual. O'Reilly & Associates. 1992

[5] Nye, A. X window system – Volume 2: Xlib Reference
manual. O'Reilly & Associates. 1992

[6] Nye, A., and O'Reilly, T. X window system – Volume 4M: X
Toolkit Intrinsics Programming Manual. O'Reilly &
Associates. 1992.

[7] Cutler, E., Gilly, D., O'Reilly, T. The X window system in a
nutshell. O'Reilly & Associates. 1992.

[8] Pike, R. A Concurrent Window System Comp. Sys., Spring
1989, Vol 2 #2, pp. 133-153

[9] Huss, H., Ihrén, J., SCIX – A scheme interface to X
windows. Royal Institute of Technology , Sweden, 1990.

[10] Reppy, J. H. Higher Order Concurrency – Ph.D. Thesis.
Cornell University 1992.

[11] Carlsson, M., Hallgren, T. FUDGETS: a graphical user
interface in a lazy functional language. In Proceedings of the
conference on Functional programming languages and
computer architecture, 1993.

6

